Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
- Age ≥ 18 years;
- Pre-operative brain MRI suggestive of supratentorial DLGGs;
- No previous surgery;
- No pre-operative chemo- or radiotherapy;
- Objective evaluation of the extent of resection (EOR) on MRI images in DICOM format based on T2-weighted MRI sequences;
- Retrospective review of neurophysiological data (EEGs and ECoGs);
- Neurological follow-up at our Epilepsy Center (Udine, Italy).
2.2. Pre-Operative EEG Recording
2.3. Anesthetic Protocol
2.4. Intraoperative Electrocorticography and Brain Mapping
2.5. Intraoperative Seizure and Management
2.6. Histological and Molecular Analysis
2.7. Neurological Follow-Up
2.8. Statistical Analysis
3. Results
3.1. Study Population and Pre-Operative Characteristics
3.2. Intraoperative and Histological Data
3.3. Post-Operative Seizure, Functional and Oncological Outcomes
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASMs | anti-seizure medications |
CNS | central nervous system |
DLGGs | diffuse low-grade gliomas |
ECoG | electrocorticography |
EEG | electroencephalography |
EOR | extent of resection |
FISH | fluorescence in situ hybridization |
FSOKPS | favorable seizure outcomeKarnofsky Performance Status |
IDH | isocitrate dehydrogenase |
ILAE | International League Against Epilepsy |
IHC | immunohistochemistry |
IoECoGIOM | Intraoperative electrocorticographyintraoperative neurophysiological monitoring |
IOS | intraoperative seizures |
MEP | motor evoked potential |
MGMT | O6-methylguanine-DNA-methyltransferase |
MRI | magnetic resonance imaging |
mRS | modified Rankin Scale |
OR | odds ratio |
POS | post-operative seizures |
SE | status epilepticus |
TIVA | total intravenous anesthesia |
TRE | tumor-related epilepsy |
WHO | World Health Organization |
References
- Nossek, E.; Matot, I.; Shahar, T.; Barzilai, O.; Rapoport, Y.; Gonen, T.; Sela, G.; Grossman, R.; Korn, A.; Hayat, D.; et al. Intraoperative seizures during awake craniotomy: Incidence and consequences: Analysis of 477 patients. Neurosurgery 2013, 73, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Spena, G.; Schucht, P.; Seidel, K.; Rutten, G.J.; Freyschlag, C.F.; D’Agata, F.; Costi, E.; Zappa, F.; Fontanella, M.; Fontaine, D.; et al. Brain Tumors in eloquent areas: A European multicenter survey of intraoperative mapping techniques, intraoperative seizures occurrence, and antiepileptic drug prophylaxis. Neurosurg. Rev. 2017, 40, 287–298. [Google Scholar] [CrossRef]
- Lettieri, C.; Ius, T.; Verriello, L.; Budai, R.; Isola, M.; Valente, M.; Skrap, M.; Gigli, G.L.; Pauletto, G. Risk Factors for Intraoperative Seizures in Glioma Surgery: Electrocoricography Matters. J. Clin. Neurophysiol. 2023, 40, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Deana, C.; Pez, S.; Ius, T.; Furlan, D.; Nilo, A.; Isola, M.; De Martino, M.; Mauro, S.; Verriello, L.; Lettieri, C.; et al. Effect of Dexmedetomidine versus Propofol on Intraoperative Seizure Onset During Awake Craniotomy. A Retrospective Study. World Neurosurg. 2023, 172, e428–e437. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef]
