Radiation Therapy for the Treatment of Recurrent Glioblastoma: An Overview
Abstract
:1. Introduction
2. Results
2.1. Study Selection and Inclusion Criteria
2.2. Conventional External Beam Radiation Therapy
2.3. Fractionated Stereotactic Radiation Therapy
Author | ≠ GBM Pts | Med Age in Years | Med KPS (range) in % | Surg before Re-Irr in % | Med TD before Re-Irr in Gy | Med Time to Re-Irr in Months | Med re-irr TD (range)/dpfx in Gy | Med Vol (range) in cc | CHT | Med Survival from Re-Irr in Months | Side Effects |
---|---|---|---|---|---|---|---|---|---|---|---|
Lederman et al. [24] | 14 | * 56 | * 70 (50–100) | NR | * 60 | * 7.8 | * 24/6 | * 32.7 (1.5–150) | TAX | OS 7 | * RN 8% * Reop 13% |
Hudes et al. [25] | 19 | * 52 | * 80 (60–100) | NR | * 60 | * 3.1 | range 24–35/3–3.5 | * 12.6 (0.89–47.5) | -- | OS 10.5 | * steroid increase 15% |
Selch et al. [26] | 14 | 61 | 70 (50–90) | STR 21 | 60 | 11 | 25 (20–45)/4–6 | 11.6 (9–17) | -- | OS 4 PFS 4 | No |
Combs et al. [27] | 53 | 55 | ≥80: 46 | NR | 57 | 10 | 36/2 | 49 (7.5–632) (PTV) | -- | OS 8 PFS 5 | No > G2 |
Vordemark et al. [28] | 14 | * 50 | * 90 (60–90) | * 63 (NS) | * 45–61 | * 19 | *30 (20–30)/4–10 | * 15 (4–70) | -- | OS 7.3 PFS 4.6 | * reop 5% |
Wurm et al. [29] | 20 | * 45 | *80 (50–100) | NR | * 54.4 bid/60 | * 12.8 | *range 25–30/5–6 | * 16.5 (1–70.9) | Topo | OS 7.9 PFS 5.6 | * G2 RTOG 12% |
Kohshi et al. [30] | 11 | * 46 | *70 (40–100) | NR | * 60 | * 11 | *22 (18–27)/2.25–3.3 | * 8.7 (1.7–159) | -- | OS 11 | Reop 18% |
Combs et al. [31] | 25 | 39 | ≥70: 92% | GTR 20 STR 52 | 60 | 36 | 36 (25–45)/2 | 50 (16–49) | TMZ | OS 8 PFS 5 | No |
Fokas et al. [32] | 53 | 53 | 70 | 43 (NS) | 54 | NR | 30 (20–60)/2–5 | 35 (3–204) | -- | OS 9 | No |
Patel et al. [33] | 10 | 44 | 90 (70–90) | GTR 20 STR 40 | 50–60 | 14.9 | 36/6 | 51.1 (16.1–123.3) | -- | OS 7.4 | RN 10% Reop 10% |
Gutin et al. [34] | 2 | 56 | *80 (70–100) | NR | * 59.4 | * 15 | *30/6 | * 34 (2–62) | Beva | OS 12.5 PFS 7.3 | * Reop 12% * hemorrhage 4% * wound dehiscence 4% |
Villaceincio et al. [35] | 26 | 56 | 80 (70–100) | GTR 57 STR 34 | 59.4 | 13 | § 20 (8–25) | 7 (0.4–48.5) | -- | OS 7 | NR |
Fogh et al. [36] | 105 | NR | NR | * GTR 16 * STR 41 | 60 | 8 | *35/3.5 | * 22 (0.6–104) | * 48 various | OS 11 | * steroid increase 10% |
Minniti et al. [37] | 36 | 56 | 70 (60–100) | NR | 60 | 14 | 37.5/2.5 | 13.1 (1–35.3) | TMZ | OS 9.7 PFS 3 | RN 8% |
Maier-Hauff et al. [38] | 59 | 55.7 | 90 (60–100) | 18 (NS) | NR | NR | 30/2 + HT | 46.5 (6.6–108) | -- | OS 13.4 | No |
2.4. Stereotactic Radiosurgery
Author | ≠ GBM Pts | Med Age in Years | Med KPS (range) in % | Surg before Re-Irr in % | Med TD before Re-Irr in Gy | Med Re-Irr TD (range) in Gy | Med Interval to Re-Irr in Months | Med Vol (range) in cc | Med Survival from Re-Irr in Months | Side effects |
---|---|---|---|---|---|---|---|---|---|---|
Shrieve et al. [43] | 86 | 46 | 80 (40–100) | NR | NR | 13 (6–20) to med 80% isodose (Linac) | 10.3 | 10.1 (2.2–83) | OS 10.2 | Seizures 3.5% hosp. 2.5% exitus 1% cr. nerve deficit 1% reop 22% RN 0% |
Larson et al. [44] | 46 | 53 | § 90 (40–100) | NR | NR | Med min 16 (5–37.5) to med 50% isodose (GK) | >16 weeks | § 6.2 (0.3–96) | OS 57 weeks | NR |
Kondziolka et al. [45] | 19 | § Mean 51 | § Mean 90 (50–100) | NR | Mean 60 | § Mean 15.5 (12–25) to 50% isodose (GK) | 18.9 | § Mean 6.5 mL (0.88–31.2) | OS 30 | § Reop 19% § RN 2% |
Park et al. [46] | 23 | 53 | 80 | NR | NR | 15 to 60% isodose (Linac/GK) | NR | 9.9 | OS 10.3 PFS 4.7 | NR |
