Lack of Evidence Supporting a Significant Benefit of Pre-Transplant Consolidation Therapy in AML CR2 Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Transplantation Protocol
2.2. Graft-Versus-Host Disease (GVHD) Prophylaxis
2.3. Definitions
2.4. Statistical Analysis
3. Result
3.1. Patients’ Characteristics and Outcomes
3.2. Impact of Pre-Transplant Consolidation Therapy on HSCT
3.3. Effect of the Number of Pre-Transplant Consolidation Therapy Courses on HSCT Outcomes
3.4. Impact of Pre-Transplant MRD Status on HSCT Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Büchner, T.; Schlenk, R.F.; Schaich, M.; Döhner, K.; Krahl, R.; Krauter, J.; Heil, G.; Krug, U.; Sauerland, M.C.; Heinecke, A.; et al. Acute Myeloid Leukemia (AML): Different Treatment Strategies Versus a Common Standard Arm—Combined Prospective Analysis by the German AML Intergroup. J. Clin. Oncol. 2012, 30, 3604–3610. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Y.J.; Chen, J.; Han, M.; Hu, J.; Hu, J.; Huang, H.; Lai, Y.; Liu, D.; Liu, Q.; et al. Consensus on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation in China: 2024 update. Cancer Lett. 2024, 605, 217264. [Google Scholar] [CrossRef] [PubMed]
- Breems, D.A.; Van Putten, W.L.J.; Huijgens, P.C.; Ossenkoppele, G.J.; Verhoef, G.E.G.; Verdonck, L.F.; Vellenga, E.; De Greef, G.; Jacky, E.; Van der Lelie, J.; et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J. Clin. Oncol. 2005, 23, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Pemmaraju, N.; Kantarjian, H.; Garcia-Manero, G.; Pierce, S.; Cardenas-Turanzas, M.; Cortes, J.; Ravandi, F. Improving outcomes for patients with acute myeloid leukemia in first relapse: A single center experience. Am. J. Hematol. 2015, 90, 27–30. [Google Scholar] [CrossRef]
- Kurosawa, S.; Yamaguchi, T.; Miyawaki, S.; Uchida, N.; Sakura, T.; Kanamori, H.; Usuki, K.; Yamashita, T.; Okoshi, Y.; Shibayama, H.; et al. Prognostic factors and outcomes of adult patients with acute myeloid leukemia after first relapse. Haematologica 2010, 95, 1857–1864. [Google Scholar] [CrossRef]
- Lv, M.; Shen, M.; Mo, X. Development of allogeneic hematopoietic stem cell transplantation in 2022: Regenerating “Groot” to heal the world. Innovation 2023, 4, 100373. [Google Scholar] [CrossRef]
- Lv, M.; Gorin, N.C.; Huang, X.J. A vision for the future of allogeneic hematopoietic stem cell transplantation in the next decade. Sci. Bull. 2022, 67, 1921–1924. [Google Scholar] [CrossRef]
- Forman, S.J.; Rowe, J.M. The myth of the second remission of acute leukemia in the adult. Blood 2013, 121, 1077–1082. [Google Scholar] [CrossRef]
- Lazarus, H.M.; Pérez, W.S.; Klein, J.P.; Kollman, C.; Bate-Boyle, B.; Bredeson, C.N.; Gale, R.P.; Geller, R.B.; Keating, A.; Litzow, M.R.; et al. Autotransplantation HLA-matched unrelated donor transplantation for acute myeloid leukaemia: A retrospective analysis from the Center for International Blood and Marrow Transplant Research. Brit. J. Haematol. 2006, 132, 755–769. [Google Scholar] [CrossRef]
