The Role of Robot-Assisted, Imaging-Guided Surgery in Prostate Cancer Patients
Simple Summary
Abstract
1. Introduction
2. Review
3. Sentinel Node Biopsy for Primary Staging
4. PSMA-RGS: Rationale and Application
4.1. PSMA-RGS for Recurrence Setting
4.2. Initial Experience of PSMA-RGS for Primary Staging
5. Fluorescence PSMA-Based Tracers: OLT78 & IS-002
6. Augmented Reality
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AR | Augmented Reality |
AUC | Area Under Curve |
BCR | Biochemical Recurrence |
BCR-FS | Biochemical Recurrence-Free Survival |
cBR | Complete Biochemical Response |
CI | Confidence Interval |
CIM | Conventional Imaging Modality |
CT | Computed Tomography |
DRS | Diffuse Reflectance Spectroscopy |
ECE | Extra-Capsular Extension |
ePLND | Extended Pelvic Lymph Node Dissection |
HA3D | Hyper Accuracy Three-Dimensional |
HR | Hazard Ratio |
ICG | Indocyanine Green |
IFS | Intraoperative Frozen Section |
[111In]In-PSMA-I&T | 111Indium-PSMA Imaging and Therapy |
LNM | Lymph Node Metastasis |
LNI | Lymph Node Invasion |
MFS | Metastasis-Free Survival |
mpMRI | Multiparametric Magnetic Resonance Imaging |
NPV | Negative Predictive Value |
NSS | Nerve Sparing Surgery |
NVB | Neuro Vascular Bundle |
OR | Odds Ratio |
OS | Overall Survival |
PCa | Prostate Cancer |
PET | Positron Emission Tomography |
PPV | Positive Predictive Value |
PSA | Prostate Specific Antigen |
PSM | Positive Surgical Margin |
PSMA | Prostate-Specific Membrane Antigen |
RARP | Robot-Assisted Radical Prostatectomy |
RGS | Radioguided Surgery |
RP | Radical Prostatectomy |
RT | Radiotherapy |
sLND | Salvage Lymph Node Dissection |
SNB | Sentinel Node Biopsy |
SUVmax | Standardized Uptake Value Maximum |
SVI | Seminal Vesicle Invasion |
[99mTc]Tc-PSMA-I&S | 99mTechnetium-PSMA Imaging and Surgery |
TFS | Treatment-Free Survival |
TtB | Target-to-Background |
2D | Two-Dimensional |
3D | Three-Dimensional |
References
- Falagario, U.G.; Knipper, S.; Pellegrino, F.; Martini, A.; Akre, O.; Egevad, L.; Grönberg, H.; Moschovas, M.C.; Bravi, C.A.; Tran, J.; et al. Prostate Cancer–specific and All-cause Mortality After Robot-assisted Radical Prostatectomy: 20 Years’ Report from the European Association of Urology Robotic Urology Section Scientific Working Group. Eur. Urol. Oncol. 2023, 7, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Preisser, F.; Marchioni, M.; Nazzani, S.; Bandini, M.; Tian, Z.; Pompe, R.S.; Montorsi, F.; Saad, F.; Abdollah, F.; Steuber, T.; et al. The Impact of Lymph Node Metastases Burden at Radical Prostatectomy. Eur. Urol. Focus 2019, 5, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Gandaglia, G.; Fossati, N.; Scuderi, S.; Bravi, C.A.; Mazzone, E.; Stabile, A.; Scarcella, S.; Robesti, D.; Barletta, F.; et al. Defining Clinically Meaningful Positive Surgical Margins in Patients Undergoing Radical Prostatectomy for Localised Prostate Cancer. Eur. Urol. Oncol. 2019, 4, 42–48. [Google Scholar] [CrossRef]
- de Rooij, M.; Hamoen, E.H.; Witjes, J.A.; Barentsz, J.O.; Rovers, M.M. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur. Urol. 2016, 70, 233–245. [Google Scholar] [CrossRef]
