Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer
Simple Summary
Abstract
1. The Tumor Microenvironment: A Complex Cancer Ecosystem
2. Ion Channels and Cancer
2.1. ATP-Sensitive Potassium Channels in Cancer
2.2. TRPM5 in Cancer
2.3. Pannexins and Connexins in Cancer
Ion Channel | Tumor Growth Promotion (↑) or Suppression (↓) | Other Effects | References |
---|---|---|---|
KATP | Liver cancer ↑↓ | Maintenance of membrane potential and survival | [79] |
Glioblastoma ↑ | Increased Ca2+ influx | [80,81] | |
Pancreatic cancer ↑ | Activation of growth and survival pathways | [86] | |
Gastric cancer ↑ | Adaptation to hypoxia and acidic TME | [82,95,96] | |
Bladder cancer ↑↓ | Increased metabolic resilience | [88,89] | |
Prostatic cancer ↑ | Role in viral tumorigenesis | [87] | |
Cervical cancer ↑ | Interaction with lipid metabolism | [97,98] | |
Colorectal cancer ↓ | Potential therapeutic target | [84] | |
TRPM5 | Colon adenocarcinoma ↑ Breast cancer ↑ Lung cancer ↑ Gastric cancer ↑ Colorectal cancer ↑ Melanoma ↑ | Drug resistance Independent prognostic value Correlation with worse prognosis or prognostic significance Increased expression in aggressive tumor cells Blockade reduces lung metastasis Association with shorter survival in certain cancer Cellular adaptation to low pH conditions | [127] [128] [129] [130] [130] [130] [130,131] |
Pannexins Connexins | Pancreatic adenocarcinoma ↑ Breast cancer ↑ Melanoma ↑ Colorectal cancer ↑ Pituitary adenoma ↑ Glioblastoma ↑ Breast cancer ↓ Colorectal cancer ↓ Melanoma ↑↓ Lung cancer ↓ Pancreatic cancer ↓ Mesothelioma ↑ Head and neck squamous cell carcinoma ↑ | Panx1 overexpression correlates with poor prognosis in multiple cancers Panx1 promotes tumor growth, invasion, and immune evasion Panx1 deficiency reduces tumor size and increases CD8+ T cell infiltration Panx1 enhances immunosuppression Panx1 contributes to metabolic reprogramming Cx43 loss is linked to metastasis Cx43 suppresses tumor growth and invasion Cx43 enhances invasiveness via extracellular vesicle signaling Cx43 inhibition disrupts tumor cell communication and reduces network connectivity Cx40 regulates migration and proliferation in hypoxic tumor cells Cx31 has variable effects, promoting or suppressing tumors depending on cancer type | [150,151,154] [150,157] [153] [154] [157] [158] [159,162] [163] [164] [165] [166] |
3. Discussion
4. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Bissell, M.J.; Radisky, D. Putting Tumours in Context. Nat. Rev. Cancer 2001, 1, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, B.S.; Werb, Z. Stromal Effects on Mammary Gland Development and Breast Cancer. Science 2002, 296, 1046–1049. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, L.; Jordāo, M.J.C.; Joyce, J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021, 11, 933–959. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Lochter, A.; Sympson, C.J.; Huey, B.; Rougier, J.-P.; Gray, J.W.; Pinkel, D.; Bissell, M.J.; Werb, Z. The Stromal Proteinase MMP3/Stromelysin-1 Promotes Mammary Carcinogenesis. Cell 1999, 98, 137–146. [Google Scholar] [CrossRef]
- Paszek, M.J.; Zahir, N.; Johnson, K.R.; Lakins, J.N.; Rozenberg, G.I.; Gefen, A.; Reinhart-King, C.A.; Margulies, S.S.; Dembo, M.; Boettiger, D.; et al. Tensional Homeostasis and the Malignant Phenotype. Cancer Cell 2005, 8, 241–254. [Google Scholar] [CrossRef]
- Erler, J.T.; Bennewith, K.L.; Cox, T.R.; Lang, G.; Bird, D.; Koong, A.; Le, Q.-T.; Giaccia, A.J. Hypoxia-Induced Lysyl Oxidase Is a Critical Mediator of Bone Marrow Cell Recruitment to Form the Premetastatic Niche. Cancer Cell 2009, 15, 35–44. [Google Scholar] [CrossRef]
- Levental, K.R.; Yu, H.; Kass, L.; Lakins, J.N.; Egeblad, M.; Erler, J.T.; Fong, S.F.T.; Csiszar, K.; Giaccia, A.; Weninger, W.; et al. Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell 2009, 139, 891–906. [Google Scholar] [CrossRef]
- Hynes, R.O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef]
- Stickens, D.; Behonick, D.J.; Ortega, N.; Heyer, B.; Hartenstein, B.; Yu, Y.; Fosang, A.J.; Schorpp-Kistner, M.; Angel, P.; Werb, Z. Altered Endochondral Bone Development in Matrix Metalloproteinase 13-Deficient Mice. Development 2004, 131, 5883–5895. [Google Scholar] [CrossRef]
- Rebustini, I.T.; Myers, C.; Lassiter, K.S.; Surmak, A.; Szabova, L.; Holmbeck, K.; Pedchenko, V.; Hudson, B.G.; Hoffman, M.P. MT2-MMP-Dependent Release of Collagen IV NC1 Domains Regulates Submandibular Gland Branching Morphogenesis. Dev. Cell 2009, 17, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Weaver, V.M.; Werb, Z. The Extracellular Matrix: A Dynamic Niche in Cancer Progression. J. Cell Biol. 2012, 196, 395–406. [Google Scholar] [CrossRef] [PubMed]
- De Visser, K.E.; Joyce, J.A. The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef] [PubMed]
- Arnol, D.; Schapiro, D.; Bodenmiller, B.; Saez-Rodriguez, J.; Stegle, O. Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis. Cell Rep. 2019, 29, 202–211.e6. [Google Scholar] [CrossRef]
- Armingol, E.; Officer, A.; Harismendy, O.; Lewis, N.E. Deciphering Cell–Cell Interactions and Communication from Gene Expression. Nat. Rev. Genet. 2021, 22, 71–88. [Google Scholar] [CrossRef]
- Almet, A.A.; Cang, Z.; Jin, S.; Nie, Q. The Landscape of Cell–Cell Communication through Single-Cell Transcriptomics. Curr. Opin. Syst. Biol. 2021, 26, 12–23. [Google Scholar] [CrossRef]
- Dominiak, A.; Chełstowska, B.; Olejarz, W.; Nowicka, G. Communication in the Cancer Microenvironment as a Target for Therapeutic Interventions. Cancers 2020, 12, 1232. [Google Scholar] [CrossRef]
- Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review. Cancer Res. 1989, 49, 6449–6465. [Google Scholar]
- Rohani, N.; Hao, L.; Alexis, M.S.; Joughin, B.A.; Krismer, K.; Moufarrej, M.N.; Soltis, A.R.; Lauffenburger, D.A.; Yaffe, M.B.; Burge, C.B.; et al. Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive Phenotypes. Cancer Res. 2019, 79, 1952–1966. [Google Scholar] [CrossRef]
- Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO2 Gradients in Solid Tumors in Vivo: High-Resolution Measurements Reveal a Lack of Correlation. Nat. Med. 1997, 3, 177–182. [Google Scholar] [CrossRef]
- Chiche, J.; Brahimi-Horn, M.C.; Pouysségur, J. Tumour Hypoxia Induces a Metabolic Shift Causing Acidosis: A Common Feature in Cancer. J. Cell. Mol. Med. 2010, 14, 771–794. [Google Scholar] [CrossRef] [PubMed]