Larson et al. [47] | 14 | 53 | 90 (70–100) | NS | NR | Med min 15 (12–17.5) (GK) | 12 | 8 (1.6–29.7) | OS 38 weeks PFS 15 weeks | |
Combs et al. [48] | 32 | 56 | 80 (70–100) | NR | 54 | 15 (10–20) to 80% isodose (Linac) | 10 | 10 mL (1.2–59.2) | OS 10 PFS 5 | No > CTC G2 (Acute) RN 0% |
Hsieh et al. [49] | 26 | 58 | § Mean 70 (60–100) | NR | 60 | 12 to 50% isodose (GK) | NR | Mean 21.6 | OS 10 | § RN 31.3% |
Mahajan et al. [50] | 41 | 54 | 80 (70–100) | 53.6 (NS) | 60 | NR (Linac) | 10 | 4.7 (0.15–16.3) | OS 11 | Reop 22% RN 2.4% |
Kong et al. [51] | 65 | * 49 | * 80 (50–100) | NR | 60 | * 16 (12–50) to 50% (GK) or 80% (linac) isodose (Linac/GK) | NR | * 10.6 mL (0.09–79.6) | OS 13 PFS 4.6 | Reop 3.5% RN 24% (imaging-based) |
Biswas et al. [52] | 18 | § 57.8 | ≥ 70 | NR | 60 | 15 (9–20) to the isocenter (Linac) | 12.1 | 8.4 mL (0.2–32) | OS 5.3 PFS 3.4 | No > RTOG G2 (Acute) |
Patel et al. [33] | 26 | 53 | 80 (50–100) | GTR 4STR 38 | Range 50–60 | 18 (12–20) to 90% isodose (Linac) | 12.5 | 10.4 (0.3–60.1) | OS 8.4 | NS |
Maranzano et al. [53] | 13 | 55 @ | 90 (70–100) @ | NR | 60 | 17 (14–22) to the isocenter (Linac) | 9 | 5.3 (0.6–14) | OS 11 | No > G2 (Acute) RN 23% |
2.5. Brachytherapy
Author | ≠ GBM Pts | Med Age in Years | Med KPS (range) in % | Surg before Re-Irr in % | Med TD before Re-Irr in Gy | Med Re-Irr TD (range) in Gy | Med Interval to Re-Irr in Months | Med vol (range) in cc | Med survival from re-irr in months | Side effects |
---|---|---|---|---|---|---|---|---|---|---|
Scharfen et al. [55] | 65 | § Mean 46 | § 90 (70–100) | NR | § 60 | § 64.4 (37–120) Temp LDR 125-I sources | NR | NR | OS 49 weeks | § G3 6% § G4 1% § G5 < 1% (Acute) § RN 5% § Reop 38% |
Shrieve et al. [43] | 32 | 45 | 80 (50–100) | NR | NR | 50 (38.7–63.6) Temp LDR 125-I sources | 7.3 | 29 (5–83) | OS 11.5 | Scalp infections 6% (Acute) visual deficit 6% reop 44% RN 6% |
Simon et al. [56] | 42 | 49 | 80 (50–100) | B 100 | Range 46–60 | 50 (15–60) Temp LDR 192-Ir sources | NR | 23 (1.6–122) | OS 50 weeks | Skin necrosis 4.7% meningitis 9.5% reop 24% RN 7% |
Tselis et al. [57] | 84 | 57 | 80 (50–100) | NR | Up to 60 | 40 (30–50) Temp HDR 192-Ir sources | NR | 51 (3–207) | OS 37 weeks | Intracerebral bleeding 2.3% meningitis 1.1% (Acute) RN 2.3% |
Larson et al. [58] | 13 | 55 | NR | Max safe res 100 | NR | Range 40–50 Perm LDR 198-Au seeds | NR | NR | OS 9 | Reop 0% RN 0% |
Halligan et al. [59] | 18 | 41 | 90 (50–100) | GTR 83 STR 17 | Range 54–64.8 | 210 (150–300) Perm LDR 125-I seeds | 47 weeks | NR | OS 64 weeks | Reop 0% RN 0% |
Gaspar et al. [60] | 37 | * 47 | * 80 (60–100) | Max safe res 92 B 8 | Range 50–66 | 103.68 Perm LDR 125-I seeds | NR | * 17 (3.9–78.8) | OS 10.8 | * Reop 40% * RN 5% |
Patel et al. [61] | 40 | 50 | 70 (40–100) | GTR 55 STR 45 | 60 (all pts) | Range 120–160 Perm LDR 125-I seeds | NR | 47.3 (7.5–91.1) | OS 47 weeks PFS 25 weeks | Healing complications 5% Reop 0% RN 0% |
Larson et al. [62] | 38 | 47 | 90 (60–100) | STR 60 (residual ≥ 0.5 cm) STR 40 (residual < 0.5 cm) | 60 | 300 (150–500) Perm LDR 125-I seeds | 39 weeks | 21 (1–68, pre-implant) | OS 52 weeks PFS 16 weeks | Reop 10% RN 3% |
Darakchiev et al. [63] | 34 | 53 | 80 (60–90) | GTR 85 STR 15 | NS | @ 120 Perm LDR 125-I seeds | NR | 34(8–90, before surgery) | OS 69 weeks PFS 47 weeks | Healing complications 11.7% Reop 29% RN 23% |