- Gandaglia, G.; Ploussard, G.; Valerio, M.; Mattei, A.; Fiori, C.; Roumiguié, M.; Fossati, N.; Stabile, A.; Beauval, J.-B.; Malavaud, B.; et al. The Key Combined Value of Multiparametric Magnetic Resonance Imaging, and Magnetic Resonance Imaging–targeted and Concomitant Systematic Biopsies for the Prediction of Adverse Pathological Features in Prostate Cancer Patients Undergoing Radical Prostatectomy. Eur. Urol. 2020, 77, 733–741. [Google Scholar] [CrossRef]
- Tewari, A.K.; Srivastava, A.; Huang, M.W.; Robinson, B.D.; Shevchuk, M.M.; Durand, M.; Sooriakumaran, P.; Grover, S.; Yadav, R.; Mishra, N.; et al. Anatomical grades of nerve sparing: A risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int. 2011, 108, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Marra, G.; Valerio, M.; Heidegger, I.; Tsaur, I.; Mathieu, R.; Ceci, F.; Ploussard, G.; Bergh, R.C.v.D.; Kretschmer, A.; Thibault, C.; et al. Management of Patients with Node-positive Prostate Cancer at Radical Prostatectomy and Pelvic Lymph Node Dissection: A Systematic Review. Eur. Urol. Oncol. 2020, 3, 565–581. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Stabile, A.; Pellegrino, A.; Mazzone, E.; Cannoletta, D.; de Angelis, M.; Barletta, F.; Scuderi, S.; Cucchiara, V.; Gandaglia, G.; Raggi, D.; et al. Can Negative Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Avoid the Need for Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients? A Systematic Review and Meta-analysis with Backup Histology as Reference Standard. Eur. Urol. Oncol. 2022, 5, 1–17. [Google Scholar] [CrossRef]
- Sprute, K.; Kramer, V.; Koerber, S.A.; Meneses, M.; Fernandez, R.; Soza-Ried, C.; Eiber, M.; Weber, W.A.; Rauscher, I.; Rahbar, K.; et al. Diagnostic Accuracy of 18F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. J. Nucl. Med. 2021, 62, 208–213. [Google Scholar] [CrossRef]
- van Leeuwen, P.J.; Emmett, L.; Ho, B.; Delprado, W.; Ting, F.; Nguyen, Q.; Stricker, P.D. Prospective evaluation of 68Gallium-prostate-specific membrane antigen positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer. BJU Int. 2016, 119, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Tappero, S.; Fallara, G.; Chierigo, F.; Micalef, A.; Ambrosini, F.; Diaz, R.; Dorotei, A.; Pompeo, E.; Limena, A.; Bravi, C.A.; et al. Intraoperative image-guidance during robotic surgery: Is there clinical evidence of enhanced patient outcomes? Eur. J. Nucl. Med. 2024, 51, 3061–3078. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, F.W.B.; Winter, A.; van Der Poel, H.G.; Eiber, M.; Suardi, N.; Graefen, M.; Wawroschek, F.; Maurer, T. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat. Rev. Urol. 2019, 16, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Manfredi, M.; Massa, F.; Piazzolla, P.; Manfrin, D.; Piana, A.; Tota, D.; Bollito, E.; et al. Three-dimensional Elastic Augmented-reality Robot-assisted Radical Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology: A Step Further in the Identification of Capsular Involvement. Eur. Urol. 2019, 76, 505–514. [Google Scholar] [CrossRef]