- Boedtkjer, E. Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. In From Malignant Transformation to Metastasis: Ion Transport in Tumor Biology; Stock, C., Pardo, L.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 39–84. ISBN 978-3-030-99800-4. [Google Scholar]
- Amith, S.R.; Fliegel, L. Na+/H+ Exchanger-Mediated Hydrogen Ion Extrusion as a Carcinogenic Signal in Triple-Negative Breast Cancer Etiopathogenesis and Prospects for Its Inhibition in Therapeutics. Semin. Cancer Biol. 2017, 43, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, G.; Jensen, M.B.F.; Boedtkjer, E.; Dybboe, R.; Aalkjaer, C.; Nylandsted, J.; Pedersen, S.F. NBCn1 and NHE1 Expression and Activity in DeltaNErbB2 Receptor-Expressing MCF-7 Breast Cancer Cells: Contributions to pHi Regulation and Chemotherapy Resistance. Exp. Cell Res. 2010, 316, 2538–2553. [Google Scholar] [CrossRef] [PubMed]
- Boedtkjer, E.; Bunch, L.; Pedersen, S.F. Physiology, Pharmacology and Pathophysiology of the pH Regulatory Transport Proteins NHE1 and NBCn1: Similarities, Differences, and Implications for Cancer Therapy. Curr. Pharm. Des. 2012, 18, 1345–1371. [Google Scholar] [CrossRef]
- Stock, C.; Gassner, B.; Hauck, C.R.; Arnold, H.; Mally, S.; Eble, J.A.; Dieterich, P.; Schwab, A. Migration of Human Melanoma Cells Depends on Extracellular pH and Na+/H+ Exchange. J. Physiol. 2005, 567, 225–238. [Google Scholar] [CrossRef]
- Stock, C.; Mueller, M.; Kraehling, H.; Mally, S.; Noël, J.; Eder, C.; Schwab, A. pH Nanoenvironment at the Surface of Single Melanoma Cells. Cell. Physiol. Biochem. 2007, 20, 679–686. [Google Scholar] [CrossRef]
- Grinstein, S.; Woodside, M.; Waddell, T.K.; Downey, G.P.; Orlowski, J.; Pouyssegur, J.; Wong, D.C.; Foskett, J.K. Focal Localization of the NHE-1 Isoform of the Na+/H+ Antiport: Assessment of Effects on Intracellular pH. EMBO J. 1993, 12, 5209–5218. [Google Scholar] [CrossRef]
- Reshkin, S.J.; Bellizzi, A.; Cardone, R.A.; Tommasino, M.; Casavola, V.; Paradiso, A. Paclitaxel Induces Apoptosis via Protein Kinase A- and P38 Mitogen-Activated Protein-Dependent Inhibition of the Na+/H+ Exchanger (NHE) NHE Isoform 1 in Human Breast Cancer Cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003, 9, 2366–2373. [Google Scholar]
- Amith, S.R.; Wilkinson, J.M.; Baksh, S.; Fliegel, L. The Na+/H+ Exchanger (NHE1) as a Novel Co-Adjuvant Target in Paclitaxel Therapy of Triple-Negative Breast Cancer Cells. Oncotarget 2014, 6, 1262–1275. [Google Scholar] [CrossRef]
- Jia, M.; Zheng, D.; Wang, X.; Zhang, Y.; Chen, S.; Cai, X.; Mo, L.; Hu, Z.; Li, H.; Zhou, Z.; et al. Cancer Cell Enters Reversible Quiescence through Intracellular Acidification to Resist Paclitaxel Cytotoxicity. Int. J. Med. Sci. 2020, 17, 1652–1664. [Google Scholar] [CrossRef]
- Lee, S.; Mele, M.; Vahl, P.; Christiansen, P.M.; Jensen, V.E.D.; Boedtkjer, E. Na+,HCO3−-Cotransport Is Functionally Upregulated during Human Breast Carcinogenesis and Required for the Inverted pH Gradient across the Plasma Membrane. Pflug. Arch. 2015, 467, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Robey, I.F.; Baggett, B.K.; Kirkpatrick, N.D.; Roe, D.J.; Dosescu, J.; Sloane, B.F.; Hashim, A.I.; Morse, D.L.; Raghunand, N.; Gatenby, R.A.; et al. Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases. Cancer Res. 2009, 69, 2260–2268. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, F.A.; Kettunen, M.I.; Day, S.E.; Hu, D.-E.; Ardenkjaer-Larsen, J.H.; Zandt, R. in ’t; Jensen, P.R.; Karlsson, M.; Golman, K.; Lerche, M.H.; et al. Magnetic Resonance Imaging of pH in Vivo Using Hyperpolarized 13C-Labelled Bicarbonate. Nature 2008, 453, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Boedtkjer, E.; Pedersen, S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. [Google Scholar] [CrossRef]
- Boedtkjer, E. Na+,HCO3− Cotransporter NBCn1 Accelerates Breast Carcinogenesis. Cancer Metastasis Rev. 2019, 38, 165–178. [Google Scholar] [CrossRef]
- Andersen, A.P.; Samsøe-Petersen, J.; Oernbo, E.K.; Boedtkjer, E.; Moreira, J.M.A.; Kveiborg, M.; Pedersen, S.F. The Net Acid Extruders NHE1, NBCn1 and MCT4 Promote Mammary Tumor Growth through Distinct but Overlapping Mechanisms. Int. J. Cancer 2018, 142, 2529–2542. [Google Scholar] [CrossRef]
- Eil, R.; Vodnala, S.K.; Clever, D.; Klebanoff, C.A.; Sukumar, M.; Pan, J.H.; Palmer, D.C.; Gros, A.; Yamamoto, T.N.; Patel, S.J.; et al. Ionic Immune Suppression within the Tumour Microenvironment Limits T Cell Effector Function. Nature 2016, 537, 539–543. [Google Scholar] [CrossRef]
- Tan, J.W.Y.; Folz, J.; Kopelman, R.; Wang, X. In Vivo Photoacoustic Potassium Imaging of the Tumor Microenvironment. Biomed. Opt. Express 2020, 11, 3507–3522. [Google Scholar] [CrossRef]
- Pellegatti, P.; Raffaghello, L.; Bianchi, G.; Piccardi, F.; Pistoia, V.; Di Virgilio, F. Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase. PLoS ONE 2008, 3, e2599. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Zhou, Y.; Tozzi, F.; Chen, J.; Fan, F.; Xia, L.; Wang, J.; Gao, G.; Zhang, A.; Xia, X.; Brasher, H.; et al. Intracellular ATP Levels Are a Pivotal Determinant of Chemoresistance in Colon Cancer Cells. Cancer Res. 2012, 72, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Pecqueur, C.; Oliver, L.; Oizel, K.; Lalier, L.; Vallette, F.M. Targeting Metabolism to Induce Cell Death in Cancer Cells and Cancer Stem Cells. Int. J. Cell Biol. 2013, 2013, 805975. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wang, X.; Liu, Y.; Li, Y.; Colvin, R.A.; Tong, L.; Wu, S.; Chen, X. Extracellular ATP Is Internalized by Macropinocytosis and Induces Intracellular ATP Increase and Drug Resistance in Cancer Cells. Cancer Lett. 2014, 351, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Axelsen, T.V.; Jessen, N.; Pedersen, S.F.; Vahl, P.; Boedtkjer, E. Na+,HCO3−-Cotransporter NBCn1 (Slc4a7) Accelerates ErbB2-Induced Breast Cancer Development and Tumor Growth in Mice. Oncogene 2018, 37, 5569–5584. [Google Scholar] [CrossRef]
- Voss, N.C.S.; Dreyer, T.; Henningsen, M.B.; Vahl, P.; Honoré, B.; Boedtkjer, E. Targeting the Acidic Tumor Microenvironment: Unexpected Pro-Neoplastic Effects of Oral NaHCO3 Therapy in Murine Breast Tissue. Cancers 2020, 12, 891. [Google Scholar] [CrossRef]