- Beghi, E.; Carpio, A.; Forsgren, L.; Hesdorffer, D.C.; Malmggìren, K.; Sander, J.W.; Tomson, T.; Auser, W.A. Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010, 51, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Ius, T.; Mazzucchi, E.; Tomasino, B.; Pauletto, G.; Sabatino, G.; Della Pepa, G.M.; La Rocca, G.; Battistella, C.; Olivi, A.; Skrap, M. Multimodal integrated approaches in low grade glioma surgery. Sci. Rep. 2021, 11, 9964. [Google Scholar] [CrossRef]
- Palmini, A.; Gambardella, A.; Andermann, F.; Dubeau, F.; da Costa, J.C.; Olivier, A.; Tampieri, D.; Gloor, P.; Quesney, F.; Andermann, E.; et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann. Neurol. 1995, 37, 476–487. [Google Scholar] [CrossRef]
- Hirsch, L.J.; Fong, M.W.; Leitinger, M.; LaRoche, S.M.; Beniczky, S.; Abend, N.S.; Lee, J.W.; Wusthoff, C.J.; Hahn, C.D.; Westover, M.B.; et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 Version. J. Clin. Neurophysiol. 2021, 38, 1–29. [Google Scholar] [CrossRef]
- Preusser, M.; Bergho, A.S.; Manzl, C.; Filipits, M.; Weinhäusel, A.; Pulverer, W.; Dieckmann, K.; Widhalm, G.; Wöhrer, A.; Knosp, E.; et al. Clinical Neuropathology practice news 1-2014: Pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma. Clin. Neuropathol. 2014, 33, 6–14. [Google Scholar] [CrossRef]
- Engel, J., Jr.; Burchfiel, J.; Ebersole, J.; Gates, J.; Gotman, J.; Homan, R.; Ives, J.; King, D.; Lieb, J.; Sato, S.; et al. Long-term monitoring for epilepsy. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 1993, 87, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Karnofsky, D.A.; Burchenal, J.H. The clinical evaluation of chemotherapeutic agents in cancer. In Evaluation of Chemotherapeutic Agents; MacLeod, C.M., Ed.; Columbia University Press: New York, NY, USA, 1949; p. 196. [Google Scholar]
- Yates, J.; Chalmer, B.; McKegney, P. Evaluation of patietns with advanced cancer using the Karnofsky performance status. Cancer 1980, 45, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Rankin, L. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott. Med. J. 1957, 2, 200–215. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, P.; Wanf, X.; Liu, Y.; Laing, R.; Jiang, S.; Mao, Q. Intraoperative seizures and seizures outcome in patients undergoing awake craniotomy. J. Neurosurg Sci. 2019, 63, 301–307. [Google Scholar] [CrossRef]
- Mauritz, M.; Hirsh, L.J.; Camfield, P.; Chin, R.; Nardone, R.; Lattanzi, S.; Trinka, E. Acute symptomatic seizures: An educational, evidence-based review. Epileptic Disord. 2022, 24, 26–49. [Google Scholar] [CrossRef]
- Chassaux, F.; Landre, E. Prevention and management of postoperative seizures in neuro-oncology. Neurochirurgie 2017, 63, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Feyissa, A.M.; Worrell, G.A.; Tatum, W.O.; Chaichana, K.L.; Jentoft, M.E.; Cazares, H.G.; Entekin-Taner, N.; Rosenfeld, S.S.; ReFaei, K.; Quinones-Hinojosa, A. Potential influence of IDH1 mutation and MGMT gene promoter methyla-tion on glioma-related preoperative seizures and postoperative seizure control. Seizure 2019, 69, 283–289. [Google Scholar] [CrossRef]