- Yu, W.J.; Sun, Y.Q.; Xu, L.P.; Zhang, X.H.; Liu, K.Y.; Huang, X.J.; Wang, Y. Comparison of outcomes for patients with acute myeloid leukemia undergoing haploidentical stem cell transplantation in first and second complete remission. Ann. Hematol. 2023, 102, 2241–2250. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.J.; Davis, R.B.; Schiffer, C.A.; Berg, D.T.; Powell, B.L.; Schulman, P.; Omura, G.A.; Moore, J.O.; Mcintyre, O.R.; Frei, E. Intensive Postremission Chemotherapy in Adults with Acute Myeloid-Leukemia. N. Engl. J. Med. 1994, 331, 896–903. [Google Scholar] [CrossRef]
- Cassileth, P.A.; Harrington, D.P.; Hines, J.D.; Oken, M.M.; Mazza, J.J.; Mcglave, P.; Bennett, J.M.; Oconnell, M.J. Maintenance Chemotherapy Prolongs Remission Duration in Adult Acute Nonlymphocytic Leukemia. J. Clin. Oncol. 1988, 6, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Löwenberg, B.; Pabst, T.; Vellenga, E.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Biemond, B.J.; Gratwohl, A.; et al. Cytarabine Dose for Acute Myeloid Leukemia. N. Engl. J. Med. 2011, 364, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Hunter, A.E.; Kjeldsen, L.; Yin, J.; Gibson, B.E.S.; Wheatley, K.; Milligan, D.; Kjeldsen, L. Optimization of Chemotherapy for Younger Patients With Acute Myeloid Leukemia: Results of the Medical Research Council AML15 Trial. J. Clin. Oncol. 2013, 31, 3360–3368. [Google Scholar] [CrossRef]
- Tallman, M.S.; Rowlings, P.A.; Milone, G.; Zhang, M.J.; Perez, W.S.; Weisdorf, D.; Keating, A.; Gale, R.P.; Geller, R.B.; Laughlin, M.J.; et al. Effect of postremission chemotherapy before human leukocyte antigen-identical sibling transplantation for acute myelogenous leukemia in first complete remission. Blood 2000, 96, 1254–1258. [Google Scholar]
- Cahn, J.Y.; Labopin, M.; Sierra, J.; Blaise, D.; Reiffers, J.; Ferrant, A.; Bergmann, L.; Visani, G.; Cornelissen, J.; De Witte, T.; et al. No impact of high-dose cytarabine on the outcome of patients transplanted for acute myeloblastic leukaemia in first remission. Brit. J. Haematol. 2000, 110, 308–314. [Google Scholar] [CrossRef]
- Yeshurun, M.; Labopin, M.; Blaise, D.; Cornelissen, J.J.; Sengeloev, H.; Vindelov, L.; Kuball, J.; Chevallier, P.; Craddock, C.; Socie, G.; et al. Impact of postremission consolidation chemotherapy on outcome after reduced-intensity conditioning allogeneic stem cell transplantation for patients with acute myeloid leukemia in first complete remission: A report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Cancer 2014, 120, 855–863. [Google Scholar] [CrossRef]
- Stelljes, M.; Middeke, J.M.; Bug, G.; Wagner-Drouet, E.-M.; Müller, L.P.; Schmid, C.; Krause, S.W.; Bethge, W.; Jost, E.; Platzbecker, U.; et al. Remission induction versus immediate allogeneic haematopoietic stem cell transplantation for patients with relapsed or poor responsive acute myeloid leukaemia (ASAP): A randomised, open-label, phase 3, non-inferiority trial. Lancet Haematol. 2024, 11, e324–e335. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.P.; Liu, Q.F.; Chang, Y.J.; Xu, Y.; Huang, F.; Huang, X.J.; Wang, Y. More than two courses of pre-transplant consolidation therapy benefits patients with acute myeloid leukemia in the first complete remission who underwent human leukocyte antigen-matched sibling allografts: A multicenter study. Chin. Med. J. 2023, 136, 1855–1863. [Google Scholar] [CrossRef]