- Dogan, N.U.; Dogan, S.; Favero, G.; Köhler, C.; Dursun, P. The Basics of Sentinel Lymph Node Biopsy: Anatomical and Pathophysiological Considerations and Clinical Aspects. J. Oncol. 2019, 2019, 3415630. [Google Scholar] [CrossRef]
- Barletta, F.; Ceci, F.; Bergh, R.C.v.D.; Rajwa, P.; Montorsi, F.; Briganti, A.; Gandaglia, G. The role of nuclear medicine tracers for prostate cancer surgery: From preoperative to intraoperative setting. Curr. Opin. Urol. 2023, 33, 502–509. [Google Scholar] [CrossRef]
- Mazzone, E.; Dell’oglio, P.; Grivas, N.; Wit, E.; Donswijk, M.; Briganti, A.; Van Leeuwen, F.; van der Poel, H. Diagnostic Value, Oncologic Outcomes, and Safety Profile of Image-Guided Surgery Technologies During Robot-Assisted Lymph Node Dissection with Sentinel Node Biopsy for Prostate Cancer. J. Nucl. Med. 2021, 62, 1363–1371. [Google Scholar] [CrossRef]
- Lannes, F.; Baboudjian, M.; Ruffion, A.; Rouy, M.; Giammarile, F.; Rousseau, T.; Kraeber-Bodéré, F.; Rousseau, C.; Rusu, D.; Colombié, M.; et al. Radioisotope-guided Lymphadenectomy for Pelvic Lymph Node Staging in Patients With Intermediate- and High-risk Prostate Cancer (The Prospective SENTINELLE Study). J. Urol. 2023, 209, 364–373. [Google Scholar] [CrossRef]
- Gandaglia, G.; Barletta, F.; Robesti, D.; Scuderi, S.; Rajwa, P.; Rivas, J.G.; Ibanez, L.; Soeterik, T.F.; Bianchi, L.; Afferi, L.; et al. Identification of the Optimal Candidates for Nodal Staging with Extended Pelvic Lymph Node Dissection Among Prostate Cancer Patients Who Underwent Preoperative Prostate-specific Membrane Antigen Positron Emission Tomography. External Validation of the Memorial Sloan Kettering Cancer Center and Briganti Nomograms and Development of a Novel Tool. Eur. Urol. Oncol. 2023, 6, 543–552. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Maas, M.; Nassiri, N.; Ortega, D.; Gill, K.; Dell’oglio, P.; Thalmann, G.N.; Heidenreich, A.; Eastham, J.A.; Evans, C.P.; et al. Impact of Pelvic Lymph Node Dissection and Its Extent on Perioperative Morbidity in Patients Undergoing Radical Prostatectomy for Prostate Cancer: A Comprehensive Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2021, 4, 134–149. [Google Scholar] [CrossRef]
- Gondoputro, W.; Scheltema, M.J.; Blazevski, A.; Doan, P.; Thompson, J.E.; Amin, A.; Geboers, B.; Agrawal, S.; Siriwardana, A.R.; van Leeuwen, P.J.; et al. Robot-assisted prostate-specific membrane antigen-radioguided surgery in primary diagnosed prostate cancer. J. Nucl. Med. 2022, 63, 1659–1664. [Google Scholar] [CrossRef]
- Gandaglia, G.; Mazzone, E.; Stabile, A.; Pellegrino, A.; Cucchiara, V.; Barletta, F.; Scuderi, S.; Robesti, D.; Leni, R.; Gajate, A.M.S.; et al. Prostate-specific membrane antigen Radioguided Surgery to Detect Nodal Metastases in Primary Prostate Cancer Patients Undergoing Robot-assisted Radical Prostatectomy and Extended Pelvic Lymph Node Dissection: Results of a Planned Interim Analysis of a Prospective Phase 2 Study. Eur. Urol. 2022, 82, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Quarta, L.; Mazzone, E.; Cannoletta, D.; Stabile, A.; Scuderi, S.; Barletta, F.; Cucchiara, V.; Nocera, L.; Pellegrino, A.; Robesti, D.; et al. Defining the optimal target-to-background ratio to identify positive lymph nodes in prostate cancer patients undergoing robot-assisted [99mTc]Tc-PSMA radioguided surgery: Updated results and ad interim analyses of a prospective phase II study. Eur. J. Nucl. Med. 2024, 51, 3789–3798. [Google Scholar] [CrossRef]