- Skardelly, M.; Brendle, E.; Noell, S.; Schittenhelm, J.; Bisdas, S.; Meisner, C.; Rona, S.; Tatabiga, M.S.; Tabatabai, G. Predictors of preoperative and early postoperative seizures in patients withintra-axial primary and metastatic brain tumors: A retrospective observational single center study. Ann. Neurol. 2015, 78, 917–928. [Google Scholar] [CrossRef]
- Yang, P.; Liang, T.; Zhang, C.; Cai, J.; Zhang, W.; Chen, B.; Qiu, X.; Yao, K.; Li, G.; Wang, H.; et al. Clinicopathological factors predictive of postoperative seizures in patients with gliomas. Seizure 2016, 35, 93–99. [Google Scholar] [CrossRef]
- Abecassis, Z.A.; Ayer, A.B.; Tampler, J.W.; Yerneni, K.; Murthy, N.K.; Tate, M.C. Analysis of risk factors and clinical sequelae of direct electrical cortical stimulation-induced seizures and after-discharges in patients undergoing awake mapping. J. Neurosurg. 2021, 134, 1610–1617. [Google Scholar] [CrossRef]
- Jehi, L. The epileptogenic zone: Concept and definition. Epilepsy. Curr. 2018, 18, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Z.; van ’t Klooster, M.A.; Van Der Salm, S.M.; Leijten, F.S.; Braun, K.P.; Zijlmans, M. Seizure outcome after electrocorticography-tailored epilepsy surgery. Neurology 2024, 102, e209430. [Google Scholar] [CrossRef]
- Widdess-Walsh, P.; Jeha, L.; Nair, D.; Kotagal, P.; Bingaman, W.; Najm, I. Subdural electrode analysis in focal cortical dysplasia: Predictors of surgical outcome. Neurology 2007, 69, 660–667. [Google Scholar] [CrossRef]
- van’t Klooster, M.A.; Van Klink, N.E.; Leijten, F.S.; Zelmann, R.; Gebbink, T.A.; Gosselaar, P.H.; Braun, K.P.; Huiskamp, G.J.; Zijlmans, M. Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 2015, 85, 120–128. [Google Scholar] [CrossRef]
- Conte, V.; Carabba, G.; Magni, L.; L’Acqua, C.; Magnoni, S.; Bello, L.; Colombo, A.; Stocchetti, N. Risk of perioperative seizures in patients undergoing craniotomy with intraoperative brain mapping. Minerva Anestesiol. 2015, 81, 379–388. [Google Scholar]
- Roca, E.; Pallud, J.; Guerrini, F.; Panciani, P.P.; Fontanella, M.; Spena, G. Stimulation-related intraoperative seizures during awake surgery: A review of available evidences. Neurosurg. Rev. 2020, 43, 87–93. [Google Scholar] [CrossRef]
- Marku, M.; Rasmussen, B.K.; Belmonte, F.; Wreford Andersen, E.A.; Johanssen, C.; Envold Bidstrup, P. Postoperative epilepsy and survival in glioma patients: A nationwide population-based cohort study from 2009 to 2018. J. Neuro-Oncol. 2022, 157, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Toledo, M.; Sarria-Estrada, S.; Quintana, M.; Maldonado, X.; Martinez-Ricarte, F.; Rodon, J.; Auger, C.; Salas-Puig, J.; Santamarina, E.; Martinez-Saez, E. Prognostic implications of epilepsy in glioblastomas. Clin. Neurol. Neurosurg. 2015, 139, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchi, E.; Vollono, C.; Pauletto, G.; Lettieri, C.; Budai, R.; Gigli, G.L.; Sabatino, G.; La Rocca, G.; Skrap, M.; Ius, T. The persistence of seizures after tumor resection negatively affects survival in low-grade glioma patients: A clinical retrospective study. J. Neurol. 2022, 269, 2627–2633. [Google Scholar] [CrossRef]