- Pérez-Escuredo, J.; Van Hée, V.F.; Sboarina, M.; Falces, J.; Payen, V.L.; Pellerin, L.; Sonveaux, P. Monocarboxylate Transporters in the Brain and in Cancer. Biochim. Biophys. Acta 2016, 1863, 2481–2497. [Google Scholar] [CrossRef]
- Rattigan, Y.I.; Patel, B.B.; Ackerstaff, E.; Sukenick, G.; Koutcher, J.A.; Glod, J.W.; Banerjee, D. Lactate Is a Mediator of Metabolic Cooperation between Stromal Carcinoma Associated Fibroblasts and Glycolytic Tumor Cells in the Tumor Microenvironment. Exp. Cell Res. 2012, 318, 326–335. [Google Scholar] [CrossRef]
- Kennedy, K.M.; Scarbrough, P.M.; Ribeiro, A.; Richardson, R.; Yuan, H.; Sonveaux, P.; Landon, C.D.; Chi, J.-T.; Pizzo, S.; Schroeder, T.; et al. Catabolism of Exogenous Lactate Reveals It as a Legitimate Metabolic Substrate in Breast Cancer. PLoS ONE 2013, 8, e75154. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Mahieu, N.G.; Huang, X.; Singh, M.; Crawford, P.A.; Johnson, S.L.; Gross, R.W.; Schaefer, J.; Patti, G.J. Lactate Metabolism Is Associated with Mammalian Mitochondria. Nat. Chem. Biol. 2016, 12, 937–943. [Google Scholar] [CrossRef]
- San-Millán, I.; Brooks, G.A. Reexamining Cancer Metabolism: Lactate Production for Carcinogenesis Could Be the Purpose and Explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133. [Google Scholar] [CrossRef]
- Burgess, E.A.; Sylven, B. Changes in Glucose and Lactate Content of Ascites Fluid and Blood Plasma during Growth and Decay of the ELD Ascites Tumour. Br. J. Cancer 1962, 16, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Gullino, P.M.; Clark, S.H.; Grantham, F.H. The Interstitial Fluid of Solid Tumors. Cancer Res. 1964, 24, 780–794. [Google Scholar] [PubMed]
- Ho, P.-C.; Bihuniak, J.D.; Macintyre, A.N.; Staron, M.; Liu, X.; Amezquita, R.; Tsui, Y.-C.; Cui, G.; Micevic, G.; Perales, J.C.; et al. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-Tumor T Cell Responses. Cell 2015, 162, 1217–1228. [Google Scholar] [CrossRef] [PubMed]
- Bok, R.; Lee, J.; Sriram, R.; Keshari, K.; Sukumar, S.; Daneshmandi, S.; Korenchan, D.E.; Flavell, R.R.; Vigneron, D.B.; Kurhanewicz, J.; et al. The Role of Lactate Metabolism in Prostate Cancer Progression and Metastases Revealed by Dual-Agent Hyperpolarized 13C MRSI. Cancers 2019, 11, 257. [Google Scholar] [CrossRef]
- Sullivan, M.R.; Danai, L.V.; Lewis, C.A.; Chan, S.H.; Gui, D.Y.; Kunchok, T.; Dennstedt, E.A.; Vander Heiden, M.G.; Muir, A. Quantification of Microenvironmental Metabolites in Murine Cancers Reveals Determinants of Tumor Nutrient Availability. eLife 2019, 8, e44235. [Google Scholar] [CrossRef]
- Roslin, M.; Henriksson, R.; Bergström, P.; Ungerstedt, U.; Bergenheim, A.T. Baseline Levels of Glucose Metabolites, Glutamate and Glycerol in Malignant Glioma Assessed by Stereotactic Microdialysis. J. Neurooncol. 2003, 61, 151–160. [Google Scholar] [CrossRef]
- Schroeder, U.; Himpe, B.; Pries, R.; Vonthein, R.; Nitsch, S.; Wollenberg, B. Decline of Lactate in Tumor Tissue after Ketogenic Diet: In Vivo Microdialysis Study in Patients with Head and Neck Cancer. Nutr. Cancer 2013, 65, 843–849. [Google Scholar] [CrossRef]
- Armstrong, C.M. Voltage-Dependent Ion Channels and Their Gating. Physiol. Rev. 1992, 72, S5–S13. [Google Scholar] [CrossRef]
- Keramidas, A.; Moorhouse, A.J.; Schofield, P.R.; Barry, P.H. Ligand-Gated Ion Channels: Mechanisms Underlying Ion Selectivity. Prog. Biophys. Mol. Biol. 2004, 86, 161–204. [Google Scholar] [CrossRef]
- Ranade, S.S.; Syeda, R.; Patapoutian, A. Mechanically Activated Ion Channels. Neuron 2015, 87, 1162–1179. [Google Scholar] [CrossRef]
- Griffin, M.; Khan, R.; Basu, S.; Smith, S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers 2020, 12, 3068. [Google Scholar] [CrossRef] [PubMed]
- Brücher, B.L.D.M.; Jamall, I.S. Cell-Cell Communication in the Tumor Microenvironment, Carcinogenesis, and Anticancer Treatment. Cell. Physiol. Biochem. 2014, 34, 213–243. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Wang, J.; Ou, S.; Wang, Y.; Qiu, B.; Ding, D.; Guo, F.; Gao, Q. Expression of Neonatal Nav1.5 in Human Brain Astrocytoma and Its Effect on Proliferation, Invasion and Apoptosis of Astrocytoma Cells. Oncol. Rep. 2014, 31, 2692–2700. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.N.; Coetzee, W.A. KATP Channels in the Cardiovascular System. Physiol. Rev. 2016, 96, 177–252. Available online: https://journals.physiology.org/doi/epdf/10.1152/physrev.00003.2015 (accessed on 8 March 2025). [CrossRef]
- Yamada, K.; Inagaki, N. Neuroprotection by KATP Channels. J. Mol. Cell. Cardiol. 2005, 38, 945–949. [Google Scholar] [CrossRef]
- Brayden, J.E. Functional Roles Of K Channels In Vascular Smooth Muscle. Clin. Exp. Pharmacol. Physiol. 2002, 29, 312–316. [Google Scholar] [CrossRef]
- Seino, S. Physiology and Pathophysiology of KATP Channels in the Pancreas and Cardiovascular System. J. Diabetes Complications 2003, 17, 2–5. [Google Scholar] [CrossRef]
- Akrouh, A.; Halcomb, S.E.; Nichols, C.G.; Sala-Rabanal, M. Molecular Biology of K(ATP) Channels and Implications for Health and Disease. IUBMB Life 2009, 61, 971–978. [Google Scholar] [CrossRef]
- Olson, T.M.; Terzic, A. Human KATP Channelopathies: Diseases of Metabolic Homeostasis. Pflug. Arch. 2010, 460, 295–306. [Google Scholar] [CrossRef]
- Nichols, C.G. KATP Channels as Molecular Sensors of Cellular Metabolism. Nature 2006, 440, 470–476. [Google Scholar] [CrossRef]
- Di Marco, G.; Gherardi, G.; De Mario, A.; Piazza, I.; Baraldo, M.; Mattarei, A.; Blaauw, B.; Rizzuto, R.; De Stefani, D.; Mammucari, C. The Mitochondrial ATP-Dependent Potassium Channel (mitoKATP) Controls Skeletal Muscle Structure and Function. Cell Death Dis. 2024, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, K. Ion Channels and Cancer. J. Membr. Biol. 2005, 205, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.K.; Chen, J.; MacKinnon, R. Molecular Structure of Human KATP in Complex with ATP and ADP. eLife 2025, 6, e32481. [Google Scholar] [CrossRef] [PubMed]
- Seino, S.; Miki, T. Physiological and Pathophysiological Roles of ATP-Sensitive K+ Channels. Prog. Biophys. Mol. Biol. 2003, 81, 133–176. [Google Scholar] [CrossRef]
- Miki, T.; Nagashima, K.; Seino, S. The Structure and Function of the ATP-Sensitive K+ Channel in Insulin-Secreting Pancreatic Beta-Cells. J. Mol. Endocrinol. 1999, 22, 113–123. [Google Scholar] [CrossRef]
