Acetylenic Carbon-Containing Stable Five-Membered Metallacycles
Abstract
:1. Introduction
2. Five-Membered Metallacycloalkynes
2.1. Synthesis of Five-Membered Metallacycloalkynes
2.2. Reactivities of Five-Membered Metallacycloalkynes
2.2.1. Formation of Alkyne-Coordinated Complexes
2.2.2. Reactions with Electrophiles
2.2.3. Isocyanide Insertion Reactions
2.2.4. Formation of 1-Metallacyclopenta-2,3-Dienes
3. Metallapentalynes
3.1. Synthesis of Metallapentalynes
3.2. Reactivities of Metallapentalynes
3.2.1. Formation of Metal Carbyne-Coordinated Complexes
3.2.2. Reactions with Electrophiles
3.2.3. Reactions with Nucleophiles
3.2.4. Cycloaddition Reactions
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Gampe, C.M.; Carreira, E.M. Arynes and cyclohexyne in natural product synthesis. Angew. Chem. Int. Ed. 2012, 51, 3766–3778. [Google Scholar] [CrossRef] [PubMed]
- Komarov, I.V. Organic molecules with abnormal geometric parameters. Russ. Chem. Rev. 2001, 70, 991–1016. [Google Scholar] [CrossRef]
- Blomquist, A.T.; Liu, L.H. Many-membered carbon rings. VII. Cycloöctyne. J. Am. Chem. Soc. 1953, 75, 2153–2154. [Google Scholar] [CrossRef]
- Krebs, A.; Wilke, J. Angle strained cycloalkynes. Top. Curr. Chem. 1983, 109, 189–233. [Google Scholar]
- Witting, G.; Meske-Schüller, J. Zur existenz niedergliedriger cycloalkine, X bildung und verhalten von cycloheptin. Liebigs Ann. Chem. 1968, 711, 65–75. [Google Scholar] [CrossRef]
- Krebs, A.; Kimling, H. 3,3,7,7-Tetramethylcycloheptyne; an isolable seven-membered carbocyclic alkyne. Angew. Chem. Int. Ed. Engl. 1971, 10, 509–510. [Google Scholar] [CrossRef]
- Wentrup, C.; Blanch, R.; Briehl, H.; Gross, G. Benzyne, cyclohexyne, and 3-azacyclohexyne and the problem of cycloalkyne versus cyccloalkylideneketene genesis. J. Am. Chem. Soc. 1988, 110, 1874–1880. [Google Scholar] [CrossRef]
- Ando, W.; Hojo, F.; Sekigawa, S.; Nakayama, N.; Shimizu, T. First isolation of six-membered cyclic acetylene: Synthesis and reaction of tetrasilacyclohexynes. Organometallics 1992, 11, 1009–1011. [Google Scholar] [CrossRef]
- Pang, Y.; Schneider, A.; Barton, T.J.; Gordon, M.S.; Carroll, M.T. Synthesis and structure of a tetrasilacyclohexyne. J. Am. Chem. Soc. 1992, 114, 4920–4921. [Google Scholar] [CrossRef] [Green Version]
- Chapman, O.L.; Gano, J.; West, P.R.; Regitz, M.; Maas, G. Acenaphthyne. J. Am. Chem. Soc. 1981, 103, 7033–7036. [Google Scholar] [CrossRef]
- Suzuki, N.; Hashizume, D. Five-membered metallacycloalkynes formed from group 4 metals and [n]cumulene (n=3;5) ligands. Coord. Chem. Rev. 2010, 254, 1307–1326. [Google Scholar] [CrossRef]
- Suzuki, N. Stable five-membered cyclic alkynes. J. Synth. Org. Chem. Jpn. 2007, 65, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, U.; Burlakov, V.V.; Bach, M.A.; Beweries, T. Five-membered metallacycles of titanium and zirconium-attractive compounds for organometallic chemistry and catalysis. Chem. Soc. Rev. 2007, 36, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, U.; Burlakov, V.V.; Arndt, P.; Baumann, W.; Spannenberg, A. Five-membered titana- and zirconacyclocumulenes: Stable 1-metallacyclopenta-2,3,4-trienes. Organometallics 2005, 24, 456–471. [Google Scholar] [CrossRef]