- Fendler, W.P.; Calais, J.; Eiber, M.; Flavell, R.R.; Mishoe, A.; Feng, F.Y.; Nguyen, H.G.; Reiter, R.E.; Rettig, M.B.; Okamoto, S.; et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer. JAMA Oncol. 2019, 5, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Maurer, T.; Robu, S.; Schottelius, M.; Schwamborn, K.; Rauscher, I.; Berg, N.S.v.D.; van Leeuwen, F.W.; Haller, B.; Horn, T.; Heck, M.M.; et al. 99mTechnetium-based Prostate-specific Membrane Antigen–radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019, 75, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Knipper, S.; Irai, M.M.; Simon, R.; Koehler, D.; Rauscher, I.; Eiber, M.; van Leeuwen, F.W.; van Leeuwen, P.; de Barros, H.; van der Poel, H.; et al. Cohort Study of Oligorecurrent Prostate Cancer Patients: Oncological Outcomes of Patients Treated with Salvage Lymph Node Dissection via Prostate-specific Membrane Antigen–radioguided Surgery. Eur. Urol. 2022, 83, 62–69. [Google Scholar] [CrossRef]
- de Barros, H.A.; van Oosterom, M.N.; Donswijk, M.L.; Hendrikx, J.J.; Vis, A.N.; Maurer, T.; van Leeuwen, F.W.; van der Poel, H.G.; van Leeuwen, P.J. Robot-assisted Prostate-specific Membrane Antigen–radioguided Salvage Surgery in Recurrent Prostate Cancer Using a DROP-IN Gamma Probe: The First Prospective Feasibility Study. Eur. Urol. 2022, 82, 97–105. [Google Scholar] [CrossRef]
- Fossati, N.; Parker, W.P.; Karnes, R.J.; Colicchia, M.; Bossi, A.; Seisen, T.; Di Muzio, N.; Cozzarini, C.; Chiorda, B.N.; Fiorino, C.; et al. More Extensive Lymph Node Dissection at Radical Prostatectomy is Associated with Improved Outcomes with Salvage Radiotherapy for Rising Prostate-specific Antigen After Surgery: A Long-term, Multi-institutional Analysis. Eur. Urol. 2018, 74, 134–137. [Google Scholar] [CrossRef]
- Lestingi, J.F.; Guglielmetti, G.B.; Trinh, Q.-D.; Coelho, R.F.; Pontes, J.; Bastos, D.A.; Cordeiro, M.D.; Sarkis, A.S.; Faraj, S.F.; Mitre, A.I.; et al. Extended Versus Limited Pelvic Lymph Node Dissection During Radical Prostatectomy for Intermediate- and High-risk Prostate Cancer: Early Oncological Outcomes from a Randomized Phase 3 Trial. Eur. Urol. 2021, 79, 595–604. [Google Scholar] [CrossRef]
- Knipper, S.; Falkenbach, F.; Maurer, T. Radioguided surgery for lymph node metastases in prostate cancer. Curr. Opin. Urol. 2024, 34, 266–272. [Google Scholar] [CrossRef]
- Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H.-J. Preclinical Evaluation and First Patient Application of99mTc-PSMA-I&S for SPECT Imaging and Radioguided Surgery in Prostate Cancer. J. Nucl. Med. 2016, 58, 235–242. [Google Scholar] [CrossRef]