- Inagaki, N.; Gonoi, T.; Clement, J.P.; Namba, N.; Inazawa, J.; Gonzalez, G.; Aguilar-Bryan, L.; Seino, S.; Bryan, J. Reconstitution of IKATP: An Inward Rectifier Subunit plus the Sulfonylurea Receptor. Science 1995, 270, 1166–1170. [Google Scholar] [CrossRef]
- Babenko, A.P.; Aguilar-Bryan, L.; Bryan, J. A View of Sur/Kir6.x, Katp Channels. Annu. Rev. Physiol. 1998, 60, 667–687. [Google Scholar] [CrossRef]
- Iorio, J.; Petroni, G.; Duranti, C.; Lastraioli, E. Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism. Bioelectricity 2019, 1, 188–200. [Google Scholar] [CrossRef]
- Shen, Z.; Yang, Q.; You, Q. Research Toward Potassium Channels on Tumor Progression. Curr. Top. Med. Chem. 2025, 9, 322–329. [Google Scholar] [CrossRef]
- Yao, X.; Kwan, H.Y. Activity of Voltage-Gated K+ Channels Is Associated with Cell Proliferation and Ca2+ Influx in Carcinoma Cells of Colon Cancer. Life Sci. 1999, 65, 55–62. [Google Scholar] [CrossRef]
- Davies, N.W. Modulation of ATP-Sensitive K+ Channels in Skeletal Muscle by Intracellular Protons. Nature 1990, 343, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Malhi, H.; Irani, A.N.; Rajvanshi, P.; Suadicani, S.O.; Spray, D.C.; McDonald, T.V.; Gupta, S. KATP Channels Regulate Mitogenically Induced Proliferation in Primary Rat Hepatocytes and Human Liver Cell Lines. Implications for Liver Growth Control and Potential Therapeutic Targeting. J. Biol. Chem. 2000, 275, 26050–26057. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, B.; Li, W.; Guo, H.; Zou, F. ATP-Sensitive Potassium Channels Control Glioma Cells Proliferation by Regulating ERK Activity. Carcinogenesis 2009, 30, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Maqoud, F.; Zizzo, N.; Attimonelli, M.; Tinelli, A.; Passantino, G.; Antonacci, M.; Ranieri, G.; Tricarico, D. Immunohistochemical, Pharmacovigilance, and Omics Analyses Reveal the Involvement of ATP-Sensitive K+ Channel Subunits in Cancers: Role in Drug–Disease Interactions. Front. Pharmacol. 2023, 14, 1115543. [Google Scholar] [CrossRef]
- Antonacci, M.; Maqoud, F.; Di Turi, A.; Miciaccia, M.; Perrone, M.G.; Scilimati, A.; Tricarico, D. KATP Channel Inhibitors Reduce Cell Proliferation Through Upregulation of H3K27ac in Diffuse Intrinsic Pontine Glioma: A Functional Expression Investigation. Cancers 2025, 17, 358. [Google Scholar] [CrossRef]
- Scarth, J.A.; Wasson, C.W.; Patterson, M.R.; Evans, D.; Barba-Moreno, D.; Carden, H.; Cassidy, R.; Whitehouse, A.; Mankouri, J.; Samson, A.; et al. Exploitation of ATP-Sensitive Potassium Ion (KATP) Channels by HPV Promotes Cervical Cancer Cell Proliferation by Contributing to MAPK/AP-1 Signalling. Oncogene 2023, 42, 2558–2577. [Google Scholar] [CrossRef]
- Foster, H.R.; Ho, T.; Potapenko, E.; Sdao, S.M.; Huang, S.M.; Lewandowski, S.L.; VanDeusen, H.R.; Davidson, S.M.; Cardone, R.L.; Prentki, M.; et al. β-Cell Deletion of the PKm1 and PKm2 Isoforms of Pyruvate Kinase in Mice Reveals Their Essential Role as Nutrient Sensors for the KATP Channel. eLife 2022, 11, e79422. [Google Scholar] [CrossRef]
- Ho, T.; Potapenko, E.; Davis, D.B.; Merrins, M.J. A Plasma Membrane-Associated Glycolytic Metabolon Is Functionally Coupled to KATP Channels in Pancreatic α and β Cells from Humans and Mice. Cell Rep. 2023, 42, 112394. [Google Scholar] [CrossRef]
- Valvona, C.J.; Fillmore, H.L.; Nunn, P.B.; Pilkington, G.J. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor. Brain Pathol. 2015, 26, 3–17. [Google Scholar] [CrossRef]
- Zaborska, K.E.; Dadi, P.K.; Dickerson, M.T.; Nakhe, A.Y.; Thorson, A.S.; Schaub, C.M.; Graff, S.M.; Stanley, J.E.; Kondapavuluru, R.S.; Denton, J.S.; et al. Lactate Activation of α-Cell KATP Channels Inhibits Glucagon Secretion by Hyperpolarizing the Membrane Potential and Reducing Ca2+ Entry. Mol. Metab. 2020, 42, 101056. [Google Scholar] [CrossRef]
- Crawford, R.M.; Budas, G.R.; Jovanović, S.; Ranki, H.J.; Wilson, T.J.; Davies, A.M.; Jovanović, A. M-LDH Serves as a Sarcolemmal KATP Channel Subunit Essential for Cell Protection against Ischemia. EMBO J. 2002, 21, 3936–3948. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; So, I.; Kim, E.Y.; Earm, Y.E. ATP-Sensitive Potassium Channels Are Modulated by Intracellular Lactate in Rabbit Ventricular Myocytes. Pflug. Arch. 1993, 425, 546–548. [Google Scholar] [CrossRef]
- Pérez-Tomás, R.; Pérez-Guillén, I. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers 2020, 12, 3244. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cui, N.; Piao, H.; Wang, Y.; Xu, H.; Mao, J.; Jiang, C. Allosteric Modulation of the Mouse Kir6.2 Channel by Intracellular H+ and ATP. J. Physiol. 2002, 543, 495–504. [Google Scholar] [CrossRef]
- Baukrowitz, T.; Schulte, U.; Oliver, D.; Herlitze, S.; Krauter, T.; Tucker, S.J.; Ruppersberg, J.P.; Fakler, B. PIP2 and PIP as Determinants for ATP Inhibition of KATP Channels. Science 1998, 282, 1141–1144. [Google Scholar] [CrossRef]
- Liu, G.X.; Hanley, P.J.; Ray, J.; Daut, J. Long-Chain Acyl-Coenzyme A Esters and Fatty Acids Directly Link Metabolism to K(ATP) Channels in the Heart. Circ. Res. 2001, 88, 918–924. [Google Scholar] [CrossRef]
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Guo, S.; Zhang, S.; Cui, N.; Shi, W.; Zhu, D.; Jiang, C. PKA-Dependent Activation of the Vascular Smooth Muscle Isoform of KATP Channels by Vasoactive Intestinal Polypeptide and Its Effect on Relaxation of the Mesenteric Resistance Artery. Biochim. Biophys. Acta BBA—Biomembr. 2008, 1778, 88–96. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Jan, Y.N.; Jan, L.Y. Regulation of ATP-Sensitive Potassium Channel Function by Protein Kinase A-Mediated Phosphorylation in Transfected HEK293 Cells. EMBO J. 2000, 19, 942–955. [Google Scholar] [CrossRef]
- Light, P.E.; Bladen, C.; Winkfein, R.J.; Walsh, M.P.; French, R.J. Molecular Basis of Protein Kinase C-Induced Activation of ATP-Sensitive Potassium Channels. Proc. Natl. Acad. Sci. USA 2000, 97, 9058–9063. [Google Scholar] [CrossRef]