Tatter et al. [64] | 15 | Mean * 48.4 | * 80 (60–100) | Max safe res 100 | NS | Range 40–60 GliaSite-Iotrex | NR | NR | OS 8 | Pseudomeningocele 4.7% wound infection 4.7% chemical meningitis 4.7% |
Chan et al. [65] | 24 | 48 | 80 (60–100) | Max safe res 100 | Mean 59.8 | Mean 53.1 (29.9–80) GliaSite-Iotrex | NR | ≤30 (selection criteria) | OS 9.1 | G1–2 headache 42% Nausea-vomiting 4% wound infections 6% (Acute) Neurological deficit 4% RN 8% |
Gabayan et al. [66] | 80 | 52 | 80 (40–100) | Max safe res 100 | 60 | 60 (38–72.5) GliaSite-Iotrex | * 40.6 weeks | < 5 cm diam (selection criteria) | OS 35.9 weeks * PFS 18.7 weeks | * G1 1.1% * G2 8.4% * G3 2.1% (RN) |
2.6. Other Techniques
3. Discussion
3.1. Evidence Level and Data Interpretation
3.2. Target Definition, Toxicity, and Pattern of Failure in Relation to Imaging
3.3. Association with Chemotherapy
4. Conclusions
Acknowledgements
References
- Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Gilbert, M.R.; Chakravarti, A. Chemoradiotherapy in malignant glioma: Standard of care and future directions. J. Clin. Oncol. 2007, 25, 4127–4136. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-Year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar]
- Minniti, G.; Amelio, D.; Amichetti, M.; Salvati, M.; Muni, R.; Bozzao, A.; Lanzetta, G.; Scarpino, S.; Arcella, A.; Enrici, R.M. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother. Oncol. 2010, 97, 377–381. [Google Scholar] [CrossRef]
- Barbagallo, G.M.; Jenkinson, M.D.; Brodbelt, A.R. "Recurrent” glioblastoma multiforme, when should we reoperate? Br. J. Neurosurg. 2008, 22, 452–455. [Google Scholar] [CrossRef]
- Soults, C.B.; Canute, G.S.; Ryken, T.C. Evidence-based review of the role of reoperation in the management of malignant glioma. Neurosurg. Focus 1998, 4, e11. [Google Scholar]
- Guyotat, J.; Signorelli, F.; Frappaz, D.; Madarassy, G.; Ricci, A.C.; Bret, P. Is reoperation for recurrence of glioblastoma justified? Oncol. Rep. 2000, 7, 899–904. [Google Scholar]
- Harsh, G.R., IV; Levin, V.A.; Gutin, P.H.; Seager, M.; Silver, P.; Wilson, C.B. Reoperation for recurrent glioblastoma and anaplastic astrocytoma. Neurosurgery 1987, 21, 615–621. [Google Scholar] [CrossRef]
- Ammirati, M.; Galicich, J.H.; Arbit, E.; Liao, Y. Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery 1987, 21, 607–614. [Google Scholar] [CrossRef]
- Wick, W.; Platten, M.; Weller, M. New (alternative) temozolomide regimens for the treatment of gliomas. Neurooncology 2009, 11, 69–79. [Google Scholar]
- Wick, W.; Weller, M.; Weiler, M.; Batchelor, T.; Yung, W.K.A.; Platten, M. Pathway inhibition: Emerging molecular targets for treating glioblastoma. Neurooncology 2011, 13, 566–579. [Google Scholar]
- Matsusue, E.; Fink, J.R.; Rockhill, J.K.; Ogawa, T.; Maravilla, K.R. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010, 52, 297–306. [Google Scholar] [CrossRef]
- Fraass, B.A.; Moran, J.M. Quality, technology and outcomes: Evolution and evaluation of new treatments and or new technology. Semin. Radiat. Oncol. 2012, 22, 3–10. [Google Scholar] [CrossRef]
- Ang, K.K.; Jiang, J.L.; Guttenberger, R.; Thames, H.D.; Stephens, L.C.; Smith, C.D.; Feng, Y. Impact of spinal cord repair kinetics on the practice of altereted fractionation schedules. Radiother. Oncol. 1992, 25, 287–294. [Google Scholar] [CrossRef]
- Mayer, R.; Sminia, P. Reirradiation tolerance of the human brain. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1350–1360. [Google Scholar] [CrossRef]