- Rosenthal, U. Stable cyclopentynes—Made by Metals!? Angew. Chem. Int. Ed. 2004, 43, 3882–3887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Xia, H. Carbolong chemistry: A story of carbon chain ligands and transition metals. Acc. Chem. Res. 2018, 51, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Metallacyclopentadienes: Synthesis, structure and reactivity. Chem. Soc. Rev. 2017, 46, 1160–1192. [Google Scholar] [CrossRef]
- Sato, F.; Urabe, H.; Okamoto, S. Synthesis of organotitanium complexes from alkenes and alkynes and their synthetic applications. Chem. Rev. 2000, 100, 2835–2886. [Google Scholar] [CrossRef]
- Ohff, A.; Pulst, S.; Lefeber, C.; Peulecke, N.; Arndt, P.; Burkalov, V.V.; Rosenthal, U. Unusual reactions of titanocene- and zirconocene-generating complexes. Synlett 1996, 1996, 111–118. [Google Scholar] [CrossRef]
- Suzuki, N.; Nishiura, M.; Wakatsuki, Y. Isolation and structural characterization of 1-zirconacyclopent-3-yne, five-membered cyclic alkynes. Science 2002, 295, 660–663. [Google Scholar] [CrossRef]
- Suzuki, N.; Aihara, N.; Iwasaki, M.; Saburi, M.; Chihara, T. Synthesis and structure of seven-membered metallacyclic alkynes. Organometallics 2005, 24, 791–793. [Google Scholar] [CrossRef]
- Suzuki, N.; Tsuchiya, T.; Aihara, N.; Iwasaki, M.; Saburi, M.; Chihara, T.; Masuyama, Y. Synthesis and structure of seven-membered metallacycloalkynes. Eur. J. Inorg. Chem. 2013, 347–356. [Google Scholar] [CrossRef]
- Suzuki, N.; Watanabe, T.; Yoshida, H.; Iwasaki, M.; Saburi, M.; Tezuka, M.; Hirose, T.; Hashizume, D.; Chihara, T. Synthesis and structure of 1-metallacyclopent-3-yne complexes of group 4 metals. J. Organomet. Chem. 2006, 691, 1175–1182. [Google Scholar] [CrossRef]
- Suzuki, N.; Watanabe, T.; Hirose, T.; Chihara, T. Synthesis and structure of 1-titana- and 1-hafnacyclopent-3-yne complexes. Chem. Lett. 2004, 33, 1488–1489. [Google Scholar] [CrossRef]
- Typke, V.; Haase, J.; Krebs, A. The molecular structure of cyclononyne: A gas phase electron diffraction investigation. J. Mol. Struct. 1979, 56, 77–86. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. II 1987, S1–S19. [Google Scholar] [CrossRef]
- Hunter, W.E.; Hrncir, D.C.; Bynum, R.V.; Penttila, R.A.; Atwood, J.L. The search for dimethylzirconocene. Crystal structures of dimethylzirconocene; dimethylhafnocene, chloromethylzirconocene, and (μ-oxo)bis(methylzirconocene). Organometallics 1983, 2, 750–755. [Google Scholar] [CrossRef]
- Rosenthal, U.; Ohff, A.; Baumann, W.; Tillack, A.; Görls, H.; Burlakov, V.V.; Shur, V.B. Struktur eigenschaften und NMR-spektroskopische charakterisierung von Cp2Zr(Pyridin)(Me3SiCCSiMe3). Z. Anorg. Allg. Chem. 1995, 621, 77–83. [Google Scholar] [CrossRef]