- Pauletto, G.; Nilo, A.; Lettieri, C.; Verriello, L.; Tomasino, B.; Gigli, G.L.; Skrap, M.; Ius, T. Pre- and Post-surgical Poor Seizure Control as Hallmark of Malignant Progression in Patients with Glioma? Front. Neurol. 2022, 13, 890857. [Google Scholar] [CrossRef]
- Pallud, J.; Huberfeld, G.; Dezamis, E.; Peeters, S.; Moiraghi, A.; Gavaret, M.; Guinard, E.; Dhermain, F.; Varlet, P.; Oppenheim, C.; et al. Effect of Levetiracetam Use Duration on Overall Survival of Isocitrate Dehydrogenase Wild-Type Glioblastoma in Adults: An Observational Study. Neurology 2022, 98, e125–e140. [Google Scholar] [CrossRef] [PubMed]
- Izumoto, S.; Miyauchi, M.; Tasaki, T.; Okuda, T.; Nakagawa, N.; Nakano, N.; Kato, A.; Fujita, M. Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res. 2018, 38, 4361–4366. [Google Scholar] [CrossRef]
- Salmaggi, A.; Corno, C.; Maschio, M.; Donzelli, S.; D’Urso, A.; Perego, P.; Ciusani, E. Synergistic effect of perampamel and temozolomide in human glioma cell lines. J. Pers. Med. 2021, 11, 390. [Google Scholar] [CrossRef] [PubMed]
- Aronica, E.; Ciusani, E.; Coppola, A.; Costa, C.; Russo, E.; Salmaggi, A.; Perversi, F.; Maschio, M. Epilepsy and brain tumors: Two sides of the same coin. J. Neurol. Sci. 2023, 446, 120584. [Google Scholar] [CrossRef]
- Tobochnik, S.; Dorotan, M.K.C.; Ghosh, H.S.; Lapinskas, E.; Vogelzang, J.; Reardon, D.A.; Ligon, K.L.; Bi, W.L.; Smirnakis, S.M.; Lee, J.W. Glioma genetic profiles associated with electrophysiologic hyperexcitability. Neuro. Oncol. 2024, 26, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.; Kwan, P.; O’Brien, T.J.; Buckland, M.E.; Gonzales, M.; Morokoff, A. IDH1 and IDH2 mutations in postoperative diffuse glioma-associated epilepsy. Epilepsy Behav. 2018, 78, 30–36. [Google Scholar] [CrossRef]
- Song, L.; Quan, X.; Chen, C.; Chen, L.; Zhou, J. Correlation between tumor molecular markers and perioperative epilepsy in patients with glioma: A systematic review and meta-analysis. Front. Neurol. 2021, 12, 692751. [Google Scholar] [CrossRef]
- Pallud, J.; Le Van Quyen, M.; Bielle, F.; Pellegrino, C.; Varlet, P.; Labussiere, M.; Cresto, N.; Dieme, M.J.; Baulac, M.; Duyckaerts, C.; et al. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med. 2014, 6, 244ra89. [Google Scholar] [CrossRef]
- Vezzani, A.; Balosso, S.; Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 2019, 15, 459–472. [Google Scholar] [CrossRef]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; et al. Electrical and synaptic integration of glioma into neural circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef]
- Venkataramani, V.; Tanev, D.I.; Strahle, C.; Studier-Fischer, A.; Fankhauser, L.; Kessler, T.; Körber, C.; Kardorff, M.; Ratliff, M.; Xie, R.; et al. Glutamatergic synaptic input to glioma cells drives brain tumor progression. Nature 2019, 573, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Maschio, M.; Aguglia, U.; Avanzini, G.; Banfi, P.; Buttinelli, C.; Capovilla, G.; Casazza, M.M.L.; Colicchio, G.; Coppola, A.; Costa, C.; et al. Management of epilepsy in brain tumors. Neurol. Sci. 2019, 40, 2217–2234. [Google Scholar] [CrossRef] [PubMed]
