Inflammation and Thyroid Cancer: Deciphering the Role of Blood Immune Indexes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Variables
2.2. Surgical Technique
2.3. Follow-Up
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houten, R.; Fleeman, N.; Kotas, E.; Boland, A.; Lambe, T.; Duarte, R. A systematic review of health state utility values for thyroid cancer. Qual. Life Res. 2021, 3, 675–702. [Google Scholar] [CrossRef] [PubMed]
- Dolidze, D.D.; Shabunin, A.V.; Mumladze, R.B.; Vardanyan, A.V.; Covantsev, S.D.; Shulutko, A.M.; Semikov, V.I.; Isaev, K.M.; Kazaryan, A.M. A Narrative Review of Preventive Central Lymph Node Dissection in Patients with Papillary Thyroid Cancer—A Necessity or an Excess. Front. Oncol. 2022, 12, 906695. [Google Scholar] [CrossRef] [PubMed]
- Censi, S.; Galuppini, F.; Clausi, C.; Battheu, F.; Manso, J.; Piva, I.; Corvaglia, S.; Pedron, M.C.; Mondin, A.; Iacobone, M.; et al. Tumor Grade and Molecular Characteristics Associated with Survival in Sporadic Medullary Thyroid Carcinoma. Thyroid 2024, 34, 177–185. [Google Scholar] [CrossRef]
- Yan, L.; Blanco, J.; Reddy, V.; Al-Khudari, S.; Tajudeen, B.; Gattuso, P. Clinicopathological features of papillary thyroid microcarcinoma with a diameter less than or equal to 5 mm. Am. J. Otolaryngol. 2019, 40, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, Y.; Chen, K.; Shen, J.; Shi, J.; Lu, S.; Lei, J.; Li, Z.; Luo, D. Clinical analysis of cervical lymph node metastasis risk factors in patients with papillary thyroid microcarcinoma. J. Endocrinol. Investig. 2019, 42, 227–236. [Google Scholar] [CrossRef]
- Pu, W.; Shi, X.; Yu, P.; Zhang, M.; Liu, Z.; Tan, L.; Han, P.; Wang, Y.; Ji, D.; Gan, H.; et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 2021, 12, 6058. [Google Scholar] [CrossRef]
- Baldini, E.; Presutti, D.; Favoriti, P.; Santini, S.; Papoff, G.; Tuccilli, C.; Carletti, R.; Di Gioia, C.; Lori, E.; Ferent, I.C.; et al. In Vitro and In Vivo Effects of the Urokinase Plasminogen Activator Inhibitor WX-340 on Anaplastic Thyroid Cancer Cell Lines. Int. J. Mol. Sci. 2022, 23, 3724. [Google Scholar] [CrossRef]
- Tiedje, V.; Fagin, J.A. Therapeutic breakthroughs for metastatic thyroid cancer. Nat. Rev. Endocrinol. 2020, 16, 77–78. [Google Scholar] [CrossRef]
- Mehnert, J.M.; Varga, A.; Brose, M.S.; Aggarwal, R.R.; Lin, C.C.; Prawira, A.; de Braud, F.; Tamura, K.; Doi, T.; Piha-Paul, S.A.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer 2019, 19, 196. [Google Scholar] [CrossRef]
- Papale, F.; Cafiero, G.; Grimaldi, A.; Marino, G.; Rosso, F.; Mian, C.; Barollo, S.; Pennelli, G.; Sorrenti, S.; De Antoni, E.; et al. Galectin-3 expression in thyroid fine needle cytology (t-FNAC) uncertain cases: Validation of molecular markers and technology innovation. J. Cell Physiol. 2013, 228, 968–974. [Google Scholar] [CrossRef]
