Proposed Refinement of 2022 European LeukemiaNet Adverse-Risk Group of AML Patients Using a Real-World Cohort
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Treatment
2.3. Cytogenetic Analysis
2.4. Molecular Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Impact of Allo-HCT on Overall Survival in the Study Cohort
3.3. Heterogeneity and Proposed Refinement of the ELN 2022 Adverse-Risk Group
3.4. Validation of the Proposed ELN 2022 Refinement Using a Public Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Allo-HCT | allogeneic hematopoietic stem cell transplantation |
CIs | confidence intervals |
CR | complete remission |
EFS | event-free survival |
FLAG-IDA | fludarabine, cytarabine, filgrastim, and idarubicin |
HR | hazard ratio |
ICs | intensive chemotherapies |
ICC | International Consensus Classification |
ISCN | International System for Human Cytogenomic Nomenclature |
MR | myelodysplasia-related |
NGS | next-generation sequencing |
Nove-HiDAC | mitoxantrone, etoposide, and modified high-dose cytarabine |
PCR | polymerase chain reaction |
SPSS | Statistical Package for the Social Sciences |
TAR-SEQ | targeted sequencing |
TP53 Mut | TP53 mutant |
TP53-WT | TP53 wild-type |
OS | overall survival |
Appendix A
Variable | ELN 2022 Adverse (n = 128) | Median OS (months) | HR | 95% CI | p-Value | |
---|---|---|---|---|---|---|
MK | Present | 23 (18%) | 7.8 | 2.822 | 1.27–6.26 | 0.0002 |
Absent | 105 (82%) | 22.6 | ||||
CK | Present | 33 (25.8%) | 8.5 | 2.91 | 1.47–5.75 | <0.0001 |
Absent | 95 (74.2%) | 50.3 | ||||
−5 or del(5q) | Present | 19 (14.8%) | 7.8 | 2.0 | 0.86–4.63 | 0.0042 |
Absent | 109 (85.2%) | 21.1 | ||||
−7 | Present | 10 (7.8%) | 6.4 | 2.278 | 0.68–7.57 | 0.0474 |
Absent | 118 (92.2%) | 20.3 | ||||
−17 | Present | 11 (8.6%) | 3.1 | 5.18 | 1.45–18.48 | <0.0001 |
Absent | 117 (91.4%) | 21.2 | ||||
RUNX1 | Present | 43 (33.6%) | 22.6 | 0.7642 | 0.46–1.27 | 0.305 |
Absent | 85 (66.4%) | 18.9 | ||||
ASXL1 | Present | 37 (28.9%) | 16.0 | 1.012 | 0.58–1.75 | 0.9667 |
Absent | 91 (71.1%) | 20.0 | ||||
SRSF2 | Present | 36 (28.1%) | 15.9 | 1.042 | 0.61–1.79 | 0.7178 |
Absent | 92 (71.9%) | 20.3 | ||||
U2AF1 | Present | 21 (16.4%) | Undefined | 0.5181 | 0.28–0.97 | 0.0924 |
Absent | 107 (83.6%) | 18.9 | ||||
STAG2 | Present | 19 (14.8%) | 15.9 | 1.21 | 0.59–2.49 | 0.6729 |
Absent | 109(85.2%) | 20.3 | ||||
BCOR | Present | 16 (12.5%) | 10.4 | 1.169 | 0.53–2.57 | 0.6617 |
Absent | 112 (87.5%) | 20.3 | ||||
SF3B1 | Present | 7 (5.5%) | ||||
Absent | 121 (94.5%) | |||||
EZH2 | Present | 2 (1.6%) | ||||
Absent | 126 (98.4%) | |||||
ZRSR2 | Present | 1 (0.8%) | ||||
Absent | 127 (99.2%) |
Variables | Study Population | Validation Cohort | p-Value | |
---|---|---|---|---|
Age (years) | n | 256 | 336 | <0.0001 a |
Median (min–max) | 64 (19–87) | 58 (18–79) | ||
Sex | Male | 140 (54.7%) | 182 (54.2%) | 0.8997 b |
Female | 116 (45.3%) | 154 (45.8%) | ||
ELN 2022 | Favorable | 65 (25.4%) | 110 (32.7%) | 0.0457 c |
Intermediate | 63 (24.6%) | 91 (27.1%) | ||
Adverse | 128 (50%) | 135 (40.2%) | ||
ELN Adverse-Risk Group | Adverse TP53 WT | 108 (42.2%) | 107 (31.8%) | 0.283 b |