- Byun, J.M.; Shin, D.Y.; Koh, Y.; Hong, J.; Kim, I.; Yoon, S.S.; Bang, S.M.; Lee, J.O. Should patients receive consolidation chemotherapy before reduced intensity allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia in first complete remission? Ther. Adv. Hematol. 2021, 12, 20406207211001135. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Baek, D.W.; Ahn, J.S.; Ahn, S.Y.; Jung, S.H.; Yang, D.H.; Lee, J.J.; Kim, H.J.; Ham, J.Y.; Suh, J.S.; et al. Impact of Consolidation Cycles Before Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia in First Complete Remission. Clin. Lymphoma Myeloma Leuk. 2018, 18, e529–e535. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.F.; Lin, R.; Yang, T.; Xu, Y.J.; Mo, X.D.; Huang, X.J. Optimizing antithymocyte globulin dosing in haploidentical hematopoietic cell transplantation: Long-term follow-up of a multicenter, randomized controlled trial. Sci. Bull. 2021, 66, 2498–2505. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.J.; Xu, L.P.; Liu, K.Y.; Liu, D.H.; Wang, Y.; Chen, H.; Chen, Y.H.; Han, W.; Wang, J.Z.; Chen, Y.; et al. Partially Matched Related Donor Transplantation Can Achieve Outcomes Comparable with Unrelated Donor Transplantation for Patients with Hematologic Malignancies. Clin. Cancer Res. 2009, 15, 4777–4783. [Google Scholar] [CrossRef]
- Lv, M.; Guo, H.D.; Huang, X.J. A perfect mismatch: Haploidentical hematopoietic stem cell transplantation overtakes a bend. Cell. Mol. Immunol. 2023, 20, 978–980. [Google Scholar] [CrossRef]
- Lv, M.; Wang, Y.; Chang, Y.J.; Zhang, X.H.; Xu, L.P.; Jiang, Q.; Jiang, H.; Lu, J.; Chen, H.; Han, W.; et al. Myeloablative Haploidentical Transplantation Is Superior to Chemotherapy for Patients with Intermediate-risk Acute Myelogenous Leukemia in First Complete Remission. Clin. Cancer Res. 2019, 25, 1737–1748. [Google Scholar] [CrossRef]
- Han, L.J.; Wang, Y.; Fan, Z.P.; Huang, F.; Zhou, J.; Fu, Y.W.; Qu, H.; Xuan, L.; Xu, N.; Ye, J.Y.; et al. Haploidentical transplantation compared with matched sibling and unrelated donor transplantation for adults with standard-risk acute lymphoblastic leukaemia in first complete remission. Brit. J. Haematol. 2017, 179, 120–130. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; Dinardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Przepiorka, D.; Weisdorf, D.; Martin, P.; Klingemann, H.G.; Beatty, P.; Hows, J.; Thomas, E.D. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transpl. 1995, 15, 825–828. [Google Scholar]
- Filipovich, A.H.; Weisdorf, D.; Pavletic, S.; Socie, G.; Wingard, J.R.; Lee, S.J.; Martin, P.; Chien, J.; Przepiorka, D.; Couriel, D.; et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol. Blood Marrow Transpl. 2005, 11, 945–956. [Google Scholar] [CrossRef]
- Chang, Y.J.; Wang, Y.; Liu, Y.R.; Xu, L.P.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; et al. Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: A retrospective and prospective analysis. J. Hematol. Oncol. 2017, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.S.; Liu, Y.R.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Han, W.; Sun, Y.Q.; Yan, C.H.; et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts. Am. J. Hematol. 2019, 94, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Fan, Q.Z.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; et al. The Quantification of Minimal Residual Disease Pre- and Post-Unmanipulated Haploidentical Allograft by Multiparameter Flow Cytometry in Pediatric Acute Lymphoblastic Leukemia. Cytom. B Clin. Cytom 2020, 98, 75–87. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. In Springer Series in Statistics; Springer: New York, NY, USA, 1992; pp. 319–337. [Google Scholar]