- Aalbersberg, E.A.; Verwoerd, D.; Mylvaganan-Young, C.; de Barros, H.A.; van Leeuwen, P.J.; Sonneborn-Bols, M.; Donswijk, M.L. Occupational Radiation Exposure of Radiopharmacy, Nuclear Medicine, and Surgical Personnel During Use of [99mTc]Tc-PSMA-I&S for Prostate Cancer Surgery. J. Nucl. Med. Technol. 2021, 49, 334–338. [Google Scholar] [CrossRef]
- Maurer, T.; Weirich, G.; Schottelius, M.; Weineisen, M.; Frisch, B.; Okur, A.; Kübler, H.; Thalgott, M.; Navab, N.; Schwaiger, M.; et al. Prostate-specific Membrane Antigen–radioguided Surgery for Metastatic Lymph Nodes in Prostate Cancer. Eur. Urol. 2015, 68, 530–534. [Google Scholar] [CrossRef]
- Dell’oglio, P.; Meershoek, P.; Maurer, T.; Wit, E.M.; van Leeuwen, P.J.; van der Poel, H.G.; van Leeuwen, F.W.; van Oosterom, M.N. A DROP-IN Gamma Probe for Robot-assisted Radioguided Surgery of Lymph Nodes During Radical Prostatectomy. Eur. Urol. 2021, 79, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterom, M.N.; Simon, H.; Mengus, L.; Welling, M.M.; Van Der Poel, H.G.; Van Den Berg, N.S.; Wb Van Leeuwen, F. Revolutionizing (Robot-Assisted) Laparoscopic Gamma Tracing Using a Drop-in Gamma Probe Technology. Am. J. Nucl. Med. Mol. Imaging 2016, 6, 1–17. [Google Scholar] [PubMed]
- Boorjian, S.A.; Thompson, R.H.; Tollefson, M.K.; Rangel, L.J.; Bergstralh, E.J.; Blute, M.L.; Karnes, R.J. Long-Term Risk of Clinical Progression After Biochemical Recurrence Following Radical Prostatectomy: The Impact of Time from Surgery to Recurrence. Eur. Urol. 2011, 59, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Bravi, C.A.; Fossati, N.; Gandaglia, G.; Suardi, N.; Mazzone, E.; Robesti, D.; Osmonov, D.; Juenemann, K.-P.; Boeri, L.; Karnes, R.J.; et al. Long-term Outcomes of Salvage Lymph Node Dissection for Nodal Recurrence of Prostate Cancer After Radical Prostatectomy: Not as Good as Previously Thought. Eur. Urol. 2020, 78, 661–669. [Google Scholar] [CrossRef]
- Farolfi, A.; Ilhan, H.; Gafita, A.; Calais, J.; Barbato, F.; Weber, M.; Afshar-Oromieh, A.; Spohn, F.; Wetter, A.; Rischpler, C.; et al. Mapping Prostate Cancer Lesions Before and After Unsuccessful Salvage Lymph Node Dissection Using Repeat PSMA PET. J. Nucl. Med. 2019, 61, 1037–1042. [Google Scholar] [CrossRef]
- Knipper, S.; Lischewski, F.; Koehler, D.; Eiber, M.; van Leeuwen, F.W.; de Barros, H.; Berrens, A.-C.; Zuur, L.; van Leeuwen, P.J.; van der Poel, H.; et al. Biochemical Response of <0.1 ng/ml Predicts Therapy-free Survival of Prostate Cancer Patients following Prostate-specific Membrane Antigen–targeted Salvage Surgery. Eur. Urol. Oncol. 2024, 8, 270–277. [Google Scholar] [CrossRef]
- Berrens, A.-C.; Sorbi, M.A.; Donswijk, M.L.; de Barros, H.A.; Azargoshasb, S.; van Oosterom, M.N.; Rietbergen, D.D.; Bekers, E.M.; van der Poel, H.G.; van Leeuwen, F.W.; et al. Strong Correlation Between SUVmax on PSMA PET/CT and Numeric Drop-In γ-Probe Signal for Intraoperative Identification of Prostate Cancer Lesions. J. Nucl. Med. 2024, 65, 548–554. [Google Scholar] [CrossRef]