- He, S.; Li, Q.; Huang, Q.; Cheng, J. Targeting Protein Kinase C for Cancer Therapy. Cancers 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Du, R.-H.; Dai, T.; Cao, W.-J.; Lu, M.; Ding, J.; Hu, G. Kir6.2-Containing ATP-Sensitive K(+) Channel Is Required for Cardioprotection of Resveratrol in Mice. Cardiovasc. Diabetol. 2014, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, C.K.; Rayginia, T.P.; Shifana, S.C.; Anto, N.P.; Kalimuthu, K.; Isakov, N.; Anto, R.J. The Role of AMPK in Cancer Metabolism and Its Impact on the Immunomodulation of the Tumor Microenvironment. Front. Immunol. 2023, 14, 1114582. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (Transient Receptor Potential) Ion Channel Family: Structures, Biological Functions and Therapeutic Interventions for Diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef]
- de Almeida, A.S.; Bernardes, L. de B.; Trevisan, G. TRP Channels in Cancer Pain. Eur. J. Pharmacol. 2021, 904, 174185. [Google Scholar] [CrossRef]
- Wang, J.; Jackson, M.F.; Xie, Y.-F. Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer’s Diseases. Neural Plast. 2016, 2016, 1680905. [Google Scholar] [CrossRef]
- Yıldızhan, K.; Nazıroğlu, M. Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol. Neurobiol. 2020, 57, 3508–3525. [Google Scholar] [CrossRef]
- Schlingmann, K.P.; Waldegger, S.; Konrad, M.; Chubanov, V.; Gudermann, T. TRPM6 and TRPM7—Gatekeepers of Human Magnesium Metabolism. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2007, 1772, 813–821. [Google Scholar] [CrossRef]
- Knowlton, W.M.; McKemy, D.D. TRPM8: From Cold to Cancer, Peppermint to Pain. Curr. Pharm. Biotechnol. 2011, 12, 68–77. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Wang, X.-H.; Wang, H.-P.; Hu, L.-Q. Effects of TRPM8 on the Proliferation and Motility of Prostate Cancer PC-3 Cells. Asian J. Androl. 2009, 11, 157–165. [Google Scholar] [CrossRef]
- Reading, S.A.; Brayden, J.E. Central Role of TRPM4 Channels in Cerebral Blood Flow Regulation. Stroke 2007, 38, 2322–2328. [Google Scholar] [CrossRef] [PubMed]
- Brixel, L.R.; Monteilh-Zoller, M.K.; Ingenbrandt, C.S.; Fleig, A.; Penner, R.; Enklaar, T.; Zabel, B.U.; Prawitt, D. TRPM5 Regulates Glucose-Stimulated Insulin Secretion. Pflüg. Arch.—Eur. J. Physiol. 2010, 460, 69–76. [Google Scholar] [CrossRef]
- Wang, K.; Wu, S.; Yao, Z.; Zhu, Y.; Han, X. Insufficient TRPM5 Mediates Lipotoxicity-Induced Pancreatic β-Cell Dysfunction. Curr. Med. Sci. 2024, 44, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Fliegert, R.; Guse, A.H.; Lü, W.; Du, J. A Structural Overview of the Ion Channels of the TRPM Family. Cell Calcium 2020, 85, 102111. [Google Scholar] [CrossRef]
- Winkler, P.A.; Huang, Y.; Sun, W.; Du, J.; Lü, W. Electron Cryo-Microscopy Structure of a Human TRPM4 Channel. Nature 2017, 552, 200–204. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, M.; Zubcevic, L.; Borschel, W.F.; Lander, G.C.; Lee, S.-Y. Structure of the Cold- and Menthol-Sensing Ion Channel TRPM8. Science 2018, 359, 237–241. [Google Scholar] [CrossRef]
- Wang, L.; Fu, T.-M.; Zhou, Y.; Xia, S.; Greka, A.; Wu, H. Structures and Gating Mechanism of Human TRPM2. Science 2018, 362, eaav4809. [Google Scholar] [CrossRef]
- Ruan, Z.; Haley, E.; Orozco, I.J.; Sabat, M.; Myers, R.; Roth, R.; Du, J.; Lü, W. Structures of the TRPM5 Channel Elucidate Mechanisms of Activation and Inhibition. Nat. Struct. Mol. Biol. 2021, 28, 604–613. [Google Scholar] [CrossRef]
- Prawitt, D.; Monteilh-Zoller, M.K.; Brixel, L.; Spangenberg, C.; Zabel, B.; Fleig, A.; Penner, R. TRPM5 Is a Transient Ca2+-Activated Cation Channel Responding to Rapid Changes in [Ca2+]i. Proc. Natl. Acad. Sci. USA 2003, 100, 15166–15171. [Google Scholar] [CrossRef]
- Ullrich, N.D.; Voets, T.; Prenen, J.; Vennekens, R.; Talavera, K.; Droogmans, G.; Nilius, B. Comparison of Functional Properties of the Ca2+-Activated Cation Channels TRPM4 and TRPM5 from Mice. Cell Calcium 2005, 37, 267–278. [Google Scholar] [CrossRef]
- Nilius, B.; Prenen, J.; Janssens, A.; Owsianik, G.; Wang, C.; Zhu, M.X.; Voets, T. The Selectivity Filter of the Cation Channel TRPM4 *. J. Biol. Chem. 2005, 280, 22899–22906. [Google Scholar] [CrossRef] [PubMed]
- Liman, E.R. TRPM5. In Mammalian Transient Receptor Potential (TRP) Cation Channels: Volume I; Nilius, B., Flockerzi, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 489–502. ISBN 978-3-642-54215-2. [Google Scholar]
- Talavera, K.; Yasumatsu, K.; Voets, T.; Droogmans, G.; Shigemura, N.; Ninomiya, Y.; Margolskee, R.F.; Nilius, B. Heat Activation of TRPM5 Underlies Thermal Sensitivity of Sweet Taste. Nature 2005, 438, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, Z.; Liman, E.R. Extracellular Acid Block and Acid-Enhanced Inactivation of the Ca2+-Activated Cation Channel TRPM5 Involve Residues in the S3–S4 and S5–S6 Extracellular Domains *. J. Biol. Chem. 2005, 280, 20691–20699. [Google Scholar] [CrossRef] [PubMed]
- Vennekens, R.; Mesuere, M.; Philippaert, K. TRPM5 in the Battle against Diabetes and Obesity. Acta Physiol. 2018, 222, e12949. [Google Scholar] [CrossRef]
- Hu, W.; Wartmann, T.; Strecker, M.; Perrakis, A.; Croner, R.; Szallasi, A.; Shi, W.; Kahlert, U.D. Transient Receptor Potential Channels as Predictive Marker and Potential Indicator of Chemoresistance in Colon Cancer. Oncol. Res. 2025, 32, 227–239. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, Y.; Wang, H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. In TRP Channels as Therapeutic Targets; Elsevier: Amsterdam, The Netherlands, 2024; pp. 483–516. ISBN 978-0-443-18653-0. [Google Scholar]
- Zhang, H.; Zhang, X.; Wang, X.; Sun, H.; Hou, C.; Yu, Y.; Wang, S.; Yin, F.; Yang, Z. Comprehensive Analysis of TRP Channel–Related Genes in Patients with Triple-Negative Breast Cancer for Guiding Prognostic Prediction. Front. Oncol. 2022, 12, 941283. [Google Scholar] [CrossRef]
- Maeda, T.; Suzuki, A.; Koga, K.; Miyamoto, C.; Maehata, Y.; Ozawa, S.; Hata, R.-I.; Nagashima, Y.; Nabeshima, K.; Miyazaki, K.; et al. TRPM5 Mediates Acidic Extracellular pH Signaling and TRPM5 Inhibition Reduces Spontaneous Metastasis in Mouse B16-BL6 Melanoma Cells. Oncotarget 2017, 8, 78312–78326. [Google Scholar] [CrossRef]
- Sutoo, S.; Maeda, T.; Suzuki, A.; Kato, Y. Adaptation to Chronic Acidic Extracellular pH Elicits a Sustained Increase in Lung Cancer Cell Invasion and Metastasis. Clin. Exp. Metastasis 2020, 37, 133–144. [Google Scholar] [CrossRef]
- Loewenstein, W.R. Junctional Intercellular Communication: The Cell-to-Cell Membrane Channel. Physiol. Rev. 1981, 61, 829–913. [Google Scholar] [CrossRef]