- Nieder, C.; Grosu, A.L.; Molss, M. A comparison of treatment results for recurrent malignant gliomas. Cancer Treat. Rev. 2000, 26, 397–409. [Google Scholar] [CrossRef]
- Overgaard, J.; Horsman, M.R. Modification of hypoxia-induced radioresistence in tumors by the use of oxygen and sensitizers. Semin. Radiat. Oncol. 1996, 6, 10–21. [Google Scholar] [CrossRef]
- Whiters, H.R. Cell cycle redistribution as factor in multifractionation irradiation. Radiology 1975, 114, 199–202. [Google Scholar]
- Larson, D.A.; Flickinger, J.C.; Loeffler, J.S. Radiobilogy of radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 557–561. [Google Scholar] [CrossRef]
- Nieder, C.; Nestle, U.; Ketter, R.; Kolles, H.; Gentner, S.J.; Steudel, W.I.; Schnabel, K. Hyperfractionated and accelerated-hyperfractionated radiotherapy for glioblastoma multiforme. Radiat. Oncol. Investig. 1999, 7, 36–41. [Google Scholar] [CrossRef]
- Veninga, T.; Langendijk, H.A.; Slotman, B.J.; Rutten, E.H.; van der Kogel, A.J.; Prick, M.J.; Keyser, A.; van der Maazen, R.W. Reirradiation of primary brain tumours: Survival, clinical response and prognostic factors. Radiother. Oncol. 2001, 59, 127–137. [Google Scholar] [CrossRef]
- Henke, G.; Paulsen, F.; Steinbach, J.P.; Ganswindt, U.; Isijanov, H.; Kortmann, R.D.; Bamberg, M.; Belka, C. Hypofractionated reirradiation for recurrent malignant glioma. Strahlenther. Onkol. 2009, 185, 113–119. [Google Scholar] [CrossRef]
- Leksell, L. The stereotactic method and radiosurgery of the brain. Acta Chir. Scand. 1951, 102, 316–319. [Google Scholar]
- Lederman, G.; Wronski, M.; Arbit, E.; Odaimi, M.; Wertheim, S.; Lombardi, E.; Wrzolek, M. Treatment of recurrent glioblastoma multiforme using fractionated stereotactic radiosurgery and concurrent paclitaxel. Am. J. Clin. Oncol. 2000, 23, 155–159. [Google Scholar] [CrossRef]
- Hudes, R.S.; Corn, B.W.; Werner-Wasik, M.; Andrews, D.; Rosenstock, J.; Thoron, L.; Downes, B.; Curran, W.J., Jr. A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 293–298. [Google Scholar] [CrossRef]
- Selch, M.T.; DeSalles, A.A.F.; Solberg, T.D.; Wallace, R.E.; Do, T.M.; Ford, J.; Cabatan-Awang, C.; Withers, H.R. Hypofractionated stereotactic radiotherapy for recurrent malignant gliomas. J. Radiosurg. 2000, 3, 3–12. [Google Scholar] [CrossRef]
- Combs, S.E.; Gutwein, S.; Thilmann, D.; Huber, P.; Debus, J.; Schulz-Ertner, D. Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J. Neurooncol. 2005, 74, 167–171. [Google Scholar] [CrossRef]
- Vordermark, D.; Kolbl, O.; Ruprecht, K.; Vince, G.H.; Bratengeier, K.; Flentje, M.; Vince, G.H.; Bratengeier, K. Hypofractionated stereotactic re-irradiation: Treatment option in recurrent malignant glioma. BMC Cancer 2005, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Wurm, R.E.; Kuczer, D.A.; Schlenger, L.; Matniani, G.; Scheffler, D.; Cosgrove, V.P.; Ahlswede, J.; Woiciechowski, C.; Budach, V. Hypofractionated stereotactic radiosurgery combined with topotecan in recurrent malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, S26–S32. [Google Scholar]
- Kohshi, K.; Yamamoto, H.; Nakahara, A.; Katoh, T.; Takagi, M. Fractionated stereotactic radiotherapy using gamma unitafter hyperbaric oxygenation on recurrent high-grade gliomas. J. Neurooncol. 2007, 82, 297–303. [Google Scholar] [CrossRef]
- Combs, S.E.; Bischof, M.; Welzel, T.; Hof, H.; Oertel, S.; Debus, J.; Schulz-Ertner, D. Radiochemotherapy with temozolomide as reirradiation using high precision fractionated stereotactic radiotherapy (FSRT) in patients with recurrent gliomas. J. Neurooncol. 2008, 89, 205–210. [Google Scholar] [CrossRef]