- Scrucca, L.; Santucci, A.; Aversa, F. Competing risk analysis using R: An easy guide for clinicians. Bone Marrow Transplant. 2007, 40, 381–387. [Google Scholar] [CrossRef]
- Ciftciler, R.; Demiroglu, H.; Buyukasik, Y.; Okay, M.; Aksu, S.; Sayinalp, N.; Malkan, U.Y.; Haznedaroglu, I.C.; Ozcebe, O.; Goker, H. Effect of postremission high dose cytarabine-based consolidation chemotherapy before allogenic stem cell transplantation in outcomes of acute myeloid leukemia patients. Transfus. Apher. Sci. 2018, 57, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, M.; Teira, P.; Battiwalla, M.; Barrett, J.; Ahn, K.W.; Chen, M.; Green, J.; Laughlin, M.; Lazarus, H.M.; Marks, D.; et al. Impact of early CMV reactivation in cord blood stem cell recipients in the current era. Bone Marrow Transplant. 2016, 51, 1113–1120. [Google Scholar] [CrossRef]
- Oskarsson, T.; Söderhäll, S.; Arvidson, J.; Forestier, E.; Frandsen, T.L.; Hellebostad, M.; Lähteenmäki, P.; Jónsson, O.G.; Myrberg, I.H.; Heyman, M.; et al. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2018, 65, e26909. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Pei, D.; Wolf, J.; Howard, S.C.; Hayden, R.T.; Go, M.; Varechtchouk, O.; Hahn, T.; Buaboonnam, J.; Metzger, M.L.; et al. Infection-related complications during treatment for childhood acute lymphoblastic leukemia. Ann. Oncol. 2017, 28, 386–392. [Google Scholar] [CrossRef]
- Czyz, A.; Nagler, A. The Role of Measurable Residual Disease (MRD) in Hematopoietic Stem Cell Transplantation for Hematological Malignancies Focusing on Acute Leukemia. Int. J. Mol. Sci. 2019, 20, 5362. [Google Scholar] [CrossRef]
- Cao, Y.; Huo, W.; Huang, J.; Yang, Y.; Wang, Y.; Chang, Y.; Wang, L.; Zhang, Z.; Jiang, C.; Hu, X.; et al. MRD positivity was the poor prognostic factor for adverse-risk AML patients with allogeneic hematopoietic stem cell transplantation: A multicenter TROPHY study. Blood Cancer J. 2024, 14, 8. [Google Scholar] [CrossRef]
- Li, S.Q.; Yu, C.Z.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Sun, Y.Q.; Yan, C.H.; et al. Pretransplantation risk factors for positive MRD after allogeneic stem cell transplantation in AML patients: A prospective study. Bone Marrow Transpl. 2025, 60, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; Yan, C.H.; et al. An LSC-based MRD assay to complement the traditional MFC method for prediction of AML relapse: A prospective study. Blood 2022, 140, 516–520. [Google Scholar] [CrossRef]
