Effectiveness of First-Line Treatment with Anaplastic Lymphoma Kinase and ROS1 Protoncogene Inhibitors in Non-Small Cell Lung Cancer Patients—Real-World Evidence of Two Polish Cancer Centers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Criteria for Including the Patients for This Study
2.2. Efficacy Evaluation
2.3. ALK and ROS1 Genes Examination
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Population
3.2. Response to Treatment
3.3. Progression-Free Survival
3.3.1. Progression-Free Survival in Relation to Treatment Methods
3.3.2. Progression-Free Survival in Relation to Clinical Factors
3.4. Overall Survival
3.4.1. Overall Survival in Relation to Treatment Methods
3.4.2. Overall Survival in Relation to Clinical Factors
3.5. Multivariate Risk Analysis of Progression and Death
3.6. Treatment-Related Adverse Events
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. Available online: https://www.iarc.who.int/cancer-type/lung-cancer/ (accessed on 25 January 2025).
- National Cancer Registry. Available online: https://onkologia.org.pl/pl/raporty (accessed on 25 January 2025).
- Schneider, J.L.; Lin, J.J.; Shaw, A.T. ALK-positive lung cancer: A moving target. Nat. Cancer 2023, 4, 330–343. [Google Scholar] [PubMed]
- Testa, U.; Castelli, G.; Pelosi, E. Alk-rearranged lung adenocarcinoma: From molecular genetics to therapeutic targeting. Tumori J. 2024, 110, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhu, L.; Sun, Y.; Stebbing, J.; Selvaggi, G.; Zhang, Y.; Yu, Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front. Oncol. 2022, 12, 863461. [Google Scholar]
- Aldea, M.; Besse, B.; Hendriks, L.E.L. ALK inhibitors in ALK-positive NS-CLC with central nervous system metastases. Eur. J. Haematol. 2020, 16, 18–21. [Google Scholar]
- Lei, Y.; Lei, Y.; Shi, X.; Wang, J. EML4-ALK fusion gene in non-small cell lung cancer. Oncol. Lett. 2022, 24, 277. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, D.L.; Leonetti, A.; Morabito, A.; Sala, L.; Tiseo, M. Alectinib in Early-Stage Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer: Current Evidence and Future Challenges. Cancers 2024, 16, 2610. [Google Scholar] [CrossRef]
- Poei, D.; Ali, S.; Ye, S.; Hsu, R. ALK inhibitors in cancer: Mechanisms of resistance and therapeutic management strategies. Cancer Drug Resist. 2024, 7, 20. [Google Scholar] [CrossRef]
- Desai, A.; Lovely, C.M. Strategies to overcome resistance to ALK inhibitors in non-small cell lung cancer: A narrative review. Transl. Lung Cancer Res. 2023, 12, 615–628. [Google Scholar] [CrossRef]
- Ando, K.; Manabe, R.; Kishino, Y.; Kusumoto, S.; Yamaoka, T.; Tanaka, A.; Ohmori, T.; Sagara, H. Comparative Efficacy of ALK Inhibitors for Treatment-Naïve ALK-Positive Advanced Non-Small Cell Lung Cancer with Central Nervous System Metastasis: A Network Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 2242. [Google Scholar] [CrossRef]
- Jeon, Y.; Park, S.; Jung, H.A.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Ahn, M.J. First-Line Alectinib vs. Brigatinib in Advanced Non-Small Cell Lung Cancer with ALK Rearrangement: Real-World Data. Cancer Res. Treat. 2024, 56, 61–69. [Google Scholar] [CrossRef]
- Rossi, G.; Jocollé, G.; Conti, A.; Tiseo, M.; Zito Marino, F.; Donati, G.; Franco, R.; Bono, F.; Barbisan, F.; Facchinetti, F. Detection of ROS1 rearrangement in non-small cell lung cancer: Current and future perspectives. Lung Cancer 2017, 8, 45–55. [Google Scholar] [PubMed]