Variables | |
---|---|
No. of patients | 154 |
Sex, n (%) | |
Male | 95 (61.7) |
Female | 59 (38.3) |
Age, (years) | |
Mean (±DS) | 38.90 (±11.30) |
Range | 15–73 |
Seizure Onset | |
Focal seizures | 59 (38.3) |
Focal to bilateral tonic-clonic seizures | 95 (61.7) |
Seizure Types | |
Motor | 105 (68.2) |
Non-motor | 49 (31.8) |
Autonomic | 4 (2.6) |
Cognitive | 13 (8.4) |
Emotional | 3 (1.9) |
Sensory | 18 (11.7) |
Pre-operative seizures frequency | |
Monthly | 91 (59.1) |
Weekly | 52 (33.8) |
Daily | 11 (7.1) |
ASM regimen | |
Monotherapy | 127 (82.5) |
Polytherapy | 27 (17.5) |
Pre-operative EEG features | |
Normal | 70 (45.5) |
Slow | 44 (28.6) |
Epileptic | 40 (26) |
Tumor side | |
Left | 88 (57.1) |
Right | 66 (42.9) |
Tumor site | |
Frontal | 52 (33.8) |
Parietal | 14 (9.1) |
Temporal | 24 (15.6) |
Insular | 64 (41.6) |
Pre-operative tumor volume (T2-w MRI images-cm3) | |
Mean (±DS) | 55.28 (±38.19) |
Range | 6–250 |
EOR % (range) | 84.25 ± 15.29 (28–100) |
Molecular Class | |
Oligodendroglioma IDH1/2 mutated 1p-19q codeleted | 44 (28.6) |
Diffuse astrocytoma IDH1/2 mutated | 95 (61.7) |
Diffuse astrocytoma IDH1/2 wild-type | 15 (9.7) |
MGMT promoter methylation | |
Yes | 135 (87.7) |
No | 19 (12.3) |
WHO grade | |
Grade II | 139 (90.3) |
Grade III | 15 (9.7) |
Anesthesiologic Protocol | |
Awake surgery | 112 (72.7) |
General anesthesia | 42 (27.3) |
Intraoperative ECoG features | |
Normal | 47 (30.5) |
Slow | 26 (16.9) |
Epileptic | 81 (52.6) |
Intraoperative seizures (IOS) | |
Yes | 40 (26) |
No | 114 (74) |
Early post-operative seizures (POS) | |
Yes | 28 (18.5) |
No | 123 (81.5) |
(a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
IOS | Univariate Analysis | IOS | Multivariate Analysis | |||||||
NO | YES | O.R. | CI (95%) | p | NO | YES | O.R. | CI (95%) | p | |
Variables | 114 | 40 | ||||||||
Sex, n (%) | ||||||||||
Male | 70 (61.4) | 25 (62.5) | 0.955 | 0.454–2.007 | 0.902 | |||||
Female | 44 (38.6) | 15 (37.5) | ||||||||
Age (mean ± DS) | 38.07 ± 10.18 | 41.88 ± 14.76 | 1.008 | 0.969–1.049 | 0.677 | |||||
Tumor site, n (%) | ||||||||||
Frontal (pre-central) | 33 (28.9) | 19 (47.5) | ||||||||
Parietal (post-central) | 12 (10.6) | 2 (5) | 1.607 | 0.617–4.184 | 0.332 | |||||
Temporal | 18 (15.8) | 6 (15) | ||||||||
Insular | 51 (44.7) | 13 (32.5) | ||||||||
Pre-operative epilepsy features | ||||||||||
Seizure type, n (%) | ||||||||||
Motor | 73 (64) | 32 (80) | 0.445 | 0.188–1.056 | 0.062 | |||||
Non motor | 41 (36) | 8 (20) | ||||||||
Seizure Onset, n (%) | ||||||||||
Focal | 47 (41.2) | 12 (30) | 1.637 | 0.756–3.543 | 0.209 | |||||
Focal to bilateral tonic clonic | 67 (58.8) | 28 (70) | ||||||||
ASM regimen, n (%) | ||||||||||
Monotherapy | 94 (82.5) | 33 (82.5) | 0.997 | 0.386–2.572 | 0.995 | |||||
Polytherapy | 20 (17.5) | 7 (17.5) | ||||||||
Duration, n (%) | ||||||||||
≥1 year | 97 (8.51) | 36 (90) | 1.577 | 0.497–5.003 | 0.436 | |||||
<1 year | 17 (14.9) | 4 (10) | ||||||||
EOR (mean ± DS) | 84.33 (±15.14) | 84.00 (±15.92) | 1.001 | 0.978–1.025 | 0.905 | |||||
Pre-operative EEG, n (%) | ||||||||||