- Gabillard, J.C.; Ulisse, S.; Baldini, E.; Sorrenti, S.; Cremet, J.Y.; Coccaro, C.; Prigent, C.; D’Armiento, M.; Arlot-Bonnemains, Y. Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein. Biochem. Biophys. Res. Commun. 2011, 408, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Wirchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Ceylan, Y.; Kumanlioglu, K.; Oral, A.; Ertan, Y.; Ozcan, Z. The correlation of clinicopathological findings and neutrophil-to-Lymphocyte and platelet-to Lymphocyte ratios in papillary thyroid carcinoma. Mol. Imaging Radionucl. Ther. 2019, 28, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? Thyroid 2017, 27, 751–756. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, T.; Zhang, W.; Wu, F.; Jiang, K.; Lin, B.; Zhan, S.; Hu, T.; Tang, T.; Zhang, Y.; et al. Blood immune indexes can predict lateral lymph node metastasis of thyroid papillary carcinoma. Front. Endocrinol. 2022, 13, 995630. [Google Scholar] [CrossRef]
- Giovanella, L. Circulating biomarkers for the detection of tumor recurrence in the postsurgical follow-up of differentiated thyroid carcinoma. Curr. Opin. Oncol. 2020, 32, 7–12. [Google Scholar] [CrossRef] [PubMed]
- American Thyroid Association Guidelines Task Force; Kloos, R.T.; Eng, C.; Evans, D.B.; Francis, G.L.; Gagel, R.F.; Gharib, H.; Moley, J.F.; Pacini, F.; Ringel, M.D.; et al. Medullary thyroid cancer: Management guidelines of the American Thyroid Association. Thyroid 2009, 19, 565–612. [Google Scholar] [CrossRef]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef]
- Hajizadeh, F.; Aghebati Maleki, L.; Alexander, M.; Mikhailova, M.V.; Masjedi, A.; Ahmadpour, M.; Hashemi, V.; Jadidi-Niaragh, F. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci. 2021, 264, 118699. [Google Scholar] [CrossRef]
- Gregory, A.D.; Houghton, A.M. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 2011, 71, 2411–2416. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Miglietta, F.; Guarneri, V. Immune infiltrates in breast cancer: Recent updates and clinical implications. Cells 2021, 10, 223. [Google Scholar] [CrossRef]
- Tokumaru, Y.; Oshi, M.; Murthy, V.; Tian, W.; Yan, L.; Angarita, F.A.; Nagahashi, M.; Matsuhashi, N.; Futamura, M.; Yoshida, K.; et al. Low intratumoral genetic neutrophil-to-lymphocyte ratio (NLR) is associated with favorable tumor immune microenvironment and with survival in triple negative breast cancer (TNBC). Am. J. Cancer Res. 2021, 11, 5743–5755. [Google Scholar]
- Marcella, S.; Braile, M.; Grimaldi, A.M.; Soricelli, A.; Smaldone, G. Exploring thymic stromal lymphopoietin in the breast cancer microenvironment: A preliminary study. Oncol. Lett. 2025, 29, 182. [Google Scholar] [CrossRef] [PubMed]
- Jan, H.C.; Wu, K.Y.; Tai, T.Y.; Weng, H.Y.; Yang, W.H.; Ou, C.H.; Hu, C.Y. The Systemic Immune-Inflammation Index (SII) Increases the Prognostic Significance of Lymphovascular Invasion in Upper Tract Urothelial Carcinoma After Radical Nephroureterectomy. Cancer Manag. Res. 2022, 14, 3139–3149. [Google Scholar] [CrossRef]
- Xu, X.; Jing, J. Inflammation-related parameter serve as prognostic biomarker in esophageal squamous cell carcinoma. Front. Oncol. 2022, 12, 900305. [Google Scholar] [CrossRef]