- Falkenbach, F.; Ambrosini, F.; Tennstedt, P.; Eiber, M.; Heck, M.M.; Preisser, F.; Graefen, M.; Budäus, L.; Koehler, D.; Knipper, S.; et al. EAU Biochemical Recurrence Risk Classification and PSA Kinetics Have No Value for Patient Selection in PSMA-Radioguided Surgery (PSMA-RGS) for Oligorecurrent Prostate Cancer. Cancers 2023, 15, 5008. [Google Scholar] [CrossRef] [PubMed]
- Falkenbach, F.; Knipper, S.; Koehler, D.; Ambrosini, F.; Steuber, T.; Graefen, M.; Budäus, L.; Eiber, M.; Lunger, L.; Lischewski, F.; et al. Safety and efficiency of repeat salvage lymph node dissection for recurrence of prostate cancer using PSMA-radioguided surgery (RGS) after prior salvage lymph node dissection with or without initial RGS support. World J. Urol. 2023, 41, 2343–2350. [Google Scholar] [CrossRef]
- Knipper, S.; Ascalone, L.; Ziegler, B.; Hohenhorst, J.L.; Simon, R.; Berliner, C.; van Leeuwen, F.W.; van der Poel, H.; Giesel, F.; Graefen, M.; et al. Salvage Surgery in Patients with Local Recurrence After Radical Prostatectomy. Eur. Urol. 2021, 79, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, B.; Şahin, S.; Ergül, N.; Çolakoğlu, Y.; Baytekin, H.F.; Sökmen, D.; Tuğcu, V.; Taşçı, A.İ.; Çermik, T.F. 99mTc-PSMA targeted robot-assisted radioguided surgery during radical prostatectomy and extended lymph node dissection of prostate cancer patients. Ann. Nucl. Med. 2022, 36, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Schilham, M.G.; Somford, D.M.; Küsters-Vandevelde, H.V.; Hermsen, R.; van Basten, J.P.A.; Hoekstra, R.J.; Scheenen, T.W.; Gotthardt, M.; Sedelaar, J.M.; Rijpkema, M. Prostate-Specific Membrane Antigen–Targeted Radioguided Pelvic Lymph Node Dissection in Newly Diagnosed Prostate Cancer Patients with a Suspicion of Locoregional Lymph Node Metastases: The DETECT Trial. J. Nucl. Med. 2024, 65, 423–429. [Google Scholar] [CrossRef]
- Hernot, S.; Van Manen, L.; Debie, P.; Sven, J.; Mieog, D.; Lucas Vahrmeijer, A. Review Latest Developments in Molecular Tracers for Fluorescence Image-Guided Cancer Surgery. Lancet Oncol. 2019, 20, e354–e367. [Google Scholar] [CrossRef]
- Baranski, A.-C.; Schäfer, M.; Bauder-Wüst, U.; Roscher, M.; Schmidt, J.; Stenau, E.; Simpfendörfer, T.; Teber, D.; Maier-Hein, L.; Hadaschik, B.; et al. PSMA-11–Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. J. Nucl. Med. 2017, 59, 639–645. [Google Scholar] [CrossRef]
- Kularatne, S.A.; Thomas, M.; Myers, C.H.; Gagare, P.; Kanduluru, A.K.; Crian, C.J.; Cichocki, B.N. Evaluation of Novel Prostate-Specific Membrane Antigen-Targeted Near-Infrared Imaging Agent for Fluorescence-Guided Surgery of Prostate Cancer. Clin. Cancer Res. 2019, 25, 177–187. [Google Scholar] [CrossRef]
- Nguyen, H.G.; Berg, N.S.v.D.; Antaris, A.L.; Xue, L.; Greenberg, S.; Rosenthal, J.W.; Muchnik, A.; Klaassen, A.; Simko, J.P.; Dutta, S.; et al. First-in-human Evaluation of a Prostate-specific Membrane Antigen–targeted Near-infrared Fluorescent Small Molecule for Fluorescence-based Identification of Prostate Cancer in Patients with High-risk Prostate Cancer Undergoing Robotic-assisted Prostatectomy. Eur. Urol. Oncol. 2023, 7, 63–72. [Google Scholar] [CrossRef]