- Lampe, P.D.; Laird, D.W. Recent Advances in Connexin Gap Junction Biology. Fac. Rev. 2022, 11, 14. [Google Scholar] [CrossRef]
- Scemes, E.; Spray, D.C.; Meda, P. Connexins, Pannexins, Innexins: Novel Roles of “Hemi-Channels”. Pflüg. Arch.—Eur. J. Physiol. 2009, 457, 1207–1226. [Google Scholar] [CrossRef] [PubMed]
- MacVicar, B.A.; Thompson, R.J. Non-Junction Functions of Pannexin-1 Channels. Trends Neurosci. 2010, 33, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Bruzzone, R.; Hormuzdi, S.G.; Barbe, M.T.; Herb, A.; Monyer, H. Pannexins, a Family of Gap Junction Proteins Expressed in Brain. Proc. Natl. Acad. Sci. USA 2003, 100, 13644–13649. [Google Scholar] [CrossRef] [PubMed]
- Sosinsky, G.E.; Boassa, D.; Dermietzel, R.; Duffy, H.S.; Laird, D.W.; MacVicar, B.; Naus, C.C.; Penuela, S.; Scemes, E.; Spray, D.C.; et al. Pannexin Channels Are Not Gap Junction Hemichannels. Channels 2011, 5, 193–197. [Google Scholar] [CrossRef]
- Tachikawa, M.; Kaneko, Y.; Ohtsuki, S.; Uchida, Y.; Watanabe, M.; Ohtsuka, H.; Terasaki, T. Targeted Proteomics-Based Quantitative Protein Atlas of Pannexin and Connexin Subtypes in Mouse and Human Tissues and Cancer Cell Lines. J. Pharm. Sci. 2020, 109, 1161–1168. [Google Scholar] [CrossRef]
- Vogt, A.; Hormuzdi, S.G.; Monyer, H. Pannexin1 and Pannexin2 Expression in the Developing and Mature Rat Brain. Mol. Brain Res. 2005, 141, 113–120. [Google Scholar] [CrossRef]
- Wang, X.-H.; Streeter, M.; Liu, Y.-P.; Zhao, H.-B. Identification and Characterization of Pannexin Expression in the Mammalian Cochlea. J. Comp. Neurol. 2009, 512, 336–346. [Google Scholar] [CrossRef]
- Le Vasseur, M.; Lelowski, J.; Bechberger, J.F.; Sin, W.-C.; Naus, C.C. Pannexin 2 Protein Expression Is Not Restricted to the CNS. Front. Cell. Neurosci. 2014, 8, 392. [Google Scholar] [CrossRef]
- Syrjanen, J.; Michalski, K.; Kawate, T.; Furukawa, H. On the Molecular Nature of Large-Pore Channels. J. Mol. Biol. 2021, 433, 166994. [Google Scholar] [CrossRef]
- Račkauskas, M.; Neverauskas, V.; Skeberdis, V. Diversity and Properties of Connexin Gap Junction Channels. Medicina 2010, 46, 1. [Google Scholar] [CrossRef]
- Giepmans, B.N.G. Gap Junctions and Connexin-Interacting Proteins. Cardiovasc. Res. 2004, 62, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Kielian, T. Glial Connexins and Gap Junctions in CNS Inflammation and Disease. J. Neurochem. 2008, 106, 1000–1016. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, H.J.; Wilders, R. Gap Junctions in Cardiovascular Disease. Circ. Res. 2000, 86, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Sinyuk, M.; Mulkearns-Hubert, E.E.; Reizes, O.; Lathia, J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front. Oncol. 2018, 8, 646. [Google Scholar] [CrossRef]
- Cronier, L.; Crespin, S.; Strale, P.-O.; Defamie, N.; Mesnil, M. Gap Junctions and Cancer: New Functions for an Old Story. Antioxid. Redox Signal. 2009, 11, 323–338. [Google Scholar] [CrossRef]
- Naus, C.C.; Laird, D.W. Implications and Challenges of Connexin Connections to Cancer. Nat. Rev. Cancer 2010, 10, 435–441. [Google Scholar] [CrossRef]
- Bao, L.; Sun, K.; Zhang, X. PANX1 Is a Potential Prognostic Biomarker Associated with Immune Infiltration in Pancreatic Adenocarcinoma: A Pan-Cancer Analysis. Channels 2021, 15, 680–696. [Google Scholar] [CrossRef]
- Fierro-Arenas, A.; Landskron, G.; Camhi-Vainroj, I.; Basterrechea, B.; Parada-Venegas, D.; Lobos-González, L.; Dubois-Camacho, K.; Araneda, C.; Romero, C.; Domínguez, A.; et al. Pannexin-1 Expression in Tumor Cells Correlates with Colon Cancer Progression and Survival. Life Sci. 2024, 351, 122851. [Google Scholar] [CrossRef]
- Mukai, H.; Miki, N.; Yamada, H.; Goto, H.; Kawakami, T.; Suzuki, A.; Yamamoto, K.; Nakanishi, Y.; Takahashi, K. Pannexin1 Channel-Dependent Secretome from Apoptotic Tumor Cells Shapes Immune-Escape Microenvironment. Biochem. Biophys. Res. Commun. 2022, 628, 116–122. [Google Scholar] [CrossRef]
- Sanchez-Pupo, R.E.; Finch, G.A.; Johnston, D.E.; Craig, H.; Abdo, R.; Barr, K.; Kerfoot, S.; Dagnino, L.; Penuela, S. Global Pannexin 1 Deletion Increases Tumor-Infiltrating Lymphocytes in the BRAF/Pten Mouse Melanoma Model. Mol. Oncol. 2024, 18, 969–987. [Google Scholar] [CrossRef]
- Chen, W.; Li, B.; Jia, F.; Li, J.; Huang, H.; Ni, C.; Xia, W. High PANX1 Expression Leads to Neutrophil Recruitment and the Formation of a High Adenosine Immunosuppressive Tumor Microenvironment in Basal-like Breast Cancer. Cancers 2022, 14, 3369. [Google Scholar] [CrossRef] [PubMed]
- Furlow, P.W.; Zhang, S.; Soong, T.D.; Halberg, N.; Goodarzi, H.; Mangrum, C.; Wu, Y.G.; Elemento, O.; Tavazoie, S.F. Mechanosensitive Pannexin-1 Channels Mediate Microvascular Metastatic Cell Survival. Nat. Cell Biol. 2015, 17, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.C.-Y.; Chiang, S.-F.; Lin, P.-C.; Hong, W.-Z.; Yang, P.-C.; Chang, H.-P.; Peng, S.-L.; Chen, T.-W.; Ke, T.-W.; Liang, J.-A.; et al. TNFα Modulates PANX1 Activation to Promote ATP Release and Enhance P2RX7-Mediated Antitumor Immune Responses after Chemotherapy in Colorectal Cancer. Cell Death Dis. 2024, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Tang, X.; Peng, Y.; Wen, H.; Yang, H.; Li, S.; Zheng, X.; Xiong, Y. Pannexin-1 Regulation of ATP Release Promotes the Invasion of Pituitary Adenoma. J. Endocrinol. Investig. 2025, 48, 317–332. [Google Scholar] [CrossRef]
- Kiszner, G.; Balla, P.; Wichmann, B.; Barna, G.; Baghy, K.; Nemeth, I.B.; Varga, E.; Furi, I.; Toth, B.; Krenacs, T. Exploring Differential Connexin Expression across Melanocytic Tumor Progression Involving the Tumor Microenvironment. Cancers 2019, 11, 165. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Riquelme, M.A.; Gu, S.; Kar, R.; Gao, X.; Sun, L.; Jiang, J.X. Osteocytic Connexin Hemichannels Suppress Breast Cancer Growth and Bone Metastasis. Oncogene 2016, 35, 5597–5607. [Google Scholar] [CrossRef]
- Riquelme, M.A.; Wang, X.; Acosta, F.M.; Zhang, J.; Chavez, J.; Gu, S.; Zhao, P.; Xiong, W.; Zhang, N.; Li, G.; et al. Antibody-Activation of Connexin Hemichannels in Bone Osteocytes with ATP Release Suppresses Breast Cancer and Osteosarcoma Malignancy. Cell Rep. 2024, 43, 114377. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Riquelme, M.A.; Gao, X.; Ellies, L.G.; Sun, L.Z.; Jiang, J.X. Differential Impact of Adenosine Nucleotides Released by Osteocytes on Breast Cancer Growth and Bone Metastasis. Oncogene 2015, 34, 1831–1842. [Google Scholar] [CrossRef]