- Burnett, A.K.; Goldstone, A.; Hills, R.K.; Milligan, D.; Prentice, A.; Yin, J.; Wheatley, K.; Hunter, A.; Russell, N. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J. Clin. Oncol. 2013, 31, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Gilleece, M.H.; Shimoni, A.; Labopin, M.; Robinson, S.; Beelen, D.; Socie, G.; Unal, A.; Ganser, A.; Vitek, A.; Sengeloev, H.; et al. Measurable residual disease status and outcome of transplant in acute myeloid leukemia in second complete remission: A study by the acute leukemia working party of the EBMT. Blood Cancer J. 2021, 11, 88. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, M.; Bischof, L.; Backhaus, D.; Brauer, D.; Schulz, J.; Franke, G.N.; Vucinic, V.; Niederwieser, D.; Platzbecker, U.; Schwind, S. Impact of MRD status in patients with AML undergoing allogeneic stem cell transplantation in the first vs the second remission. Blood Adv. 2022, 6, 4570–4580. [Google Scholar] [CrossRef]
- Michelis, F.V.; Atenafu, E.G.; Couban, S.; Frazer, J.; Shivakumar, S.; Hogge, D.E.; Toze, C.L.; Rajkhan, W.; Kim, H.J.; Daly, A.; et al. Duration of first remission and hematopoietic cell transplantation-specific comorbidity index but not age predict survival of patients with AML transplanted in CR2: A retrospective multicenter study. Bone Marrow Transpl. 2016, 51, 1019–1021. [Google Scholar] [CrossRef]
- Wang, M.; Wang, B.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Cheng, Y.F.; Sun, Y.Q.; Zhang, Y.Y.; Liu, Y.R.; Chang, Y.J.; et al. The lower relapse rate and better survival advantages of haploidentical allograft compared with HLA-matched sibling donor allografts for intermediate- and adverse-risk AML patients with pretransplantation minimal residual disease. Bone Marrow Transpl. 2023, 58, 215–218. [Google Scholar] [CrossRef]
- Lv, M.; Yan, C.H.; Ma, R.; He, Y.; Zhang, Y.Y.; Wang, Z.D.; Chen, Y.H.; Han, W.; Kong, J.; Han, T.T.; et al. Mega-dose decitabine conditioning and prophylactic donor lymphocyte infusion for patients with relapsed/refractory AML with active disease at the time of allogeneic haematopoietic cell transplantation: A multicenter prospective phase II study. Br. J. Haematol. 2024, 205, 1910–1920. [Google Scholar] [CrossRef]
Characteristics | Total (n = 135) | Non-Consolidation Group (n = 63) | Consolidation Group (n = 72) | p Value |
---|---|---|---|---|
Age, years, mean (SD) | 30.5 (13.6) | 31.0 (15.3) | 30.0 (12.1) | 0.6668 |
Sex, n (%) | 0.5763 | |||
Male | 78 (57.8) | 38 (60.3) | 40 (55.6) | |
Female | 57 (42.2) | 25 (39.7) | 32 (44.4) | |
AML types, n (%) | 0.2122 | |||
De novo AML | 132 (97.8) | 60 (95.2) | 72 (100) | |
Secondary AML | 2 (1.5) | 2 (3.2) | 0 (0) | |
Unknown | 1 (0.7) | 1 (1.6) | ||
Cytogenetics, n (%) | 0.1117 | |||
Favorable | 25 (18.5) | 8 (12.7) | 17 (23.6) | |
Intermediate | 90 (66.7) | 45 (71.4) | 45 (62.5) | |
Adverse | 12 (8.9) | 8 (12.7) | 4 (5.6) | |
Unknown | 8 (5.9) | 2 (3.2) | 6 (8.3) | |
ABO matched grafts, n (%) | 0.0427 | |||
Matched | 71 (52.6) | 39 (61.9) | 32 (44.4) | |
Mismatched | 64 (47.4) | 24 (38.1) | 40 (55.6) | |
D-R sex, n (%) | 0.8823 | |||
F-M | 25 (18.5) | 12 (19.0) | 13 (18.1) | |
Others | 110 (81.5) | 51 (81.0) | 59 (81.9) | |
Transplant type, n (%) | 0.0801 | |||
MSDT | 8 (5.9) | 1 (1.6) | 7 (9.7) | |
MUDT | 1 (0.7) | 1 (1.6) | 0 (0) | |
Haplo-HSCT | 126 (93.3) | 61 (96.8) | 65 (90.3) | |
Number of induction cycles from relapse to CR2, n (%) | 0.0906 | |||
1 | 98 (72.6) | 40 (63.5) | 58 (80.6) | |
2 | 26 (19.3) | 15 (23.8) | 11 (15.3) | |
>2 | 10 (7.4) | 7 (11.1) | 3 (4.2) | |
Unknown | 1 (0.7) | 1 (1.6) | ||
Pre-transplant MRD, n (%) | 0.0004 | |||
Positive | 40 (29.6) | 28 (44.4) | 12 (16.7) | |
Negative | 95 (70.4) | 35 (55.6) | 60 (83.3) | |