- Fokas, E.; Wacker, U.; Gross, M.W.; Henzel, M.; Encheva, E.; Engenhart-Cabillic, R. Hypofractionated stereotactic reirradiation of recurrent glioblastomas: A beneficial treatment option after high-dose radiotherapy? Strahlenther. Onkol. 2009, 185, 235–240. [Google Scholar] [CrossRef]
- Patel, M.; Siddiqui, F.; Jin, J.Y.; Mikkelsen, T.; Rosenblum, M.; Movsas, B.; Ryu, S. Salvage reirradiation for recurrent glioblastoma with radiosurgery: Radiographic response and improved survival. J. Neurooncol. 2009, 92, 185–191. [Google Scholar] [CrossRef]
- Gutin, P.H.; Iwamoto, F.M.; Beal, K.; Mohile, N.A.; Karimi, S.; Hou, B.L.; Lymberis, S.; Yamada, Y.; Chang, J.; Abrey, L. Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2008, 75, 156–163. [Google Scholar]
- Villavicencio, A.T.; Burneikiene, S.; Romanelli, P.; Fariselli, L.; McNeely, L.; Lipani, J.D.; Chang, S.D.; Nelson, E.L.; McIntyre, M.; Broggi, G.; et al. Survival following stereotactic radiosurgery for newly diagnosed and recurrent glioblastoma multiforme: A multicenter experience. Neurosurg. Rev. 2009, 32, 417–424. [Google Scholar] [CrossRef]
- Fogh, S.E.; Andrews, D.W.; Glass, J.; Curran, W.; Glass, C.; Champ, C.; Evans, J.J.; Hyslop, T.; Pequignot, E.; Downes, B.; et al. Hypofractionated stereotactic radiation therapy: An effective therapy for recurrent high-grade gliomas. J. Clin. Oncol. 2010, 28, 3048–3053. [Google Scholar]
- Minniti, G.; Armosini, V.; Salvati, M.; Lanzetta, G.; Caporello, P.; Mei, M.; Osti, M.F.; Maurizi, R.E. Fractionated stereotactic reirradiation and concurrent temozolomide in patients with recurrent glioblastoma. J. Neurooncol. 2011, 103, 683–691. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 2011, 103, 317–324. [Google Scholar] [CrossRef]
- Luxton, G.; Petrovich, Z.; Jozsef, G.; Nedzi, L.A.; Apuzzo, M.L. Stereotactic radiosurgery: Principles and comparison of treatment methods. Neurosurgery 1993, 32, 241–259. [Google Scholar] [CrossRef]
- Loeffler, J.S.; Kooy, H.W.; Wen, P.Y.; Fine, H.A.; Cheng, C.W.; Mannarino, E.G.; Tsai, J.S.; Alexander, E. The treatment of recurrent brain metastasis with stereotactic radiosurgery. J. Clin. Oncol. 1990, 8, 576–582. [Google Scholar]
- Gevaert, T.; Verellen, D.; Tournel, K.; Linthout, N.; Bral, S.; Engels, B.; Collen, C.; Depuydt, T.; Duchateau, M.; Reynders, T.; et al. Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int. J. Radiat. Oncol. Biol. 2011, in press.. [Google Scholar]
- Muacevic, A.; Kufeld, M.; Wowra, B.; Kreth, F.W.; Tonn, J.C. Feasibility, safety, and outcome of frameless image-guided robotic radiosurgery for brain metastases. J. Neurooncol. 2010, 97, 267–274. [Google Scholar] [CrossRef]
- Shrieve, D.C.; Alexander, E., III; Wen, P.Y.; Fine, H.A.; Kooy, H.M.; Black, P.M.; Loeffler, J.S. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 1995, 36, 275–284. [Google Scholar] [CrossRef]
- Larson, D.A.; Gutin, P.H.; McDermott, M.; Lamborn, K.; Sneed, P.K.; Wara, W.M.; Flickinger, J.; Kondziolka, D.; Lunsford, L.D.; Hudgins, W.R.; et al. Gamma knife for glioma: Selection factors and survival. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 1045–1053. [Google Scholar]
- Kondziolka, D.; Flickinger, J.; Jonh, C.; Bisonette, D.J.; Bozik, M.; Lunsford, L.D. Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasm. Neurosurgery 1997, 41, 776–785. [Google Scholar] [CrossRef]