Adverse TP53 Mut | 20 (7.8%) | 28 (8.3%) | ||
Transplant Status | Total Transplanted | 99 (38.7%) | 149 (44.3%) | 0.1657 b |
Allo-HCT | 99 (38.7%) | 137 (40.8%) | 0.6048 b | |
DUCBT | None | 12 (3.6%) | ||
Favorable | 3 (4.6%) | 35 (31.8%) | <0.0001 c | |
Intermediate | 31 (49.2%) | 52 (57.1%) | ||
Adverse | 65 (50.8%) | 62 (45.9%) | ||
Adverse TP53 WT | 59 (54.6%) | 56 (52.3%) | 0.9315 b | |
Adverse TP53 Mut | 6 (30%) | 6 (21.4%) |
Appendix B
References
- Desai, R.H.; Zandvakili, N.; Bohlander, S.K. Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers 2022, 14, 2182. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.J.; Girguis, M.; Kim, E.; Shewale, J.; Braunlin, M.; Werther, W.; Hildago-Lopez, J.E.; Zaman, F.; Kim, C. A Temporal and Multinational Assessment of Acute Myeloid Leukemia (AML) Cancer Incidence, Survival, and Disease Burden. Leuk. Lymphoma 2024, 65, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Shimony, S.; Stahl, M.; Stone, R.M. Acute Myeloid Leukemia: 2023 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2023, 98, 502–526. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Long, N.; Saultz, J.; Gandhi, A.; Newell, L.F.; Hayes-Lattin, B.; Maziarz, R.T.; Leonard, J.; Bottomly, D.; McWeeney, S.; et al. Comparison and Validation of the 2022 European LeukemiaNet Guidelines in Acute Myeloid Leukemia. Blood Adv. 2023, 7, 1899–1909. [Google Scholar] [CrossRef]
- Lo, M.Y.; Tsai, X.C.H.; Lin, C.C.; Tien, F.M.; Kuo, Y.Y.; Lee, W.H.; Peng, Y.L.; Liu, M.C.; Tseng, M.H.; Hsu, C.A.; et al. Validation of the Prognostic Significance of the 2022 European LeukemiaNet Risk Stratification System in Intensive Chemotherapy Treated Aged 18 to 65 Years Patients with de Novo Acute Myeloid Leukemia. Am. J. Hematol. 2023, 98, 760–769. [Google Scholar] [CrossRef]
- Bill, M.; Ruhnke, L.; Zukunft, S.; Schäfer, S.; Eckardt, J.-N.; Stasik, S.; Hanoun, M.; Schroeder, T.; Fransecky, L.; Steffen, B.; et al. S138: Validation of The Revised 2022 European Leukemianet (ELN) Risk Stratification in Adult Patients with Acute Myeloid Leukemia. Hemasphere 2023, 7, e72156a7. [Google Scholar] [CrossRef]
- Sargas, C.; Ayala, R.; Larráyoz, M.J.; Chillón, M.C.; Rodriguez-Arboli, E.; Bilbao, C.; Prados de la Torre, E.; Martínez-Cuadrón, D.; Rodríguez-Veiga, R.; Boluda, B.; et al. Comparison of the 2022 and 2017 European LeukemiaNet Risk Classifications in a Real-Life Cohort of the PETHEMA Group. Blood Cancer J. 2023, 13, 77. [Google Scholar] [CrossRef]
- Chen, E.; Jiao, C.; Yu, J.; Gong, Y.; Jin, D.; Ma, X.; Cui, J.; Wu, Z.; Zhou, J.; Wang, H.; et al. Assessment of 2022 European LeukemiaNet Risk Classification System in Real-World Cohort from China. Cancer Med. 2023, 12, 21615–21626. [Google Scholar] [CrossRef]
- Song, G.Y.; Kim, H.J.; Kim, T.H.; Ahn, S.Y.; Jung, S.H.; Kim, M.; Yang, D.H.; Lee, J.J.; Kim, M.Y.; Cheong, J.W.; et al. Validation of the 2022 European LeukemiaNet Risk Stratification for Acute Myeloid Leukemia. Sci. Rep. 2024, 14, 8517. [Google Scholar] [CrossRef]