- De Pasquale, L.; Lori, E.; Bulfamante, A.M.; Felisati, G.; Castellani, L.; Saibene, A.M. Evaluation of Wisconsin and CaPTHUS Indices Usefulness for Predicting Monoglandular and Multiglandular Disease in Patients with Primary Hyperparathyroidism through the Analysis of a Single-Center Experience. Int. J. Endocrinol. 2021, 2021, 2040284. [Google Scholar] [CrossRef] [PubMed]
- Schlanger, D.; Popa, C.; Pașca, S.; Seicean, A.; Al Hajjar, N. The role of systemic immuno-inflammatory factors in resectable pancreatic adenocarcinoma: A cohort retrospective study. World J. Surg. Oncol. 2022, 20, 144. [Google Scholar] [CrossRef]
- Kars, A.; Sahin, A.; Kılıc, K.; Sakat, M.S.; Bilen, A. Systemic immune inflammation index in differentiated thyroid cancers. Acta Otorhinolaryngol. Ital. 2022, 42, 150–154. [Google Scholar] [CrossRef]
- Yan, T.; Qiu, W.; Weng, H.; Fan, Y.; Zhou, G.; Yang, Z. Single-Cell Transcriptomic Analysis of Ecosystems in Papillary Thyroid Carcinoma Progression. Front. Endocrinol. 2021, 12, 729565. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Wang, W.; Huang, Y.; Li, X. The systemic immune-inflammation index-based model is an effective biomarker on predicting central lymph node metastasis in clinically nodal-negative papillary thyroid carcinoma. Gland. Surg. 2021, 10, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.W.; Li, X.X.; Luo, J. Development and validation of the nomogram based on ultrasound, thyroid stimulating hormone, and inflammatory marker in papillary thyroid carcinoma: A case-control study. Transl. Cancer Res. 2023, 12, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, C.; Mongardini, F.M.; Paolicelli, M.; Bentivoglio, D.; Cozzolino, G.; Ruggiero, R.; Pizza, A.; Tolone, S.; Del Genio, G.; Parisi, S.; et al. Role of Inflammatory Biomarkers (NLR, LMR, PLR) in the Prognostication of Malignancy in Indeterminate Thyroid Nodules. Int. J. Mol. Sci. 2023, 24, 6466. [Google Scholar] [CrossRef]
- Mulligan, L.M. GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential. Front. Physiol. 2019, 9, 1873. [Google Scholar] [CrossRef] [PubMed]
- Cabibi, D.; Giannone, A.G.; Bellavia, S.; Lo Coco, R.; Lo Bianco, A.; Formisano, E.; Scerrino, G.; Graceffa, G. Serum Anti-Thyroglobulin Autoantibodies Are Specific in Predicting the Presence of Papillary-like Nuclear Features and Lymphocytic Infiltrate in the Thyroid Gland. Diagnostics 2023, 13, 2042. [Google Scholar] [CrossRef]
- Bellini, M.I.; Lori, E.; Forte, F.; Lauro, A.; Tripodi, D.; Amabile, M.I.; Cantisani, V.; Varanese, M.; Ferent, I.C.; Baldini, E.; et al. Thyroid and renal cancers: A bidirectional association. Front. Oncol. 2022, 12, 951976. [Google Scholar] [CrossRef]
- Li, G.; Li, R.; Zhong, J.; Chen, W.; Shuai, J.; Chen, M.; Deng, F.; Wei, T.; Tang, H.; Li, Z.; et al. A multicenter cohort study of thyroidectomy-related decision regret in patients with low-risk papillary thyroid microcarcinoma. Nat. Commun. 2025, 16, 2317. [Google Scholar] [CrossRef] [PubMed]