- Park, J.L.; Suh, J.H.; Barnett, G.H.; Reddy, C.A.; Peereboom, D.M.; Stevens, G.H.J.; Cohen, B.H. Survival after stereotactic radiosurgery for recurrent glioblastoma multiforme. J. Radiosurg. 2000, 3, 169–175. [Google Scholar] [CrossRef]
- Larson, D.A.; Prodos, M.; Lamborn, K.R.; Smith, V.; Sneed, P.K.; Chang, S.; Nicholas, K.M.; Wara, W.M.; Devriendt, D.; Kunvar, S.; et al. Phase II study of high central dose gamma knife radiosurgery and marimastat in patients with recurrent malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 1397–1304. [Google Scholar]
- Combs, S.E.; Widmer, V.; Thilmann, C.; Holger, H.; Debus, J.; Schulz-Ertner, D. Stereotactic radiosurgery (SRS). Treatment option for recurrent glioblastoma multiforme (GBM). Cancer 2005, 104, 2168–2173. [Google Scholar] [CrossRef]
- Hsieh, P.C.; Chandler, J.P.; Bhangoo, S.; Panagiotopoulos, K.; Kalapurakal, J.A.; Maymont, M.H.; Cozzens, J.W.; Levy, R.M.; Salehi, S. Adjuvant gamma knife stereotactic radiosurgery at the time of tumor progression potentially improves survival for patients with glioblastoma multiforme. Neurosurgery 2005, 57, 684–691. [Google Scholar]
- Mahajan, A.; McCutcheon, I.E.; Suki, D.; Chang, E.L.; Hassenbach, S.J.; Weinberg, J.S.; Shiu, A.; Maor, M.H.; Woo, S.Y. Case-control study of stereotactic radiosurgery for recurrent glioblastoma multiforme. J. Neurosurg. 2005, 103, 210–217. [Google Scholar] [CrossRef]
- Kong, D.S.; Lee, J.I.; Park, K.; Kim, J.H.; Lim, D.H.; Nam, D.H. Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 2008, 112, 2046–2051. [Google Scholar] [CrossRef]
- Biswas, T.; Okunieff, P.; Schell, M.C.; Smudzin, T.; Pilcher, W.H.; Bakos, R.S.; Vates, G.E.; Walter, K.A.; Wensel, A.; Korones, D.N.; et al. Stereotactic radiosurgery for glioblastoma: Retrospective analysis. Radiat. Oncol. 2009, 4, 11. [Google Scholar]
- Maranzano, E.; Anselmo, P.; Casale, M.; Trippa, F.; Carletti, S.; Principi, M.; Loreti, F.; Italiani, M.; Caserta, C.; Giorgi, C. Treatment of recurrent glioblastoma with stereotactic radiotherapy: Long-term results of a mono-institutional trial. Tumori 2011, 97, 56–61. [Google Scholar]
- Liu, B.L.; Cheng, J.X.; Zhang, X.; Zang, W. Controversies concerning the application of brachytherapy in central nervous system tumors. J. Cancer Res. Clin. Oncol. 2010, 136, 173–185. [Google Scholar] [CrossRef]
- Scharfen, C.O.; Sneed, P.K.; Wara, W.M.; Larson, D.A.; Phillips, T.L.; Prados, M.D.; Weaver, K.A.; Malec, M.M.; Acord, P.; Lamborn, K.R.; et al. High activity iodine-125 interstitial implant for gliomas. Int. J. Radiat. Oncol. Biol. Phys. 1992, 24, 583–591. [Google Scholar]
- Simon, J.M.; Cornu, P.; Boisserie, G.; Hasboun, D.; Tep, B.; Hardiman, C.; Valery, C.A.; Delattre, J.Y.; Dormont, D.; Baillet, F.; et al. Brachytherapy of glioblastoma recurring in previously irradiated territory: Predictive value of tumor volume. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 67–74. [Google Scholar] [CrossRef]
- Tselis, N.; Kolotas, C.; Birn, G.; Röddiger, S.; Filipowicz, I.; Kontova, M.; Fountzilas, G.; Selviaridis, P.; Baltas, D.; Heyd, R.; et al. CT-guided interstial HDR brachytherapy for recurrent glioblastoma multiforme. Long-term results. Strahlenther. Onkol. 2007, 183, 563–570. [Google Scholar]
- Larson, G.L.; Wilbanks, J.H.; Dennis, W.S.; Permenter, W.D.; Easley, J.D. Interstial radiogold implantation for the treatment of recurrent high-grade gliomas. Cancer 1990, 66, 27–29. [Google Scholar]