- Rausch, C.; Rothenberg-Thurley, M.; Dufour, A.; Schneider, S.; Gittinger, H.; Sauerland, C.; Görlich, D.; Krug, U.; Berdel, W.E.; Woermann, B.J.; et al. Validation and Refinement of the 2022 European LeukemiaNet Genetic Risk Stratification of Acute Myeloid Leukemia. Leukemia 2023, 37, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Archer, K.J.; Fu, H.; Mrózek, K.; Nicolet, D.; Mims, A.S.; Uy, G.L.; Stock, W.; Byrd, J.C.; Hiddemann, W.; Metzeler, K.H.; et al. Improving Risk Stratification for 2022 European LeukemiaNet Favorable-Risk Patients with Acute Myeloid Leukemia. Innovation 2024, 5, 100719. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, M.; Bischof, L.; Ussmann, J.; Backhaus, D.; Brauer, D.; Metzeler, K.H.; Merz, M.; Vucinic, V.; Franke, G.N.; Herling, M.; et al. Prognostic Impact of the AML ELN2022 Risk Classification in Patients Undergoing Allogeneic Stem Cell Transplantation. Blood Cancer J. 2022, 12, 170. [Google Scholar] [CrossRef]
- Lindsley, R.C.; Mar, B.G.; Mazzola, E.; Grauman, P.V.; Shareef, S.; Allen, S.L.; Pigneux, A.; Wetzler, M.; Stuart, R.K.; Erba, H.P.; et al. Acute Myeloid Leukemia Ontogeny Is Defined by Distinct Somatic Mutations. Blood 2015, 125, 1367–1376. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Gibson, C.J.; Blonquist, T.M.; Neuberg, D.; Pozdnyakova, O.; Kuo, F.; Ebert, B.L.; Hasserjian, R.P. Association of Mutations with Morphological Dysplasia in de Novo Acute Myeloid Leukemia without 2016 Who Classification-Defined Cytogenetic Abnormalities. Haematologica 2018, 103, 626. [Google Scholar] [CrossRef]
- Song, G.Y.; Kim, T.H.; Ahn, S.Y.; Jung, S.H.; Kim, M.; Yang, D.H.; Lee, J.J.; Choi, S.H.; Kim, M.Y.; Jung, C.W.; et al. Allogeneic Hematopoietic Cell Transplantation Can Overcome the Adverse Prognosis Indicated by Secondary-Type Mutations in de Novo Acute Myeloid Leukemia. Bone Marrow Transplant. 2022, 57, 1810–1819. [Google Scholar] [CrossRef]
- Tsai, X.C.H.; Sun, K.J.; Lo, M.Y.; Tien, F.M.; Kuo, Y.Y.; Tseng, M.H.; Peng, Y.L.; Chuang, Y.K.; Ko, B.S.; Tang, J.L.; et al. Poor Prognostic Implications of Myelodysplasia-Related Mutations in Both Older and Younger Patients with de Novo AML. Blood Cancer J. 2023, 13, 4. [Google Scholar] [CrossRef]
- Herold, T.; Rothenberg-Thurley, M.; Grunwald, V.V.; Janke, H.; Goerlich, D.; Sauerland, M.C.; Konstandin, N.P.; Dufour, A.; Schneider, S.; Neusser, M.; et al. Validation and Refinement of the Revised 2017 European LeukemiaNet Genetic Risk Stratification of Acute Myeloid Leukemia. Leukemia 2020, 34, 3161–3172. [Google Scholar] [CrossRef]
- Mrózek, K.; Eisfeld, A.K.; Kohlschmidt, J.; Carroll, A.J.; Walker, C.J.; Nicolet, D.; Blachly, J.S.; Bill, M.; Papaioannou, D.; Wang, E.S.; et al. Complex Karyotype in de Novo Acute Myeloid Leukemia: Typical and Atypical Subtypes Differ Molecularly and Clinically. Leukemia 2019, 33, 1620–1634. [Google Scholar] [CrossRef]
- Rücker, F.G.; Schlenk, R.F.; Bullinger, L.; Kayser, S.; Teleanu, V.; Kett, H.; Habdank, M.; Kugler, C.M.; Holzmann, K.; Gaidzik, V.I.; et al. TP53 Alterations in Acute Myeloid Leukemia with Complex Karyotype Correlate with Specific Copy Number Alterations, Monosomal Karyotype, and Dismal Outcome. Blood 2012, 119, 2114–2121. [Google Scholar] [CrossRef]