- Stibbe, J.A.; de Barros, H.A.; Linders, D.G.J.; Bhairosingh, S.S.; Bekers, E.M.; van Leeuwen, P.J.; Low, P.S.; Kularatne, S.A.; Vahrmeijer, A.L.; Burggraaf, J.; et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: A single-arm, phase 2a, feasibility trial. Lancet Oncol. 2023, 24, 457–467. [Google Scholar] [CrossRef]
- de Roode, L.M.; de Boer, L.L.; Guimaraes, M.D.S.; van Leeuwen, P.J.; van der Poel, H.G.; Dashtbozorg, B.; Ruers, T.J. Feasibility of Diffuse Reflection Spectroscopy for Intraoperative Margin Assessment During Prostatectomy. Eur. Urol. Open Sci. 2024, 67, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Checcucci, E.; Amparore, D.; Fiori, C.; Manfredi, M.; Ivano, M.; Di Dio, M.; Niculescu, G.; Piramide, F.; Cattaneo, G.; Piazzolla, P.; et al. 3D imaging applications for robotic urologic surgery: An ESUT YAUWP review. World J. Urol. 2019, 38, 869–881. [Google Scholar] [CrossRef]
- The ESUT Research Group; Porpiglia, F.; Bertolo, R.; Checcucci, E.; Amparore, D.; Autorino, R.; Dasgupta, P.; Wiklund, P.; Tewari, A.; Liatsikos, E.; et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: Urologists’ and patients’ perception. World J. Urol. 2017, 36, 201–207. [Google Scholar] [CrossRef]
- Autorino, R.; Porpiglia, F.; Dasgupta, P.; Rassweiler, J.; Catto, J.; Hampton, L.; Lima, E.; Mirone, V.; Derweesh, I.; Debruyne, F. Precision surgery and genitourinary cancers. Eur. J. Surg. Oncol. 2017, 43, 893–908. [Google Scholar] [CrossRef]
- Roberts, S.; Desai, A.; Checcucci, E.; Puliatti, S.; Taratkin, M.; Kowalewski, K.-F.; Rivas, J.G.; Rivero, I.; Veneziano, D.; Autorino, R.; et al. “Augmented reality” applications in urology: A systematic review. Minerva Urol. Nephrol. 2022, 74, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Checcucci, E.; Pecoraro, A.; Amparore, D.; De Cillis, S.; Granato, S.; Volpi, G.; Sica, M.; Verri, P.; Piana, A.; Piazzolla, P.; et al. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy. World J. Urol. 2022, 40, 2221–2229. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Autorino, R.; Piana, A.; Bellin, A.; Piazzolla, P.; Massa, F.; Bollito, E.; Gned, D.; et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: A radiological and pathological study. BJU Int. 2018, 123, 834–845. [Google Scholar] [CrossRef]
- Checcucci, E.; Piana, A.; Volpi, G.; Piazzolla, P.; Amparore, D.; De Cillis, S.; Piramide, F.; Gatti, C.; Stura, I.; Bollito, E.; et al. Three-dimensional automatic artificial intelligence driven augmented-reality selective biopsy during nerve-sparing robot-assisted radical prostatectomy: A feasibility and accuracy study. Asian J. Urol. 2023, 10, 407–415. [Google Scholar] [CrossRef]
- Bianchi, L.; Chessa, F.; Angiolini, A.; Cercenelli, L.; Lodi, S.; Bortolani, B.; Molinaroli, E.; Casablanca, C.; Droghetti, M.; Gaudiano, C.; et al. The Use of Augmented Reality to Guide the Intraoperative Frozen Section During Robot-assisted Radical Prostatectomy. Eur. Urol. 2021, 80, 480–488. [Google Scholar] [CrossRef]
Author | Year of Publication, Study Design | Patients Included | Tracer Used | Objectives | Results |