WBC at diagnosis, ×109/L, median (IQR) | 19.1 (8.1–53.6) | 17.5 (8.0–49.4) | 21.4 (8.2–58.6) | 0.5117 |
Infused MNC, ×108/kg, median (IQR) | 8.6 (7.5–9.4) | 8.7 (7.5–9.8) | 8.6 (7.6–9.3) | 0.6172 |
Infused CD34 cells, ×106/kg, median (IQR) | 2.5 (1.7–3.5) | 2.7 (1.7–3.6) | 2.4 (1.7–3.4) | 0.4973 |
Time from diagnosis to HSCT, months, median (IQR) | 18.2 (11.6–25.9) | 17.0 (8.9–23.7) | 19.5 (12.9–27.3) | 0.04315 |
Follow up after HSCT, months, median (IQR) | 55.0 (34.9–72.6) | 47.5 (9.9–68.1) | 55.9 (40.2–75.4) | 0.1468 |
Outcomes | Total (n = 135) | Non-Consolidation Group (n = 63) | Consolidation Group (n = 72) | |
---|---|---|---|---|
Prob (95% Confidence Interval) | Prob (95% Confidence Interval) | Prob (95% Confidence Interval) | p Value | |
Overall survival | 0.0747 | |||
1-year | 78.5 (71.9–85.8) | 73.0 (62.8–84.8) | 83.3 (75.2–92.4) | |
3-year | 77.8 (71.1–85.1) | 68.3 (57.7–80.8) | 81.9 (73.5–91.3) | |
5-year | 75.6 (68.6–83.2) | 68.3 (57.7–80.8) | 81.9 (73.5–91.3) | |
Leukemia-free survival | 0.1479 | |||
1-year | 75.6 (68.6–83.2) | 69.8 (59.4–82.1) | 80.6 (71.9–90.2) | |
3-year | 73.3 (66.2–81.2) | 65.1 (54.3–78.0) | 75.0 (65.6–85.7) | |
5-year | 68.0 (60.3–76.6) | 62.7 (51.5–76.2) | 72.7 (62.7–84.2) | |
Cumulative relapse rate | 0.5416 | |||
1-year | 11.9 (6.4–17.3) | 14.3 (5.6–23.0) | 9.7 (2.8–16.1) | |
3-year | 16.3 (10.0–22.6) | 17.5 (8.0–26.9) | 15.3 (6.9–23.7) | |
5-year | 18.7 (11.8–25.6) | 19.9 (9.5–30.2) | 17.6 (8.3–27.0) | |
Non-relapse mortality | 0.2019 | |||
1-year | 12.6 (7.0–18.2) | 15.9 (6.8–25.0) | 9.7 (2.8–16.6) | |
3-year | 13.3 (7.6–19.1) | 17.5 (8.0–26.9) | 9.7 (2.8–16.6) | |
5-year | 13.3 (7.6–19.1) | 17.5 (8.0–26.9) | 9.7 (2.8–16.6) | |
Chronic graft-versus-host disease | 0.2872 | |||
1-year | 43.0 (34.6–51.4) | 39.7 (27.4–51.9) | 45.8 (34.2–57.5) | |
3-year | 45.2 (36.7–53.6) | 39.7 (27.4–51.9) | 50.0 (38.3–61.7) | |
5-year | 46.4 (37.8–55.0) | 39.7 (27.4–51.9) | 52.2 (40.2–64.2) | |
II–IV aGvHD | 0.8436 | |||
18.5 (11.9–25.1) | 19.0 (9.3–28.8) | 18.1 (9.1–27.0) |
Multivariable Analysis | |||
---|---|---|---|
Hazard Ratio | 95% Confidence Interval | p Value | |
Overall survival | |||
Consolidation vs. Non-consolidation | 0.8261 | 0.3850–1.7722 | 0.6237 |
Age (≥30 vs. <30 years) | 2.1127 | 0.9791–4.5584 | 0.0566 |
D-R sex (F-M vs. Others) | 0.5896 | 0.2043–1.7014 | 0.3286 |
Number of induction cycles from relapse to CR2 (≥2 vs. 1) | 1.7439 | 0.8223–3.6984 | 0.1471 |
Pre-transplant MRD (Positive vs. Negative) | 1.2713 | 0.5826–2.7741 | 0.5466 |
Time from diagnosis to HSCT (≥18.2 months vs. <18.2 months) | 0.4400 | 0.1998–0.9689 | 0.0415 |
Leukemia-free survival | |||
Consolidation vs. Non-consolidation | 0.9647 | 0.4945–1.8822 | 0.9162 |
Age (≥30 vs. <30 years) | 1.7776 | 0.9281–3.4046 | 0.0827 |
D-R sex (F-M vs. Others) | 0.5003 | 0.1934–1.2943 | 0.1533 |
Number of induction cycles from relapse to CR2 (≥2 vs. 1) | 1.9942 | 1.0212–3.8940 | 0.0432 |
Pre-transplant MRD (Positive vs. Negative) | 1.5769 | 0.7813–3.1827 | 0.2036 |
Time from diagnosis to HSCT (≥18.2 months vs. <18.2 months) | 0.6824 | 0.3589–1.2974 | 0.2437 |
Cumulative relapse incidence | |||
Consolidation vs. Non-consolidation | 2.1625 | 0.7507–6.2299 | 0.1531 |