- Tazi, Y.; Arango-Ossa, J.E.; Zhou, Y.; Bernard, E.; Thomas, I.; Gilkes, A.; Freeman, S.; Pradat, Y.; Johnson, S.J.; Hills, R.; et al. Unified Classification and Risk-Stratification in Acute Myeloid Leukemia. Nat. Commun. 2022, 13, 4622. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Amin, M.K.; Arber, D.A.; Kharfan-dabaja, M.A. What Have We Learned about TP53- Mutated Acute Myeloid Leukemia? Blood Cancer J. 2024, 14, 202. [Google Scholar] [CrossRef]
- Shin, D.Y. TP53 Mutation in Acute Myeloid Leukemia: An Old Foe Revisited. Cancers 2023, 15, 4816. [Google Scholar] [CrossRef] [PubMed]
- Bories, P.; Prade, N.; Lagarde, S.; Cabarrou, B.; Largeaud, L.; Plenecassagnes, J.; Luquet, I.; de Mas, V.; Filleron, T.; Cassou, M.; et al. Impact of TP53 Mutations in Acute Myeloid Leukemia Patients Treated with Azacitidine. PLoS ONE 2020, 15, e0238795. [Google Scholar] [CrossRef]
- Kadia, T.M.; Jain, P.; Ravandi, F.; Garcia-Manero, G.; Andreef, M.; Takahashi, K.; Borthakur, G.; Jabbour, E.; Konopleva, M.; Daver, N.G.; et al. TP53 Mutations in Newly Diagnosed Acute Myeloid Leukemia: Clinicomolecular Characteristics, Response to Therapy, and Outcomes. Cancer 2016, 122, 3484–3491. [Google Scholar] [CrossRef]
- Qin, G.; Han, X. The Prognostic Value of TP53 Mutations in Adult Acute Myeloid Leukemia: A Meta-Analysis. Transfus. Med. Hemother. 2023, 50, 234–244. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Siddon, A.; Madanat, Y.F.; Gagan, J.; Arber, D.A.; Cin, P.D.; Narayanan, D.; Ouseph, M.M.; Kurzer, J.H.; Hasserjian, R.P. TP53 Mutation Defines a Unique Subgroup within Complex Karyotype de Novo and Therapy-Related MDS/AML. Blood Adv. 2022, 6, 2847–2853. [Google Scholar] [CrossRef]
- Leung, G.M.K.; Zhang, C.; Ng, N.K.L.; Yang, N.; Lam, S.S.Y.; Au, C.H.; Chan, T.L.; Ma, E.S.K.; Tsui, S.P.; Ip, H.W.; et al. Distinct Mutation Spectrum, Clinical Outcome and Therapeutic Responses of Typical Complex/Monosomy Karyotype Acute Myeloid Leukemia Carrying TP53 Mutations. Am. J. Hematol. 2019, 94, 650–657. [Google Scholar] [CrossRef]
- Kadia, T.; Cortes, J.E.; Ravandi, F.; Garcia-Manero, G.; Andreeff, M.; Takahashi, K.; Borthakur, G.; Jabbour, E.J.; Bhalla, K.N.; Konopleva, M.; et al. Clinical and Molecular Characterization of P53-Mutated Acute Myeloid Leukemia. Blood 2015, 126, 564. [Google Scholar] [CrossRef]
- Bottomly, D.; Long, N.; Schultz, A.R.; Kurtz, S.E.; Tognon, C.E.; Johnson, K.; Abel, M.; Agarwal, A.; Avaylon, S.; Benton, E.; et al. Integrative Analysis of Drug Response and Clinical Outcome in Acute Myeloid Leukemia. Cancer Cell 2022, 40, 850–864. [Google Scholar] [CrossRef] [PubMed]
- McGowan-Jordan, J.; Simons, A.; Schmid, M. (Eds.) ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016); S. Karger Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Alduaij, W.; McNamara, C.J.; Schuh, A.; Arruda, A.; Sukhai, M.; Kanwar, N.; Thomas, M.; Spiegel, J.; Kennedy, J.A.; Stockley, T.; et al. Clinical Utility of Next-Generation Sequencing in the Management of Myeloproliferative Neoplasms: A Single-Center Experience. Hemasphere 2018, 2, e44. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhao, D.; Zarif, M.; Davidson, M.B.; Minden, M.D.; Tierens, A.; Yeung, Y.W.T.; Wei, C.; Chang, H. A Real-World Analysis of Clinical Outcomes in AML with Myelodysplasia-Related Changes: A Comparison of ICC and WHO-HAEM5 Criteria. Blood Adv. 2024, 8, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Yanada, M.; Yamamoto, Y.; Iba, S.; Okamoto, A.; Inaguma, Y.; Tokuda, M.; Morishima, S.; Kanie, T.; Mizuta, S.; Akatsuka, Y.; et al. TP53 Mutations in Older Adults with Acute Myeloid Leukemia. Int. J. Hematol. 2016, 103, 429–435. [Google Scholar] [CrossRef] [PubMed]
Variables | All | Favorable | Intermediate | Adverse | p-Value |
---|---|---|---|---|---|
Study Population, n (%) | 256 (100%) | 65 (25.4%) | 63 (24.6%) | 128 (50%) | |
Age (y), median [range] | 64 [19–87] | 63 [20–84] | 60 [22–85] | 65 [19–87] | 0.0151 a |
Male: Female Sex, n | 140:116 | 27:38 | 29:34 | 84:44 | 0.0018 b |
WBC Count X 109 cells/L, median [range] | 7.2 [0.3–221] | 11 [0.6–197] | 10.4 [0.4–221] | 4.7 [0.3–137.6] | 0.0023 a |
Hemoglobin (g/dL), median [range] | 8.7 [3.7–14.8] | 8.9 [6.2–13.3] | 9.1 [5.3–14.1] | 8.5 [11–14.8] | 0.1368 a |
Platelet X 109 cells/L, n (%) median [range] | 64.5 [5–598] | 88 [8–395] | 72 [5–598] | 53 [8–468] | 0.0284 a |
BM Blast %, median [range] | 48 [10–97] | 64 [20–97] | 51 [20–96] | 39 [10–96] | <0.0001 a |
Complete Remission, n (%) | 169 (66.0%) | 42 (64.6%) | 48 (76.2%) | 79 (61.7%) | 0.1819 b |
Transplant, n (%) | 99 (38.7%) | 3 (4.6%) | 31 (49.2%) | 65 (50.8%) | <0.0001 b |
ELN 2022 Adverse (n = 128) | Adverse TP53 (n = 20) | Adverse WT TP53 (n = 108) | p-Value | |
---|---|---|---|---|
Monosomal Karyotype ¶ | 23 (18%) | 17(85%) | 6(5.6%) | <0.0001 * |
Complex Karyotype ¶ | 33 (25.8%) | 16 (80%) | 17 (15.7%) | <0.0001 * |
−5 or del(5q) ¶ | 19 (14.8%) | 14 (70%) | 5 (4.6%) | <0.0001 * |
−7 ¶ | 10 (7.8%) | 4 (20%) | 6 (5.6%) | 0.0270 * |
−17 ¶ | 11 (8.6%) | 10 (50%) | 1 (0.9%) | <0.0001 * |
MR Mutation † | 96 (75%) | 3 (15%) | 93 (86.1%) | <0.0001 * |
FLT3 -ITD ϕ | 28 (21.9%) | 1 (5%) | 27 (25%) | 0.0469 * |
NPM1 ϕ | 8 (6.2%) | 0 | 8 (7.4%) | 0.2087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangulu, C.; Zhao, D.; Zhou, Q.; Wei, C.; Kumar, R.; Schimmer, A.; Chang, H. Proposed Refinement of 2022 European LeukemiaNet Adverse-Risk Group of AML Patients Using a Real-World Cohort. Cancers 2025, 17, 1405. https://doi.org/10.3390/cancers17091405
Wangulu C, Zhao D, Zhou Q, Wei C, Kumar R, Schimmer A, Chang H. Proposed Refinement of 2022 European LeukemiaNet Adverse-Risk Group of AML Patients Using a Real-World Cohort. Cancers. 2025; 17(9):1405. https://doi.org/10.3390/cancers17091405
Chicago/Turabian StyleWangulu, Collins, Davidson Zhao, Qianghua Zhou, Cuihong Wei, Rajat Kumar, Aaron Schimmer, and Hong Chang. 2025. "Proposed Refinement of 2022 European LeukemiaNet Adverse-Risk Group of AML Patients Using a Real-World Cohort" Cancers 17, no. 9: 1405. https://doi.org/10.3390/cancers17091405
APA StyleWangulu, C., Zhao, D., Zhou, Q., Wei, C., Kumar, R., Schimmer, A., & Chang, H. (2025). Proposed Refinement of 2022 European LeukemiaNet Adverse-Risk Group of AML Patients Using a Real-World Cohort. Cancers, 17(9), 1405. https://doi.org/10.3390/cancers17091405