---|---|---|---|---|---|
Maurer et al. [25] | 2019, retrospective | 31 patients with recurrent PCa at PSMA PET after RP | [99mTc]Tc-PSMA-I&S | to describe feasibility and short-term outcomes of PSMA-RGS for removal of recurrent PCa lesions | per-lesion analysis:
2-years TFS: 65% |
De Barros et al. [27] | 2022, prospective | 20 patients with up to 3 pelvic PCa lesions at PSMA PET after RP or RT | [99mTc]Tc-PSMA-I&S | to evaluate whether the drop-in gamma probe facilitates the use of PSMA-RGS in recurrent PCa patients | per-lesion analysis:
|
Knipper et al. [39] | 2024, retrospective | 553 oligorecurrent PCa patients with BCR and positive PSMA PET after RP | [99mTc]Tc-PSMA-I&S, [111In]In-PSMA-I&T | to evaluate whether a PSA < 0.1 ng/mL is predictive of TFS following salvage PSMA-RGS | 2-years TFS: 81.1% vs. 56.1% vs. 43.1% (p < 0.001) in patients with PSA < 0.1 vs. 0.1–<0.2 vs. >0.2 ng/mL, respectively |
Author | Year of Publication, Study Design | Patients Included | Tracer Used | Objectives | Results |
---|---|---|---|---|---|
Gondoputro et al. [21] | 2022, prospective | 12 HR-PCa patients with a LNI risk > 10% | [99mTc]Tc-PSMA-I&S | to evaluate the safety and feasibility of PSMA-RGS to guide the intraoperative detection of LNMs during RARP with ePLND | per-lesion analysis:
|
Gandaglia et al. [22] | 2022, prospective | 12 IR- or HR- cN0cM0 PCa patients at CIM with a LNI risk > 5% | [99mTc]Tc-PSMA-I&S | to report the planned interim analyses of a phase 2 prospective study aimed at describing PSMA-RGS during RARP with ePLND | per-lesion analysis:
|
Schilham et al. [45] | 2024, prospective | 20 PCa patients with positive preoperative PSMA PET | [111In]In-PSMA-I&T | to evaluate the safety and feasibility of PSMA-RGS during RARP with ePLND | per-lesion analysis:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarta, L.; Cannoletta, D.; Pellegrino, F.; Barletta, F.; Scuderi, S.; Mazzone, E.; Stabile, A.; Montorsi, F.; Gandaglia, G.; Briganti, A. The Role of Robot-Assisted, Imaging-Guided Surgery in Prostate Cancer Patients. Cancers 2025, 17, 1401. https://doi.org/10.3390/cancers17091401
Quarta L, Cannoletta D, Pellegrino F, Barletta F, Scuderi S, Mazzone E, Stabile A, Montorsi F, Gandaglia G, Briganti A. The Role of Robot-Assisted, Imaging-Guided Surgery in Prostate Cancer Patients. Cancers. 2025; 17(9):1401. https://doi.org/10.3390/cancers17091401
Chicago/Turabian StyleQuarta, Leonardo, Donato Cannoletta, Francesco Pellegrino, Francesco Barletta, Simone Scuderi, Elio Mazzone, Armando Stabile, Francesco Montorsi, Giorgio Gandaglia, and Alberto Briganti. 2025. "The Role of Robot-Assisted, Imaging-Guided Surgery in Prostate Cancer Patients" Cancers 17, no. 9: 1401. https://doi.org/10.3390/cancers17091401
APA StyleQuarta, L., Cannoletta, D., Pellegrino, F., Barletta, F., Scuderi, S., Mazzone, E., Stabile, A., Montorsi, F., Gandaglia, G., & Briganti, A. (2025). The Role of Robot-Assisted, Imaging-Guided Surgery in Prostate Cancer Patients. Cancers, 17(9), 1401. https://doi.org/10.3390/cancers17091401