- Lefeber, C.; Ohff, A.; Tillack, A.; Baumann, W.; Kempe, R.; Burlakov, V.V.; Rosenthal, U. Darstellung und regioselektive reaktionen des phosphinfreien zirconocen-alkin-komplexes Cp2Zr(THF)(tBuC2SiMe3). J. Organomet. Chem. 1995, 501, 189–194. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Phukan, A.K.; Giju, K.T. Dependence of the structure and stability of cyclocumulenes and cyclopropenes on the replacement of the CH2 group by titanocene and zirconocene: A density functional theory study. Organometallics 2002, 21, 2254–2261. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Phukan, A.K.; Jiao, H.; Rosenthal, U. Structure and neutral homoaromaticity of metallacyclopentene, -pentadiene, -pentyne, and -pentatriene: A density functional study. Organometallics 2003, 22, 4958–4965. [Google Scholar] [CrossRef]
- Roy, S.; Jemmis, E.D.; Ruhmann, M.; Schulz, A.; Kaleta, K.; Beweries, T.; Rosenthal, U. Theoretical studies on the structure and bonding of metallacyclocumulenes, -cyclopentynes, and -cycloallenes. Organometallics 2011, 30, 2670–2679. [Google Scholar] [CrossRef]
- Lam, K.C.; Lin, Z. Cp2ZrCH(SiMe3)CCCH(SiMe3): A five-membered 1-zirconacyclopent-3-yne. Organometallics 2003, 22, 3466–3470. [Google Scholar] [CrossRef]
- Hashizume, D.; Suzuki, N.; Chihara, T. An experimental electron density study on “1-zirconacyclopent-3-yne”. Chem. Commun. 2006, 1233–1235. [Google Scholar] [CrossRef]
- Suzuki, N.; Aihara, N.; Takahara, H.; Watanabe, T.; Iwasaki, M.; Saburi, M.; Hashizume, D.; Chihara, T. Synthesis and structure of 1-zirconacyclopent-3-yne complexes without substituents adjacent to the triple bond. J. Am. Chem. Soc. 2004, 126, 60–61. [Google Scholar] [CrossRef]
- Roy, S.; Rosenthal, U.; Jemmis, E.D. Metallacyclocumulenes: A theoretical perspective on the structure, bonding, and reactivity. Acc. Chem. Res. 2014, 47, 2917–2930. [Google Scholar] [CrossRef]
- Rosenthal, U. Equilibria and mesomerism/valence tautomerism of group 4 metallocene complexes. Chem. Soc. Rev. 2020, 49, 2119–2139. [Google Scholar] [CrossRef] [PubMed]
- Burlakov, V.V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U.; Parameswaran, P.; Jemmis, E.D. Reduction of 1,4-dichlorobut-2-yne by titanocene to a 1,2,3-butatriene. Formation of a 1-titanacyclopent-3-yne and a 2,5-dititanabicyclo[2.2.0]hex-1(4)-ene. Chem. Commun. 2004, 18, 2074–2075. [Google Scholar] [CrossRef]
- Lamač, M.; Spannenberg, A.; Jiao, H.; Hansen, S.; Baumann, W.; Arndt, P.; Rosenthal, U. Formation of a 1-zircona-2;5-disilacyclopent-3-yne: Coordination of 1,4-disilabutatriene to zirconocene. Angew. Chem. Int. Ed. 2010, 49, 2937–2940. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Hashizume, D.; Koshino, H.; Chihara, T. Transformation of a 1-zirconacyclopent-3-yne, a five-membered cycloalkyne, into a 1-zirconacyclopent-3-ene and formal “1-zirconacyclopenta-2,3-dienes”. Angew. Chem. Int. Ed. 2008, 47, 5198–5202. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Hashizume, D.; Yoshida, H.; Tezuka, M.; Ida, K.; Nagashima, S.; Chihara, T. Reversible haptotropic shift in zirconocene-hexapentaene complexes. J. Am. Chem. Soc. 2009, 131, 2050–2051. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Ohara, N.; Nishimura, K.; Sakaguchi, Y.; Nanbu, S.; Fukui, S.; Nagao, H.; Masuyama, Y. Characterization of the E isomer of tetrasubstituted [5]cumulene and trapping of the Z isomer as a zirconocene complex. Organometallics 2011, 30, 3544–3548. [Google Scholar] [CrossRef]