- Halligan, J.B.; Stelzer, K.J.; Rostomily, R.C.; Spence, A.M.; Griffin, T.W.; Berger, M.S. Operation and permanent low activity 125I brachytherapy for recurrent high-grade astrocytomas. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 541–547. [Google Scholar] [CrossRef]
- Gaspar, L.E.; Zamorano, L.J.; Shamsa, F.; Fontanesi, J.; Ezzel, G.E.; Yakar, D.A. Permanent 125Iodine implants for recurrent malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 977–982. [Google Scholar] [CrossRef]
- Patel, S.; Breneman, J.C.; Warnick, R.E.; Albright, R.E.; Tobler, W.D.; van Loveren, H.R.; Tew, J.M. Permanent iodine-125 interstial implants for the treatment of recurrent glioblastoma multiforme. Neurosurgery 2000, 46, 1123–1130. [Google Scholar] [CrossRef]
- Larson, D.A.; Suplica, J.M.; Chang, S.M.; Lamborn, K.R.; McDermott, M.W.; Sneed, P.K.; Prados, M.D.; Wara, W.M.; Nicholas, M.K.; Berger, M.S. Permanent iodine 125 brachytherapy in patients with progressive or recurrent glioblastoma multiforme. Neurooncology 2004, 6, 119–126. [Google Scholar]
- Darakchiev, B.J.; Albright, R.E.; Breneman, J.C.; Warnick, R. Safety and efficacy of permanent iodine-125 implants and carmustine wafers in patients with recurrent glioblastoma multiforme. J. Neurosurg. 2008, 108, 236–242. [Google Scholar] [CrossRef]
- Tatter, S.B.; Shaw, E.G.; Rosenblum, M.L.; Karvelis, K.C.; Kleinberg, L.; Weingart, J.; Olson, J.J.; Crocker, I.R.; Brem, S.; Perarlman, J.L.; et al. An inflatable balloon catheter and liquid 125I radiation source (GliaSite radiation therapy system) for treatment of recurrent malignant glioma: Multicenter safety and feasibility trial. J. Neurosurg. 2003, 99, 297–303. [Google Scholar] [CrossRef]
- Chan, T.A.; Weingart, J.D.; Parisi, M.; Hughes, M.A.; Olivi, A.; Borzillary, S.; Alahakone, D.; Detorie, N.A.; Wharam, M.D.; Kleinberg, L. Treatment of recurrent glioblastoma multiforme with gliasite brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1133–1139. [Google Scholar] [CrossRef]
- Gabayan, A.J.; Green, S.B.; Sanan, A.; Jenrette, J.; Schultz, C.; Papagikos, M.; Tatter, S.P.; Patel, A.; Amin, P.; Lustig, R.; et al. Gliasite brachytherapy for treatment of recurrent malignant gliomas: A retrospective multi-institutional analysis. Neurosurgery 2006, 58, 701–708. [Google Scholar] [CrossRef]
- Boiardi, A.; Bartolomei, M.; Silvani, A.; Eoli, M.; Salmaggi, A.; Lamperti, E.; Milanesi, I.; Botturi, A.; Rocca, P.; Bodei, L.; et al. Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J. Neurooncol. 2005, 72, 125–131. [Google Scholar] [CrossRef]
- Mamelak, A.N.; Rosenfeld, S.; Bucholz, R.; Raubitschek, A.; Nabors, L.B.; Fiveash, J.B.; Shen, S.; Khazaeli, M.B.; Colcher, D.; Liu, A.; et al. Phase I single-dose study of intracavitary-administerediodine-131-TM-601 in adults with recurrent high-grade glioma. J. Clin. Oncol. 2006, 24, 3644–3650. [Google Scholar]
- Kankaanranta, L.; Seppala, T.; Koivunoro, H.; Valimaki, P.; Beule, A.; Collan, J.; Kortesniemi, M.; Uusi-Simola, J.; Kotiluoto, P.; Auterinen, I.; et al. L-Boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: A phase I study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 369–376. [Google Scholar]
- Pellettieri, L.; H-Stenstam, B.; Rezaei, A.; Giusti, V.; Skold, K. An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol. Scand. 2008, 117, 191–197. [Google Scholar] [CrossRef]
- Mandl, E.S.; Dirven, C.M.; Buis, D.R.; Postma, T.J.; Vandertop, W.P. Repeated surgery for glioblastoma multiforme: Only in combination with other salvage therapy. Surg. Neurol. 2008, 69, 506–509. [Google Scholar] [CrossRef]