- Yu, Z.Q.; Wang, M.; Zhou, W.; Mao, M.X.; Chen, Y.Y.; Li, N.; Peng, X.C.; Cai, J.; Cai, Z.Q. ROS1-positive non-small cell lung cancer (NSCLC): Biology, diagnostics, therapeutics and resistance. J. Drug Target. 2022, 30, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Gendarme, S.; Bylicki, O.; Chouaid, C.; Guisier, F. ROS-1 Fusions in Non-Small-Cell Lung Cancer: Evidence to Date. Curr. Oncol. 2022, 29, 641–658. [Google Scholar] [CrossRef]
- Shaw, A.T.; Riely, G.J.; Bang, Y.J.; Kim, D.W.; Camidge, D.R.; Solomon, B.J.; Varella-Garcia, M.; Iafrate, A.J.; Shapiro, G.I.; Usari, T.; et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): Updated results, including overall survival, from PROFILE 1001. Ann. Oncol. 2019, 30, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, M.C.; Schneider, J.L.; Lin, J.J. Advances and future directions in ROS1 fusion-positive lung cancer. Oncologist 2024, 29, 943–956. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; Sobhani, N.; Chapman, R.; Bagby, S.; Bortoletti, C.; Traversini, M.; Ferrari, K.; Voltolini, L.; Darlow, J.; Roviello, G. Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers 2020, 12, 3293. [Google Scholar] [CrossRef]
- Litière, S.; Isaac, G.; De Vries, E.G.E.; Bogaerts, J.; Chen, A.; Dancey, J.; Ford, R.; Gwyther, S.; Hoekstra, O.; Huang, E.; et al. RECIST Working Group. RECIST 1.1 for Response Evaluation Apply Not Only to Chemotherapy-Treated Patients But Also to Targeted Cancer Agents: A Pooled Database Analysis. J. Clin. Oncol. 2019, 37, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Cooper, W.A.; Itchins, M.; Yatabe, Y. ALK. In IASLC Atlas of Molecular Testing for Targeting Therapy in Lung Cancer; Sholl, L.M., Cooper, W.A., Kerr, K.M., Tan, D.S.W., Tsao, M.S., Yang, J.C.H., Eds.; IASLC: Denver, CO, USA, 2023; pp. 95–102. [Google Scholar]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Wistuba, I.I.; Swanton, C.; Peters, S. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef]
- Sholl, L.M.; Weremowicz, S.; Gray, S.W.; Wong, K.K.; Chirieac, L.; Lindeman, N.I.; Hornick, J.L. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J. Thorac. Oncol. 2013, 8, 322–328. [Google Scholar]
- Rossi, E.; Aieta, M.; Tartarone, A.; Pezzuto, A.; Facchinetti, A.; Santini, D.; Ulivi, P.; Ludovini, V.; Possidente, L.; Fiduccia, P.; et al. A fully automated assay to detect the expression of pan-cytokeratins and of EML4-ALK fusion protein in circulating tumour cells (CTCs) predicts outcome of non-small cell lung cancer (NSCLC) patients. Transl. Lung Cancer Res. 2021, 10, 80–92. [Google Scholar]
- Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_60 (accessed on 25 January 2025).
- Mok, T.; Camidge, D.R.; Gadgeel, S.M.; Rosell, R.; Dziadziuszko, R.; Kim, D.W.; Pérol, M.; Ou, S.I.; Ahn, J.S.; Shaw, A.T.; et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann. Oncol. 2020, 31, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Hotta, K.; Hida, T.; Nokihara, H.; Morise, M.; Kim, Y.H.; Azuma, K.; Seto, T.; Takiguchi, Y.; Nishio, M.; Yoshioka, H.; et al. Final overall survival analysis from the phase III J-ALEX study of alectinib versus crizotinib in ALK inhibitor-naïve Japanese patients with ALK-positive non-small-cell lung cancer. ESMO Open 2022, 7, 100527. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Lu, Y.; Kim, S.W.; Reungwetwattana, T.; Zhou, J.; Zhang, Y.; He, J.; Yang, J.J.; Cheng, Y.; Lee, S.H.; et al. Alectinib Versus Crizotinib in Asian Patients With Treatment-Naïve Advanced ALK-Positive NSCLC: Five-Year Update From the Phase 3 ALESIA Study. JTO Clin. Res. Rep. 2024, 5, 100700. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.J.; Kim, H.R.; Yang, J.C.H.; Han, J.Y.; Li, J.Y.; Hochmair, M.J.; Chang, G.C.; Delmonte, A.; Lee, K.H.; Campelo, R.G.; et al. Efficacy and Safety of Brigatinib Compared With Crizotinib in Asian vs. Non-Asian Patients With Locally Advanced or Metastatic ALK-Inhibitor-Naive ALK+ Non-Small Cell Lung Cancer: Final Results From the Phase III ALTA-1L Study. Clin. Lung Cancer. 2022, 23, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Kumagai, T.; Toyozawa, R.; Katayama, R.; Nishio, M.; Seto, T.; Goto, K.; Yamamoto, N.; Ohe, Y.; Kudou, K.; et al. Brigatinib in Japanese patients with ALK-positive non-small-cell lung cancer: Final results of the phase 2 J-ALTA trial. Cancer Sci. 2023, 114, 3698–3707. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Liu, G.; Lu, S.; He, J.; Burotto, M.; Ahn, M.J.; Kim, D.W.; Liu, X.; Zhao, Y.; Vincent, S.; et al. Brigatinib Versus Alectinib in ALK-Positive NSCLC After Disease Progression on Crizotinib: Results of Phase 3 ALTA-3 Trial. J. Thorac. Oncol. 2023, 18, 1743–1755. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Qiang, T.; Li, Z.; Ding, D.; Yu, Y.; Lu, S. First-line crizotinib versus platinum-pemetrexed chemotherapy in patients with advanced ROS1-rearranged non-small-cell lung cancer. Cancer Med. 2020, 9, 3310–3318. [Google Scholar] [CrossRef]
- Zheng, J.; Cao, H.; Li, Y.; Rao, C.; Zhang, T.; Luo, J.; Lv, D.; Zhu, Y.; Zhou, J.; Zhou, J. Effectiveness and prognostic factors of first-line crizotinib treatment in patients with ROS1-rearranged non-small cell lung cancer: A multicenter retrospective study. Lung Cancer 2020, 147, 130–136. [Google Scholar] [CrossRef]
- Wu, Y.L.; Yang, J.C.; Kim, D.W.; Lu, S.; Zhou, J.; Seto, T.; Yang, J.J.; Yamamoto, N.; Ahn, M.J.; Takahashi, T.; et al. Phase II Study of Crizotinib in East Asian Patients With ROS1-Positive Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 1405–1411. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhang, R.; Xu, Q.; Yang, H.; Lizaso, A.; Xu, C.; Liu, J.; Wang, W.; Ou, S.I.; et al. Clinical and molecular factors that impact the efficacy of first-line crizotinib in ROS1-rearranged non-small-cell lung cancer: A large multicenter retrospective study. BMC Med. 2021, 19, 206. [Google Scholar] [CrossRef]
- Mazières, J.; Zalcman, G.; Crinò, L.; Biondani, P.; Barlesi, F.; Filleron, T.; Dingemans, A.M.; Léna, H.; Monnet, I.; Rothschild, S.I.; et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: Results from the EUROS1 cohort. J. Clin. Oncol. 2015, 33, 992–999. [Google Scholar] [CrossRef] [PubMed]
Factors | Crizotinib Group ALK-Rearranged (n = 25) | Crizotinib Group ROS1-Rearanged (n = 16) | Brigatinib Group (n = 22) | Alectinib Group (n = 41) |
---|---|---|---|---|
Gender | ||||
Female, n (%) | 12 (48) | 9 (56.25) | 9 (40.9) | 21 (51.2) |
Male, n (%) | 13 (52) | 7 (43.75) | 13 (59.1) | 20 (48.8) |
Age | ||||
<65 years, n (%) | 12 (48) | 5 (31.25) | 14 (63.6) | 23 (56.1) |
≥65 years, n (%) | 13 (52) | 11 (68.75) | 8 (36.4) | 18 (43.9) |