- Suzuki, N.; Yoshitani, T.; Inoue, S.; Hashizume, D.; Yoshida, H.; Tezuka, M.; Ida, K.; Nagashima, S.; Chihara, T.; Kobayashi, O.; et al. Haptotropic shift of [5]cumulenes in zirconocene complexes and effects of steric factors. Organometallics 2014, 33, 5220–5230. [Google Scholar] [CrossRef]
- Qin, G.; Wang, Y.; Shi, X.; Rosal, I.D.; Maron, L.; Cheng, J. Monomeric thorium dihydrido complexes: Versatile precursors to actinide metallacycles. Chem. Commun. 2019, 55, 8560–8563. [Google Scholar] [CrossRef]
- Bach, M.A.; Burlakov, V.V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Nickel(0) complexes of a 1-zirconacyclopent-3-yne. Organometallics 2005, 24, 3047–3052. [Google Scholar] [CrossRef]
- Suzuki, N.; Watanabe, T.; Iwasaki, M.; Chihara, T. Reaction of 1-zirconacyclopent-3-yne with “zirconocene”: Synthesis and structure of bimetallic 1,2,3-butatriene complexes. Organometallics 2005, 24, 2065–2069. [Google Scholar] [CrossRef]
- Suzuki, N.; Nishimura, K.; Ohara, N.; Nishiura, M.; Masuyama, Y. Studies on the mechanism for stereoisomerization of 1-zirconacyclopent-3-yne compounds. J. Organomet. Chem. 2012, 696, 4321–4326. [Google Scholar] [CrossRef]
- Suzuki, N.; Watanabe, T.; Hirose, T.; Chihara, T. Nucleophilic reactivity of 1-zirconacyclopent-3-ynes: Carbon-carbon bond formation with aldehydes. J. Organomet. Chem. 2007, 692, 5317–5321. [Google Scholar] [CrossRef]
- Bach, M.A.; Beweries, T.; Burlakov, V.V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U.; Bonrath, W. Reactions of 1-titana- and 1-zirconacyclopent-3-ynes with tris(pentafluorophenyl)borane. Organometallics 2005, 24, 5916–5918. [Google Scholar] [CrossRef]
- Beweries, T.; Bach, M.A.; Burlakov, V.V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Synthesis of ansa-dimethylsilanediyl-dicyclopentadienyl-zirconacyclopent-3-yne, Me2Si(η5-C5H4)2Zr(η4-H2C4H2), and its reactions with Ni(0) and B(C6F5)3. Organometallics 2007, 26, 241–244. [Google Scholar] [CrossRef]
- Erker, G. Homogeneous single-component betaine Ziegler-Natta catalysts derived from (butadiene)zirconocene precursors. Acc. Chem. Res. 2001, 34, 309–317. [Google Scholar] [CrossRef]
- Bach, M.A.; Beweries, T.; Burlakov, V.V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Migratory insertion of an isocyanide into 1-zirconacyclopent-3-ynes. Organometallics 2007, 26, 4592–4597. [Google Scholar] [CrossRef]
- Becker, L.; Rosenthal, U. Five-membered all-C- and hetero-metallacycloallenoids of group 4 metallocenes. Coord. Chem. Rev. 2016, 345, 137–149. [Google Scholar] [CrossRef]
- Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; et al. Stabilization of anti-aromatic and strained five-membered rings with a transition metal. Nat. Chem. 2013, 5, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhu, J.; Zhou, X.; Zhu, Q.; Yang, Y.; Wen, T.B.; Xia, H. Isolation of an 11-atom polydentate carbon chain chelate via cycloaddition of cyclic metal carbyne with alkynes. Angew. Chem. Int. Ed. 2018, 57, 3154–3157. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Lin, J.; Hua, Y.; Zhou, X.; Shao, Y.; Chen, S.; Chen, Z.; Zhu, J.; Zhang, H.; Xia, H. Multiyne chains chelating osmium via three metal-carbon σ bonds. Nat. Commun. 2017, 8, 1912. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, Q.; Zhang, H.; Hua, Y.; Kang, H.; Zhou, X.; Lin, X.; Chen, Z.; Lin, J.; Zhuo, K.; Xia, H. Constraint of a ruthenium-carbon triple bond to a five-membered ring. Sci. Adv. 2018, 4, eaat0336. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhou, X.; Xing, H.; An, K.; Zhu, J.; Xia, H. σ-Aromaticity in an unsaturated ring: Osmapentalene derivatives containing a metallacyclopropene unit. Angew. Chem. Int. Ed. 2015, 54, 3102–3106. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Zhang, H.; Ding, L.; Lin, J.; Zhou, X.; Hua, Y.; Zhu, J.; Xia, H. Rhodapentalenes: Pincer complexes with internal aromaticity. iScience 2019, 19, 1214–1224. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Yang, Y.; Wu, J.; Luo, M.; Fan, J.; Zhu, J.; Xia, H. Five-membered cyclic metal carbyne: Synthesis of osmapentalynes by the reactions of osmapentalene with allene, alkyne, and alkene. Angew. Chem. Int. Ed. 2015, 54, 7189–7192. [Google Scholar] [CrossRef]
- Hua, Y.; Lan, Q.; Fei, J.; Tang, C.; Lin, J.; Zha, H.; Chen, S.; Lu, Y.; Chen, J.; He, X.; et al. Metallapentalenofuran: Shifting metallafuran rings promoted by substituent effects. Chem. -Eur. J 2018, 24, 14531–14538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y.; Shao, Y.; Hua, Y.; Zhang, H.; Lin, Y.-M.; Xia, H. Reactions of cyclic osmacarbyne with coinage metal complexes. Organometallics 2018, 37, 1788–1794. [Google Scholar] [CrossRef]
- Zhu, C.; Luo, M.; Zhu, Q.; Zhu, J.; Schleyer, P.v.R.; Wu, J.I.-C.; Lu, X.; Xia, H. Planar Möbius aromatic pentalenes incorporating 16 and 18 valence electron osmiums. Nat. Commun. 2014, 5, 3265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Zhu, C.; Chen, L.; Zhang, H.; Xia, H. Halogenation of carbyne complexes: Isolation of unsaturated metallaiodirenium ion and metallabromirenium ion. Chem. Sci. 2016, 7, 1815–1818. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wu, J.; Hao, Y.; Zhu, C.; Zhuo, Q.; Xia, H.; Zhu, J. Rational design and synthesis of unsaturated Se-containing osmacycles with σ-aromaticity. Chem. Eur. J. 2018, 24, 2389–2395. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, L.; Gao, X.; Hua, Y.; Peng, L.; Zhang, Y.; Yang, L.; Tan, Y.; He, F.; Xia, H. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems. Nat. Commun. 2020, 11, 4651. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, P.; Cai, Y.; Sui, Y.; Chen, Z.; Zhang, H.; Wang, B.; Xia, H. Dioxygen activation by internally aromatic metallacycle: Crystallographic structure and mechanistic investigations. iScience 2020, 23, 101379. [Google Scholar] [CrossRef]