Not epileptiform | 84 (73.7) | 31 (77.5) | 0.813 | 0.347–1.904 | 0.633 | |||||
Epileptiform | 30 (26.3) | 9 (22.5) | ||||||||
EcoG, n (%) | ||||||||||
Not Epileptiform | 64 (56.1) | 9 (22.5) | 4.409 | 1.924–10.103 | <0.001 | 6.076 | 2.250–16.409 | <0.001 | ||
Epileptiform | 50 (43.9) | 31 (77.5) | ||||||||
(b) | ||||||||||
Early POS | Univariate Analysis | Early POS | Multivariate Analysis | |||||||
NO | YES | O.R. | CI (95%) | p | NO | YES | O.R. | CI (95%) | p | |
Variables | 123 | 28 | ||||||||
Sex, n (%) | ||||||||||
Male | 76 (68.3) | 17 (60.7) | 1.046 | 0.451–2.426 | 0.916 | |||||
Female | 47 (37.3) | 11 (39.3) | ||||||||
Age (mean ± DS) | 38.07 ± 10.18 | 41.88 ± 14.76 | 1.072 | 0.391–2.937 | 0.338 | |||||
Tumor site, n (%) | ||||||||||
Frontal (pre-central) | 45 (36.6) | 6 (21.4) | 1.706 | 0.617–4.184 | 0.036 | 5.177 | 0.950–28.206 | 0.06 | ||
Parietal (post-central) | 10 (8.1) | 4 (14.3) | ||||||||
Temporal | 22 (17.9) | 1 (3.6) | ||||||||
Insular | 46 (37.4) | 17 (60.7) | ||||||||
Pre-operative epilepsy features | ||||||||||
Seizure type, n (%) | ||||||||||
Motor | 87 (70.7) | 16 (51.1) | 1.813 | 0.780–4.212 | 0.163 | |||||
Non motor | 36 (29.3) | 12 (42.9) | ||||||||
ASM regimen, n (%) | ||||||||||
Monotherapy | 101 (82.1) | 23 (82.1) | 0.998 | 0.342–2.914 | 0.997 | |||||
Polytherapy | 22 (17.9) | 5 (17.9) | ||||||||
Duration, n (%) | ||||||||||
≥1 year | 109 (88.6) | 21 (75) | 0.385 | 0.139–1.069 | 0.060 | |||||
<1 year | 14 (11.4) | 7 (25) | ||||||||
EOR (mean ± DS) | 83.93 (±15.98) | 84.86 (±12.48) | 0.996 | 0.969–1.024 | 0.772 | |||||
Pre-operative EEG, n (%) | ||||||||||
Not epileptiform | 96 (78) | 16 (57.1) | 2.667 | 1.127–6.312 | 0.023 | 2.009 | 0.685–5.897 | 0.204 | ||
Epileptiform | 27 (22) | 12 (42.9) | ||||||||
EcoG, n (%) | ||||||||||
Not Epileptiform | 66 (53.6) | 5 (17.8) | 5.326 | 1.902–14.919 | <0.001 | 6.005 | 1.754–20.560 | 0.004 | ||
Epileptiform | 57 (46.4) | 23 (82.2) | ||||||||
Intraoperative seizures, n (%) | ||||||||||
Yes No | 32 (26) 91 (74) | 8 (28.6) 20 (71.4) | 1.137 | 0.456–2836 | 0.782 |
(a) | ||||||
---|---|---|---|---|---|---|
Seizure Outcome at 12 Months | Seizure Outcome at 24 Months | |||||
O.R. | CI (95%) | p | O.R. | CI (95%) | p | |
Variables | ||||||
Age | 1.042 | 0.995–1.092 | 0.078 | 1.045 | 0.003–5.662 | 0.047 |
Seizure type (motor) | 4.709 | 1.548–14.321 | 0.007 | 1.048 | 0.381–2.886 | 0.928 |
ASM regimen (polytherapy) | 5.278 | 1.539–18.108 | 0.008 | 1.042 | 0.319–3.407 | 0.945 |
Epilepsy Duration (<1 year) | 0.668 | 0.162–2.750 | 0.577 | 1.142 | 0.310–4.205 | 0.842 |
Pre-operative EEG (epileptiform) | 1.258 | 0.430–3.682 | 0.675 | 1.329 | 0.498–3.548 | 0.570 |
EcoG (epileptiform) | 5.099 | 1.681–15.464 | 0.004 | 4.615 | 1.675–12.709 | 0.003 |
EOR | 0.967 | 0.939–0.996 | 0.027 | 0.973 | 0.946–1.000 | 0.048 |
WHO grade (II vs. III) | 1.548 | 0.262–9.145 | 0.630 | 1.606 | 0.284–9.074 | 0.592 |
IOS (yes) | 0.636 | 0.220–1.837 | 0.403 | 1.428 | 0.521–3.917 | 0.488 |
Early POS (yes) | 5.681 | 1.673–19.283 | 0.005 | 0.408 | 0.139–1.195 | 0.102 |
KPS (≥80) at 1 y and 2 y | 0.471 | 0.074–3.010 | 0.426 | 1.792 | 0.420–7.655 | 0.431 |