ABO matched grafts (Mismatched vs. Matched.) | 0.5440 | 0.2092–1.4149 | 0.2119 |
D-R sex (F-M vs. Others) | 0.2551 | 0.0332–1.9628 | 0.1895 |
Number of induction cycles from relapse to CR2 (≥2 vs. 1) | 2.5584 | 0.9561–6.8461 | 0.0614 |
Pre-transplant MRD (Positive vs. Negative) | 4.2645 | 1.4220–12.7892 | 0.0096 |
WBC at diagnosis (≥19 × 109/L vs. <19 × 109/L) | 0.7220 | 0.2294–2.2725 | 0.5777 |
Non-relapse mortality | |||
Consolidation vs. Non-consolidation | 0.8365 | 0.2815–2.4861 | 0.7480 |
Age (≥30 vs. <30 years) | 7.8466 | 1.4094–43.6856 | 0.0187 |
Cytogenetics (Intermediate and Adverse vs. Favorable) | 0.9921 | 0.1714–5.7419 | 0.9929 |
ABO matched grafts (Mismatched vs. Matched.) | 1.9205 | 0.6923–5.3278 | 0.2100 |
Number of induction cycles from relapse to CR2 (≥2 vs. 1) | 1.5460 | 0.4968–4.8111 | 0.4520 |
Time from diagnosis to HSCT (≥18.2 months vs. <18.2 months) | 0.4189 | 0.1296–1.3544 | 0.1462 |
Chronic graft-versus-host disease | |||
Consolidation vs. Non-consolidation | 1.1889 | 0.6619–2.1357 | 0.5625 |
Sex (Male vs. Female) | 1.3444 | 0.7661–2.3594 | 0.3024 |
ABO matched grafts (Mismatched vs. Matched.) | 0.9071 | 0.5305–1.5511 | 0.7217 |
Number of induction cycles from relapse to CR2 (≥2 vs. 1) | 0.6981 | 0.3553–1.3717 | 0.2970 |
WBC at diagnosis (≥19 × 109/L vs. <19 × 109/L) | 1.5921 | 0.9084–2.7904 | 0.1043 |
Time from diagnosis to HSCT (≥18.2 months vs. <18.2 months) | 1.3111 | 0.7558–2.2746 | 0.3352 |
Grade II–IV acute graft-versus-host disease | |||
Consolidation vs. Non-consolidation | 0.7256 | 0.3072–1.7139 | 0.4646 |
Age (≥30 vs. <30 years) | 0.5040 | 0.2010–1.2636 | 0.1440 |
Sex (Male vs. Female) | 0.5744 | 0.2329–1.4168 | 0.2287 |
Cytogenetics (Intermediate and Adverse vs. Favorable) | 0.4797 | 0.1925–1.1952 | 0.1147 |
ABO matched grafts (Mismatched vs. Matched.) | 2.2477 | 0.8916–5.6665 | 0.0860 |
D-R sex (F-M vs. Others) | 0.5447 | 0.1271–2.3334 | 0.4131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, M.; Huang, T.; Mo, X.-D.; Sun, Y.-Q.; Chang, Y.-J.; Xu, L.-P.; Zhang, X.-H.; Huang, X.-J.; Wang, Y. Lack of Evidence Supporting a Significant Benefit of Pre-Transplant Consolidation Therapy in AML CR2 Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Cancers 2025, 17, 1364. https://doi.org/10.3390/cancers17081364
Lv M, Huang T, Mo X-D, Sun Y-Q, Chang Y-J, Xu L-P, Zhang X-H, Huang X-J, Wang Y. Lack of Evidence Supporting a Significant Benefit of Pre-Transplant Consolidation Therapy in AML CR2 Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Cancers. 2025; 17():1364. https://doi.org/10.3390/cancers17081364
Chicago/Turabian StyleLv, Meng, Ting Huang, Xiao-Dong Mo, Yu-Qian Sun, Ying-Jun Chang, Lan-Ping Xu, Xiao-Hui Zhang, Xiao-Jun Huang, and Yu Wang. 2025. "Lack of Evidence Supporting a Significant Benefit of Pre-Transplant Consolidation Therapy in AML CR2 Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation" Cancers 17, no. : 1364. https://doi.org/10.3390/cancers17081364
APA StyleLv, M., Huang, T., Mo, X.-D., Sun, Y.-Q., Chang, Y.-J., Xu, L.-P., Zhang, X.-H., Huang, X.-J., & Wang, Y. (2025). Lack of Evidence Supporting a Significant Benefit of Pre-Transplant Consolidation Therapy in AML CR2 Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Cancers, 17(), 1364. https://doi.org/10.3390/cancers17081364