- Han, Y.; Wang, H.; Chen, H.; Tan, T.; Wang, Y.; Yang, H.; Ding, Y.; Wang, S. CX43 Down-Regulation Promotes Cell Aggressiveness and 5-Fluorouracil-Resistance by Attenuating Cell Stiffness in Colorectal Carcinoma. Cancer Biol. Ther. 2023, 24, 2221879. [Google Scholar] [CrossRef]
- Tamborini, M.; Ribecco, V.; Stanzani, E.; Sironi, A.; Tambalo, M.; Franzone, D.; Florio, E.; Fraviga, E.; Saulle, C.; Gagliani, M.C.; et al. Extracellular Vesicles Released by Glioblastoma Cancer Cells Drive Tumor Invasiveness via Connexin-43 Gap Junctions. Neuro-Oncology 2025, noaf013. [Google Scholar] [CrossRef]
- Hausmann, D.; Hoffmann, D.C.; Venkataramani, V.; Jung, E.; Horschitz, S.; Tetzlaff, S.K.; Jabali, A.; Hai, L.; Kessler, T.; Azoŕin, D.D.; et al. Autonomous Rhythmic Activity in Glioma Networks Drives Brain Tumour Growth. Nature 2023, 613, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Rozas-Villanueva, F.M.; Orellana, V.P.; Alarcón, R.; Maripillan, J.; Martinez, A.D.; Alfaro, I.E.; Retamal, M.A. Cx40 Levels Regulate Hypoxia-Induced Changes in the Migration, Proliferation, and Formation of Gap Junction Plaques in an Extravillous Trophoblast Cell Model. Cells 2024, 13, 1150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Li, X.; Zhang, Y.; Zhang, B.; Wang, H.; Bao, S.; Zu, L.; Zhang, H.; Cheng, Y.; Tang, Q.; et al. GJB3: A Comprehensive Biomarker in Pan-Cancer Prognosis and Immunotherapy Prediction. Aging 2024, 16, 7647–7667. [Google Scholar] [CrossRef]
- Chai, C.; Sui, K.; Tang, J.; Yu, H.; Yang, C.; Zhang, H.; Li, S.C.; Zhong, J.F.; Wang, Z.; Zhang, X. BCR-ABL1-Driven Exosome-miR130b-3p-Mediated Gap-Junction Cx43 MSC Intercellular Communications Imply Therapies of Leukemic Subclonal Evolution. Theranostics 2023, 13, 3943–3963. [Google Scholar] [CrossRef] [PubMed]
- Zehentner, S.; Reiner, A.T.; Grimm, C.; Somoza, V. The Role of Bitter Taste Receptors in Cancer: A Systematic Review. Cancers 2021, 13, 5891. [Google Scholar] [CrossRef]
- Singh, N.; Chakraborty, R.; Bhullar, R.P.; Chelikani, P. Differential Expression of Bitter Taste Receptors in Non-Cancerous Breast Epithelial and Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2014, 446, 499–503. [Google Scholar] [CrossRef]
- Stern, L.; Giese, N.; Hackert, T.; Strobel, O.; Schirmacher, P.; Felix, K.; Gaida, M.M. Overcoming Chemoresistance in Pancreatic Cancer Cells: Role of the Bitter Taste Receptor T2R10. J. Cancer 2018, 9, 711–725. [Google Scholar] [CrossRef]
- Kumar, P.; Krasteva-Christ, G.; Hollenhorst, M. The Bitter Taste Receptor Agonist Denatonium Influences Mouse Tracheal Epithelial Ion Transport. FASEB J. 2021, 35, S1. [Google Scholar] [CrossRef]
- Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers 2021, 13, 2053. [Google Scholar] [CrossRef]
- Riemann, A.; Schneider, B.; Gündel, D.; Stock, C.; Thews, O.; Gekle, M. Acidic Priming Enhances Metastatic Potential of Cancer Cells. Pflug. Arch. 2014, 466, 2127–2138. [Google Scholar] [CrossRef]
- Tittarelli, A.; Guerrero, I.; Tempio, F.; Gleisner, M.A.; Avalos, I.; Sabanegh, S.; Ortíz, C.; Michea, L.; López, M.N.; Mendoza-Naranjo, A.; et al. Overexpression of Connexin 43 Reduces Melanoma Proliferative and Metastatic Capacity. Br. J. Cancer 2015, 113, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Riemann, A.; Rauschner, M.; Gießelmann, M.; Reime, S.; Haupt, V.; Thews, O. Extracellular Acidosis Modulates the Expression of Epithelial-Mesenchymal Transition (EMT) Markers and Adhesion of Epithelial and Tumor Cells. Neoplasia 2019, 21, 450–458. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, Z.; Wang, Q.; Sima, X.; Zhao, W.; He, C.; Yang, W.; Chen, H.; Gong, B.; Song, S.; et al. Single-Cell and Spatial Transcriptome Assays Reveal Heterogeneity in Gliomas through Stress Responses and Pathway Alterations. Front. Immunol. 2024, 15, 1452172. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zuo, Y.; Li, G.; Liu, W.; Pan, Y.; Fan, T.; Fu, X.; Yao, X.; Peng, Y. Advances in Spatial Transcriptomics and Its Applications in Cancer Research. Mol. Cancer 2024, 23, 129. [Google Scholar] [CrossRef]
- Kutova, O.M.; Pospelov, A.D.; Balalaeva, I.V. The Multifaceted Role of Connexins in Tumor Microenvironment Initiation and Maintenance. Biology 2023, 12, 204. [Google Scholar] [CrossRef]
- Oyamada, M.; Takebe, K.; Oyamada, Y. Regulation of Connexin Expression by Transcription Factors and Epigenetic Mechanisms. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 118–133. [Google Scholar] [CrossRef]
- Jiang, J.X.; Penuela, S. Connexin and Pannexin Channels in Cancer. BMC Cell Biol. 2016, 17, S12. [Google Scholar] [CrossRef]
- Shi, Q.; Yang, Z.; Yang, H.; Xu, L.; Xia, J.; Gu, J.; Chen, M.; Wang, Y.; Zhao, X.; Liao, Z.; et al. Targeting Ion Channels: Innovative Approaches to Combat Cancer Drug Resistance. Theranostics 2025, 15, 521–545. [Google Scholar] [CrossRef]
- Batheja, S.; Gupta, S.; Tejavath, K.K.; Gupta, U. TPP-Based Conjugates: Potential Targeting Ligands. Drug Discov. Today 2024, 29, 103983. [Google Scholar] [CrossRef]
- Jing, Z.-W.; Jia, Y.-Y.; Wan, N.; Luo, M.; Huan, M.-L.; Kang, T.-B.; Zhou, S.-Y.; Zhang, B.-L. Design and Evaluation of Novel pH-Sensitive Ureido-Conjugated Chitosan/TPP Nanoparticles Targeted to Helicobacter Pylori. Biomaterials 2016, 84, 276–285. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Shao, H.; Zhang, P.; Gao, M.; Huang, L.; Shang, P.; Zhang, Q.; Wang, W.; Feng, F. Glyburide Attenuates B(a)p and LPS-Induced Inflammation-Related Lung Tumorigenesis in Mice. Environ. Toxicol. 2021, 36, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.-C.; Liang, W.-Z.; Jan, C.-R. Mechanisms Underlying the Effect of an Oral Antihyperglycaemic Agent Glyburide on Calcium Ion (Ca2+) Movement and Its Related Cytotoxicity in Prostate Cancer Cells. Clin. Exp. Pharmacol. Physiol. 2020, 47, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Zheng, S.; Li, J.; Liu, X.; Zhou, Q.; Cao, J.; Zhang, Q.; Zheng, L.; Wang, L.; Qi, C. Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling. Anticancer Agents Med. Chem. 2022, 22, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Nazim, U.M.; Moon, J.-H.; Lee, Y.-J.; Seol, J.-W.; Park, S.-Y. Glipizide Sensitizes Lung Cancer Cells to TRAIL-Induced Apoptosis via Akt/mTOR/Autophagy Pathways. Oncotarget 2017, 8, 100021–100033. [Google Scholar] [CrossRef]