- Dirks, P.; Bernstein, M.; Muller, P.J.; Tucker, W.S. The value of reoperation for recurrent glioblastoma. Can. J. Surg. 1993, 36, 271–275. [Google Scholar]
- Barker, F.G., II; Chang, S.M.; Gutin, P.H.; Malec, M.K.; McDermott, M.W.; Prados, M.D.; Wilson, C.B. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 1998, 42, 709–720. [Google Scholar]
- Niyazi, M.; Siefert, A.; Schwarz, S.B.; Ganzwindt, U.; Kreth, F.W.; Tonn, J.C.; Belka, C. Therapeutic options for recurrent malignant glioma. Radiother. Oncol. 2011, 98, 1–14. [Google Scholar]
- Brainin, M.; Barnes, M.; Baron, J.C.; Gilhus, N.E.; Hughes, R.; Selmaj, K.; Waldemar, G. Guidance for the preparation of neurological management guidelines by EFNS scientific task forces—Revised recommendations 2004. Eur. J. Neurol. 2004, 11, 577–581. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.2. Available online: http://www.cochrane-handbook.org (accessed on 1 March 2012).
- Lamborn, K.R.; Alfred Yung, W.K.; Chang, S.M.; Wen, P.Y.; Cloughesy, T.F.; DeAngelis, L.M.; Robins, H.I.; Lieberman, F.S.; Fine, H.A.; Fink, K.L.; et al. Progression-free survival: An important end point in evaluating therapy for recurrent high-grade gliomas. Neurooncology 2008, 10, 162–170. [Google Scholar]
- Gerstner, E.R.; Sorensen, A.G.; Jain, R.K.; Batchelor, T.T. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr. Opin. Neurol. 2008, 21, 728–735. [Google Scholar] [CrossRef]
- Ullrich, R.T.; Kracht, K.W.; Jacobs, A.H. Neuroimaging in patients with gliomas. Semin. Neurol. 2008, 28, 484–494. [Google Scholar] [CrossRef]
- Narayana, A.; Chang, J.; Thakur, S.; Huang, W.; Karimi, S.; Hou, B.; Kowalski, A.; Perera, G.; Holodny, A.; Gutin, P.H. Use of MR spectroscopy and functional imaging in the treatment planning of gliomas. Br. J. Radiol. 2007, 80, 347–354. [Google Scholar] [CrossRef]
- Jena, R.; Price, S.J.; Baker, C.; Jefferies, S.J.; Pickard, J.D.; Gillard, J.H.; Burnet, N.G. Diffusion tensor imaging: Possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin. Oncol. 2005, 17, 581–590. [Google Scholar] [CrossRef]
- Grosu, A.L.; Weber, W.A.; Riedel, E.; Jeremic, B.; Nieder, C.; Franz, M.; Gumprecht, H.; Jaeger, R.; Schwaiger, M.; Molls, M. L-(Methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 64–74. [Google Scholar]
- Grosu, A.L.; Weber, W.A.; Franz, M.; Stärk, S.; Piert, M.; Thamm, R.; Gumprecht, H.; Schwaiger, M.; Molls, M.; Nieder, C. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 511–519. [Google Scholar]
- Stewart, L.A. Chemotherapy in adult high-grade glioma: A systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 2002, 359, 1011–1018. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amelio, D.; Amichetti, M. Radiation Therapy for the Treatment of Recurrent Glioblastoma: An Overview. Cancers 2012, 4, 257-280. https://doi.org/10.3390/cancers4010257
Amelio D, Amichetti M. Radiation Therapy for the Treatment of Recurrent Glioblastoma: An Overview. Cancers. 2012; 4(1):257-280. https://doi.org/10.3390/cancers4010257
Chicago/Turabian StyleAmelio, Dante, and Maurizio Amichetti. 2012. "Radiation Therapy for the Treatment of Recurrent Glioblastoma: An Overview" Cancers 4, no. 1: 257-280. https://doi.org/10.3390/cancers4010257
APA StyleAmelio, D., & Amichetti, M. (2012). Radiation Therapy for the Treatment of Recurrent Glioblastoma: An Overview. Cancers, 4(1), 257-280. https://doi.org/10.3390/cancers4010257