Smoking status | ||||
Smokers | 16 (64) | 7 (43.75) | 9 (40.9) | 12 (29.3) |
Non-smokers | 9 (36) | 9 (56.25) | 13 (59.1) | 29 (70.7) |
Overweight | ||||
Yes | 11 (44) | 10 (62.5) | 8 (36.4) | 28 (68.3) |
No | 14 (56) | 6 (37.5) | 14 (63.6) | 13 (31.7) |
BMI (mead ± SD) | 26.3 ± 4.1 | 26.7 ± 3.8 | 25.8 ± 5.3 | 27 ± 3.7 |
Tumor | ||||
T 2–3 | 12 (48) | 8 (50) | 15 (68.2) | 24 (58.5) |
T 4 | 13 (52) | 8 (50) | 7 (31.8) | 17 (41.5) |
Lymph nodes | ||||
N 0–1 | 4 (16) | 2 (12.5) | 6 (27.3) | 15 (36.6) |
N 2–3 | 21 (84) | 14 (87.5) | 16 (72.7) | 26 (63.4) |
Primary CNS metastases | ||||
Yes | 3 (12) | 5 (31.25) | 6 (27.3) | 13 (31.7) |
No | 22 (88) | 11 (68.75) | 16 (72.7) | 28 (68.3) |
CNS metastases during treatment | ||||
Yes | 5 (20) | 1 (6.25) | 4 (18.2) | 3 (7.3) |
No | 20 (80) | 15 (93.75) | 18 (81.8) | 38 (92.7) |
Liver metastases | ||||
Yes | 9 (36) | 4 (25) | 4 (18.2) | 13 (31.7) |
No | 16 (64) | 12 (75) | 18 (81.8) | 28 (68.3) |
Bones metastases | ||||
Yes | 13 (52) | 7 (43.75) | 11 (50.0) | 19 (46.3) |
No | 12 (48) | 9 (56.25) | 11 (50.0) | 22 (53.6) |
ALK and ROS1 method of diagnosis | ||||
IHC | 2 (8) | 0 | 7 (31.8) | 4 (9.7) |
FISH | 13 (52) | 7 (43.75) | 7 (31.8) | 12 (29.3) |
NGS | 10 (40) | 9 (56.25) | 8 (36.4) | 25 (61.0) |
Treatment-related adverse events | ||||
Yes | 8 (32) | 6 (37.5) | 8 (36.4) | 17 (41.5) |
No | 17 (68) | 10 (62.5) | 14 (63.6) | 24 (58.5) |
Second-line therapy with ALK or ROS1 inhibitors | ||||
Yes | 14 (56) | 2 (12.5) | 4 (18.2) | 7 (17.1) |
No | 11 (44) | 14 (87.5) | 18 (81.8) | 34 (82.9) |
Factors | Crizotinib Group ALK-Rearranged (n = 25) | Crizotinib Group ROS1-Rearanged (n = 16) | Brigatinb Group (n = 22) | Alectinib Group (n = 41) |
---|---|---|---|---|
Response to treatment | ||||
PR, n (%) | 12 (48) | 6 (37.5) | 15 (68.2) | 29 (70.7) |
SD, n (%) | 10 (40) | 7 (43.75) | 3 (13.6%) | 11 (26.9) |
PD, n (%) | 3 (12) | 3 (18.75) | 4 (18.2%) | 1 (2.4) |
Disease control, n (%) | 22 (88) | 13 (81.25) | 18 (81.8) | 40 (97.6) |
1-year PFS ratio, n (%) | 10 (40) | 5 (31.25) | 13 (58.1) | 30 (73.2) |
2-year PFS ratio, n (%) | 5 (20) | 2 (12.5) | 6 (27.3) | 23 (56.1) |
2-year OS ratio, n (%) | 13 (52) | 6 (37.5) | 9 (40.8) | 29 (70.7) |
3-year OS ratio, n (%) | 9 (36) | 3 (18.75) | 2 (9.1) | 19 (46.3) |
Characteristics | N (%) | Median PFS (Months) | HR (95% CI) p | Median OS (Months) | HR (95% CI) p |
---|---|---|---|---|---|
Age | 0.7915 | 1.3731 | |||
<65 years | 49 | 26 | (0.4451–1.407) | 58 | (0.6831–2.76) |
≥65 years | 39 | 19 | 0.4259 | NR | 0.3734 |
Gender | 0.782 | 1.0685 | |||
Male | 47 | 26 | (0.4416–1.3847) | 58 | (0.5368–2.1268) |
Female | 41 | 14 | 0.3989 | NR | 0.8504 |
Overweight | 1.1039 | 0.9896 | |||
No | 41 | 20 | (0.6199–1.9656) | NR | (0.4964–1.9727) |
Yes | 47 | 24 | 0.7371 | 58 | 0.9763 |
Smoking | 0.6494 | 1.0416 | |||
No | 51 | 33.5 | (0.363–1.1616) | 58 | (0.5189–2.0907) |
Yes | 37 | 19 | 0.1456 | NR | 0.9087 |
Tumor | 1.1758 | 1.4202 | |||
T2–3 | 44 | 20 | (0.6633–2.084) | 58 | (0.7071–2.8525) |
T4 | 44 | 24 | 0.5793 | NR | 0.3241 |
Lymph nodes | 0.6285 | 0.9791 | |||
N1 | 25 | NR | (0.3379–1.1690) | NR | (0.4535–2.1142) |
N2–3 | 63 | 20 | 0.1425 | 58 | 0.9572 |
CNS metastases | 0.6007 | 0.3833 | |||
Yes | 66 | 59 | (0.3205–1.1258) | NR | (0.179–0.8205) |
No | 22 | 19 | 0.11118 | 40 | 0.0135 |
Liver metastases | 1.8204 | 3.2138 | |||