- Qi, C.; Zhou, Q.; Li, B.; Yang, Y.; Cao, L.; Ye, Y.; Li, J.; Ding, Y.; Wang, H.; Wang, J.; et al. Glipizide, an Antidiabetic Drug, Suppresses Tumor Growth and Metastasis by Inhibiting Angiogenesis. Oncotarget 2014, 5, 9966–9979. [Google Scholar] [CrossRef]
- Long, L.; Hu, X.; Li, X.; Zhou, D.; Shi, Y.; Wang, L.; Zeng, H.; Yu, X.; Zhou, W. The Anti-Breast Cancer Effect and Mechanism of Glimepiride-Metformin Adduct. OncoTargets Ther. 2020, 13, 3777–3788. [Google Scholar] [CrossRef]
- Nishi, K.; Imoto, S.; Beppu, T.; Uchibori, S.; Yano, A.; Ishima, Y.U.; Ikeda, T.; Tsukigawa, K.; Otagiri, M.; Yamasaki, K. The Nitrated Form of Nateglinide Induces Apoptosis in Human Pancreatic Cancer Cells Through a Caspase-Dependent Mechanism. Anticancer Res. 2022, 42, 1333–1338. [Google Scholar] [CrossRef]
- Salcher, S.; Spoden, G.; Huber, J.M.; Golderer, G.; Lindner, H.; Ausserlechner, M.J.; Kiechl-Kohlendorfer, U.; Geiger, K.; Obexer, P. Repaglinide Silences the FOXO3/Lumican Axis and Represses the Associated Metastatic Potential of Neuronal Cancer Cells. Cells 2019, 9, 1. [Google Scholar] [CrossRef]
- Kim, J.A.; Kang, Y.Y.; Lee, Y.S. Activation of Na+, K+, Cl−-Cotransport Mediates Intracellular Ca2+ Increase and Apoptosis Induced by Pinacidil in HepG2 Human Hepatoblastoma Cells. Biochem. Biophys. Res. Commun. 2001, 281, 511–519. [Google Scholar] [CrossRef]
- Lee, Y.S.; Sayeed, M.M.; Wurster, R.D. In Vitro Antitumor Activity of Cromakalim in Human Brain Tumor Cells. Pharmacology 2008, 49, 69–74. [Google Scholar] [CrossRef]
- Wondergem, R.; Cregan, M.; Strickler, L.; Miller, R.; Suttles, J. Membrane Potassium Channels and Human Bladder Tumor Cells: II. Growth Properties. J. Membr. Biol. 1998, 161, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Fraser, S.P.; Pires, W.; Djamgoz, M.B.A. Anti-Invasive Effects of Minoxidil on Human Breast Cancer Cells: Combination with Ranolazine. Clin. Exp. Metastasis 2022, 39, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Boyd-Tressler, A.; Penuela, S.; Laird, D.W.; Dubyak, G.R. Chemotherapeutic Drugs Induce ATP Release via Caspase-Gated Pannexin-1 Channels and a Caspase/Pannexin-1-Independent Mechanism. J. Biol. Chem. 2014, 289, 27246–27263. [Google Scholar] [CrossRef] [PubMed]
- Draganov, D.; Gopalakrishna-Pillai, S.; Chen, Y.-R.; Zuckerman, N.; Moeller, S.; Wang, C.; Ann, D.; Lee, P.P. Modulation of P2X4/P2X7/Pannexin-1 Sensitivity to Extracellular ATP via Ivermectin Induces a Non-Apoptotic and Inflammatory Form of Cancer Cell Death. Sci. Rep. 2015, 5, 16222. [Google Scholar] [CrossRef]
- Romano, R.C.; Gardner, J.M.; Shalin, S.C.; Ram, R.; Govindarajan, R.; Montgomery, C.O.; Gilley, J.H.; Nicholas, R.W. High Relative Expression of Pannexin 3 (PANX3) in an Axillary Sweat Gland Carcinoma with Osteosarcomatous Transformation. Am. J. Dermatopathol. 2016, 38, 846–851. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; Marcoli, M.; Micheli, L.; Zanardelli, M.; Maura, G.; Ghelardini, C.; Cervetto, C. Oxaliplatin Evokes P2X7-Dependent Glutamate Release in the Cerebral Cortex: A Pain Mechanism Mediated by Pannexin 1. Neuropharmacology 2015, 97, 133–141. [Google Scholar] [CrossRef]
- Fornelli, F.; Leone, A.; Verdesca, I.; Minervini, F.; Zacheo, G. The Influence of Lycopene on the Proliferation of Human Breast Cell Line (MCF-7). Toxicol. In Vitro 2007, 21, 217–223. [Google Scholar] [CrossRef]
- Trosko, J.E.; Chang, C.-C. Mechanism of Up-Regulated Gap Junctional Intercellular Communication during Chemoprevention and Chemotherapy of Cancer. Mutat. Res. Mol. Mech. Mutagen. 2001, 480–481, 219–229. [Google Scholar] [CrossRef]
- Rhett, J.M.; Calder, B.W.; Fann, S.A.; Bainbridge, H.; Gourdie, R.G.; Yost, M.J. Mechanism of Action of the Anti-Inflammatory Connexin43 Mimetic Peptide JM2. Am. J. Physiol. Cell Physiol. 2017, 313, C314–C326. [Google Scholar] [CrossRef]
- Jaraíz-Rodríguez, M.; Tabernero, M.D.; González-Tablas, M.; Otero, A.; Orfao, A.; Medina, J.M.; Tabernero, A. A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK. Stem Cell Rep. 2017, 9, 451–463. [Google Scholar] [CrossRef]
- Baklaushev, V.P.; Yusubalieva, G.M.; Tsitrin, E.B.; Gurina, O.I.; Grinenko, N.P.; Victorov, I.V.; Chekhonin, V.P. Visualization of Connexin 43-Positive Cells of Glioma and the Periglioma Zone by Means of Intravenously Injected Monoclonal Antibodies. Drug Deliv. 2011, 18, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Guo, S.; Zhang, X.; Sun, A.; Tao, F.; Ju, H.; Qian, H. Effects of Small Interfering RNA Interference of Connexin 37 on Subcutaneous Gastric Tumours in Mice. Mol. Med. Rep. 2014, 10, 2955–2960. [Google Scholar] [CrossRef] [PubMed]
- Munoz, J.L.; Rodriguez-Cruz, V.; Greco, S.J.; Ramkissoon, S.H.; Ligon, K.L.; Rameshwar, P. Temozolomide Resistance in Glioblastoma Cells Occurs Partly through Epidermal Growth Factor Receptor-Mediated Induction of Connexin 43. Cell Death Dis. 2014, 5, e1145. [Google Scholar] [CrossRef] [PubMed]
- Gielen, P.R.; Aftab, Q.; Ma, N.; Chen, V.C.; Hong, X.; Lozinsky, S.; Naus, C.C.; Sin, W.C. Connexin43 Confers Temozolomide Resistance in Human Glioma Cells by Modulating the Mitochondrial Apoptosis Pathway. Neuropharmacology 2013, 75, 539–548. [Google Scholar] [CrossRef]
- Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef]
- Saeed, R.F.; Awan, U.A.; Saeed, S.; Mumtaz, S.; Akhtar, N.; Aslam, S. Targeted Therapy and Personalized Medicine. Cancer Treat. Res. 2023, 185, 177–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, R.; Feudi, D.; Sallicandro, L.; Biagini, A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers 2025, 17, 1244. https://doi.org/10.3390/cancers17071244
Gentile R, Feudi D, Sallicandro L, Biagini A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers. 2025; 17(7):1244. https://doi.org/10.3390/cancers17071244
Chicago/Turabian StyleGentile, Rosaria, Davide Feudi, Luana Sallicandro, and Andrea Biagini. 2025. "Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer" Cancers 17, no. 7: 1244. https://doi.org/10.3390/cancers17071244
APA StyleGentile, R., Feudi, D., Sallicandro, L., & Biagini, A. (2025). Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers, 17(7), 1244. https://doi.org/10.3390/cancers17071244