- Graceffa, G.; Orlando, G.; Cocorullo, G.; Mazzola, S.; Vitale, I.; Proclamà, M.P.; Amato, C.; Saputo, F.; Rollo, E.M.; Corigliano, A.; et al. Predictors of Central Compartment Involvement in Patients with Positive Lateral Cervical Lymph Nodes According to Clinical and/or Ultrasound Evaluation. J. Clin. Med. 2021, 10, 3407. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Zheng, C.; He, X. Risk factors for skip metastasis in patients with papillary thyroid microcarcinoma. Cancer Med. 2023, 12, 7560–7566. [Google Scholar] [CrossRef]
UNIVARIATE ANALYSIS | ||||
---|---|---|---|---|
Variable | Benign (40) | Malignant (157) | Total 197 | p-Value |
AGE median (range) | 50 (35–78) | 54 (24–87) | 52 (24–87) | 0.684 |
SEX n (%) | ||||
Male (M) | 9 (4%) | 49 (25%) | 58 (29%) | 0.334 |
Female (F) | 31 (16%) | 108 (55%) | 139 (71%) | |
NODULE SIZE * n (%) | ||||
1 | 3 (2%) | 109 (55%) | 112 (57%) | <0.001 |
2 | 27 (13%) | 31 (16%) | 58 (29%) | |
3 | 10 (5%) | 15 (8%) | 25 (13%) | |
4 | 0 (0%) | 2 (1%) | 2 (1%) | |
N FOCI n (%) | ||||
1 | 40 (20%) | 119 (61%) | 159 (81%) | <0.001 |
2 | 0 | 6 (3%) | 6 (3%) | |
3 | 0 | 32 (16%) | 32 (16%) | |
CLNM n (%) | ||||
0 | 40 (100%) | 136 (87%) | 176 (81%) | 0.041 |
1–11 | 0 | 21 (13%) | 21 (19) | |
LLNM n (%) | ||||
0 | 40 (100%) | 144 (92%) | 184 (93%) | 0.060 |
1–7 | 0 | 13 (8%) | 13 (7%) | |
RECURRENCE n (%) | ||||
0 | 40 (100%) | 151 (96%) | 191 (97%) | 0.209 |
1 | 0 | 6 (4%) | 6 (3%) | |
INDEXES median (range) | ||||
NLR | 2.08 (0.82–3.96) | 2.48 (0.03–13.15) | 0.0506 | |
LMR median (range) | 4.18 (2.21–8.05) | 3.95 (1.33–8.23) | 0.362 | |
PLR median (range) | 124.57 (63.21–267.02) | 139.90 (1.24–400.00) | 0.181 | |
SII index median (range) | 495.37 (164.34–1072.71) | 684.53 (119.85–3194.85) | <0.001 |
MULTIVARIATE ANALYSIS | ||||
---|---|---|---|---|
VARIABLE | OR | CI (Inf) 95% | CI (Sup) 95% | p-Value |
Sex (M) | 0.000020 | 4.2 × 10−10 | 3.31 × 10−1 | 0.0736 |
Age | 0.9897 | 9.48 × 10−1 | 1.032 | 0.0669 |
CLNM | 6.8 × 107 | 1.84 × 10−28 | 1.27 × 10243 | 0.9918 |
SII_Index | 1.002 | 1.0004 | 1.004 | 0.0202 |
Sex:Age | 1.1662 | 1.03 | 1.46 | 0.0599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrenti, S.; Scerrino, G.; Lori, E.; Vassallo, F.; Saverino, S.; Amato, C.; Melfa, G.; Richiusa, P.; Mazzola, S.; Lopes, A.; et al. Inflammation and Thyroid Cancer: Deciphering the Role of Blood Immune Indexes. Cancers 2025, 17, 1363. https://doi.org/10.3390/cancers17081363
Sorrenti S, Scerrino G, Lori E, Vassallo F, Saverino S, Amato C, Melfa G, Richiusa P, Mazzola S, Lopes A, et al. Inflammation and Thyroid Cancer: Deciphering the Role of Blood Immune Indexes. Cancers. 2025; 17(8):1363. https://doi.org/10.3390/cancers17081363
Chicago/Turabian StyleSorrenti, Salvatore, Gregorio Scerrino, Eleonora Lori, Fabrizio Vassallo, Stefania Saverino, Calogera Amato, Giuseppina Melfa, Pierina Richiusa, Sergio Mazzola, Antonella Lopes, and et al. 2025. "Inflammation and Thyroid Cancer: Deciphering the Role of Blood Immune Indexes" Cancers 17, no. 8: 1363. https://doi.org/10.3390/cancers17081363
APA StyleSorrenti, S., Scerrino, G., Lori, E., Vassallo, F., Saverino, S., Amato, C., Melfa, G., Richiusa, P., Mazzola, S., Lopes, A., Orlando, G., & Graceffa, G. (2025). Inflammation and Thyroid Cancer: Deciphering the Role of Blood Immune Indexes. Cancers, 17(8), 1363. https://doi.org/10.3390/cancers17081363