Yes | 26 | 16.5 | (0.9623–3.444) | 28 | (1.4721–7.0165) |
No | 62 | 40 | 0.0655 | NR | 0.0034 |
Bones metastases | 0.8515 | 1.4523 | |||
Yes | 43 | 33.5 | (0.4832–1.5008) | NR | (0.7267–2.9024) |
No | 45 | 20 | 0.5783 | NR | 0.2908 |
Treatment | 5.2182 | 3.3529 | |||
Crizotinib | 25 | 8 | (2.6163–10.4079) | 26 | (1.5559–7.2258) |
Second-generation ALKi | 63 | NR | <0.0001 | NR | 0.002 |
Treatment | 0.9711 | 0.8831 | |||
Brigatinib | 22 (34.9) | NR | (0.4013–2.35) | NR | (0.2903–2.6864) |
Alectinib | 41 (65.1) | NR | 0.948 | NR | 0.827 |
Second-line therapy with ALKi | 8.8073 | 1.6782 | |||
yes | 25 | 8 | (4.2259–18.3554) | 31.5 | (0.8002–3.5195) |
no | 63 | 59 | <0.0001 | NR | 0.1707 |
TRAE | 0.754 | 0.5367 | |||
Yes | 33 | 24 | (0.4219–1.3476) | NR | (0.2653–1.0858) |
No | 55 | 20 | 0.3406 | 40 | 0.0835 |
Factors | Crizotinib Group (n = 41) | Brigatinib Group (n = 22) | Alectinib Group (n = 41) |
---|---|---|---|
Any TRAE, n (%) | 15 (36.3%) | 8 (43.4) | 17 (41.5) |
Grade 3 o4 TRAE, n (%) | 1 (2.4) | 1 (4.5) | 2 (4.9) |
Hepatotoxicity, n (%) | 6 (14.6%) | 1 (4.5) | 9 (21.95) |
Nephrotoxicity, n (%) | 4 (9.8) | - | 3 (7.3) |
Pneumonia, n (%) | 1 (2.4) | - | - |
Bradycardia, n (%) | 2 (4.9) | - | - |
Visual disorders, n (%) | 1 (2.4) | - | - |
Neutropenia, n(%) | 1 (2.4) | 1 (4.5) | - |
Anemia, n (%) | 1 (2.4) | - | 1 (2.4) |
Increased CK concentration | - | 5 (22.7) | 5 (12.2) |
Rash, n (%) | - | 1 (4.5) | |
Weakness and weight loss, n (%) | - | 1 (4.5) | - |
Edema, n (%) | - | - | 1 (2.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, M.; Winiarczyk, K.; Krawczyk, P.; Wojas-Krawczyk, K.; Łomża-Łaba, A.; Obara, A.; Gajek, Ł.; Reszka, K.; Tysarowski, A.; Buczkowski, J.; et al. Effectiveness of First-Line Treatment with Anaplastic Lymphoma Kinase and ROS1 Protoncogene Inhibitors in Non-Small Cell Lung Cancer Patients—Real-World Evidence of Two Polish Cancer Centers. Cancers 2025, 17, 1253. https://doi.org/10.3390/cancers17071253
Gil M, Winiarczyk K, Krawczyk P, Wojas-Krawczyk K, Łomża-Łaba A, Obara A, Gajek Ł, Reszka K, Tysarowski A, Buczkowski J, et al. Effectiveness of First-Line Treatment with Anaplastic Lymphoma Kinase and ROS1 Protoncogene Inhibitors in Non-Small Cell Lung Cancer Patients—Real-World Evidence of Two Polish Cancer Centers. Cancers. 2025; 17(7):1253. https://doi.org/10.3390/cancers17071253
Chicago/Turabian StyleGil, Michał, Kinga Winiarczyk, Paweł Krawczyk, Kamila Wojas-Krawczyk, Aleksandra Łomża-Łaba, Adrian Obara, Łukasz Gajek, Katarzyna Reszka, Andrzej Tysarowski, Jarosław Buczkowski, and et al. 2025. "Effectiveness of First-Line Treatment with Anaplastic Lymphoma Kinase and ROS1 Protoncogene Inhibitors in Non-Small Cell Lung Cancer Patients—Real-World Evidence of Two Polish Cancer Centers" Cancers 17, no. 7: 1253. https://doi.org/10.3390/cancers17071253
APA StyleGil, M., Winiarczyk, K., Krawczyk, P., Wojas-Krawczyk, K., Łomża-Łaba, A., Obara, A., Gajek, Ł., Reszka, K., Tysarowski, A., Buczkowski, J., Chmielewska, I., Jankowski, T., Szuba-Gil, M., Strzemski, M., Kowalski, D. M., Milanowski, J., & Krzakowski, M. (2025). Effectiveness of First-Line Treatment with Anaplastic Lymphoma Kinase and ROS1 Protoncogene Inhibitors in Non-Small Cell Lung Cancer Patients—Real-World Evidence of Two Polish Cancer Centers. Cancers, 17(7), 1253. https://doi.org/10.3390/cancers17071253