mRS (<2) at 1 y and 2 y | 2.072 | 0.506–8.486 | 0.311 | 3.584 | 1.051–12.224 | 0.041 |
(b) | ||||||
Functional Outcome (KPS) at 12 Months | Functional Outcome (KPS) at 24 Months | |||||
O.R. | CI (95%) | p | O.R. | CI (95%) | p | |
Variables | ||||||
Age | 1.058 | 0.9986–1.136 | 0.117 | 1.044 | 0.977–1.116 | 0.201 |
Seizure type (motor) | 0.452 | 0.068–3.009 | 0.412 | 0.398 | 0.068–2.333 | 0.307 |
ASM regimen (polytherapy) | 1.103 | 0.151–8.044 | 0.923 | 1.126 | 0.187–6.784 | 0.897 |
Epilepsy Duration (<1 year) | 7.036 | 0.823–60.158 | 0.075 | 3.984 | 0.471–33.699 | 0.204 |
EOR | 1.032 | 0.974–1.0.93 | 0.287 | 1.006 | 0.960–1.054 | 0.797 |
WHO grade (II vs. III) | 3.722 | 0.629–22.038 | 0.181 | 0.594 | 0.035–10.141 | 0.719 |
IOS (yes) | 0.749 | 0.128–4.371 | 0.748 | 1.025 | 0.214–4.922 | 0.975 |
Early POS (yes) | 0.380 | 0.056–2.595 | 0.324 | 0.924 | 0.196–4.349 | 0.920 |
Engel class (Ia) at 1 y and 2 y | 0.612 | 0.103–3.619 | 0.588 | 1.553 | 0.361–6.684 | 0.554 |
mRS (<2) at 1 y and 2 y | 122.751 | 16.756–899.274 | <0.001 | 198.926 | 21.248–1862.359 | <0.001 |
(c) | ||||||
Functional Outcome (mRS) at 12 Months | Functional Outcome (mRS) at 24 Months | |||||
O.R. | CI (95%) | p | O.R. | CI (95%) | p | |
Variables | ||||||
Age | 0.997 | 0.946–1.051 | 0.916 | 0.978 | 0.920–1.039 | 0.475 |
Seizure type (motor) | 0.893 | 0.254–3.142 | 0.861 | 0.827 | 0.225–3.044 | 0.775 |
ASM regimen (polytherapy) | 1.089 | 0.202–5.874 | 0.921 | 0.896 | 0.169–4.758 | 0.897 |
Epilepsy Duration (<1 year) | 0.366 | 0.058–2.296 | 0.283 | 0.427 | 0.063–2.903 | 0.384 |
EOR | 0.977 | 0.941–1.013 | 0.210 | 0.980 | 0.942–1.019 | 0.315 |
WHO grade (II vs. III) | 0.879 | 0.107–7.253 | 0.905 | 1.514 | 0.134–17.174 | 0.738 |
IOS (yes) | 1.907 | 0.474–7.668 | 0.363 | 1.520 | 0.402–5.752 | 0.538 |
Early POS (yes) | 0.378 | 0.095–1.504 | 0.168 | 0.384 | 0.099–1.485 | 0.165 |
Engel class (Ia) at 1 y and 2 y | 2.282 | 0.599–8.696 | 0.227 | 3.367 | 0.990–11.449 | 0.052 |
KPS (≥80) at 1 y and 2 y | 94.976 | 14.860–607.044 | <0.001 | 202.139 | 20.384–2004.501 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauletto, G.; Nilo, A.; Lettieri, C.; Valente, M.; Vindigni, M.; Skrap, M.; Ius, T.; Verriello, L. Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue? Cancers 2025, 17, 1478. https://doi.org/10.3390/cancers17091478
Pauletto G, Nilo A, Lettieri C, Valente M, Vindigni M, Skrap M, Ius T, Verriello L. Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue? Cancers. 2025; 17(9):1478. https://doi.org/10.3390/cancers17091478
Chicago/Turabian StylePauletto, Giada, Annacarmen Nilo, Christian Lettieri, Mariarosaria Valente, Marco Vindigni, Miran Skrap, Tamara Ius, and Lorenzo Verriello. 2025. "Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue?" Cancers 17, no. 9: 1478. https://doi.org/10.3390/cancers17091478
APA StylePauletto, G., Nilo, A., Lettieri, C., Valente, M., Vindigni, M., Skrap, M., Ius, T., & Verriello, L. (2025). Intraoperative Seizures in Glioma Surgery: Is It Really Only an Intraoperative Issue? Cancers, 17(9), 1478. https://doi.org/10.3390/cancers17091478