- Luo, M.; Deng, Z.; Ruan, Y.; Cai, Y.; Zhuo, K.; Zhang, H.; Xia, H. Reactions of metallacyclopentadiene with terminal alkynes: Isolation and characterization of metallafulvenallene complexes. Organometallics 2019, 38, 3053–3059. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Long, L.; Zhang, H.; Yang, Y.; Hua, Y.; Liu, G.; Lin, Z.; Xia, H. Reactions of isocyanides with metal carbyne complexes: Isolation and characterization of metallacyclopropenimine intermediates. J. Am. Chem. Soc. 2017, 139, 1822–1825. [Google Scholar] [CrossRef]
- Li, J.; Kang, H.; Zhuo, K.; Zhuo, Q.; Zhang, H.; Lin, Y.-M.; Xia, H. Alternation of metal-bridged metallacycle skeletons: From ruthenapentalyne to ruthenapentalene and ruthenaindene derivative. Chin. J. Chem. 2018, 36, 1156–1160. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, Q.; Fan, J.; Zhu, J.; He, X.; Cao, X.-Y.; Xia, H. A metal-bridged tricyclic aromatic system: Synthesis of osmium polycyclic aromatic complexes. Angew. Chem. Int. Ed. 2014, 53, 6232–6236. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, J.; Xia, H. Synthesis of cyclic vinylidene complexes and azavinylidene complexes by formal [4+2] cyclization reactions. Chin. J. Org. Chem. 2017, 37, 1181–1188. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhu, C.; Deng, Z.; He, G.; Chen, J.; Zhu, J.; Xia, H. Synthesis and characterization of osmium polycyclic aromatic complexes via nucleophilic reactions of osmapentalyne. Chin. J. Chem. 2017, 35, 628–634. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, C.; Cai, Y.; Zhu, J.; Hua, Y.; Chen, Z.; Chen, J.; Xia, H. Metallapentalenofurans and lactone-fused metallapentalynes. Chem. Eur. J. 2017, 23, 6426–6431. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lu, Z.; Cai, Y.; Jiang, F.; Tang, C.; Chen, Z.; Zheng, J.; Pi, J.; Zhang, R.; Liu, J.; et al. Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions. J. Am. Chem. Soc. 2017, 139, 14344–14347. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, Y.; Luo, M.; Yang, C.; Wu, J.; Chen, L.; Liu, G.; Wen, T.; Zhu, J.; Xia, H. Stabilizing two classical antiaromatic frameworks: Demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics. Angew. Chem. Int. Ed. 2015, 54, 6181–6185. [Google Scholar] [CrossRef]
- Deng, Z.; Zhu, C.; Hua, Y.; He, G.; Guo, Y.; Lu, R.; Cao, X.; Chen, J.; Xia, H. Synthesis and characterization of metallapentalenoxazetes from the [2+2] cycloaddition of metallapentalynes with nitrosoarenes. Chem. Commun. 2019, 55, 6237–6240. [Google Scholar] [CrossRef]
- Lu, Z.; Cai, Y.; Wei, Y.; Lin, Q.; Chen, J.; He, X.; Li, S.; Wu, W.; Xia, H. Photothermal möbius aromatic metallapentalenofuran and its NIR-responsive copolymer. Polym. Chem. 2018, 9, 2092–2100. [Google Scholar] [CrossRef]
- Lin, J.; Ding, L.; Zhuo, Q.; Zhang, H.; Xia, H. Formal [2+2+2] cycloaddition reaction of a metal-carbyne complex with nitriles: Synthesis of a metallapyrazine complex. Organometallics 2019, 38, 2264–2271. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Q.; Cai, Y.; Chen, Z.; Zhuo, K.; Zhu, J.; Zhang, H.; Xia, H. Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions. Sci. Adv. 2020, 6, eaay2535. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Hua, Y.; Zhuo, K.; Long, L.; Lin, X.; Deng, Z.; Lin, Z.; Zhang, H.; Chen, D.; Xia, H. Carbolong chemistry: Planar CCCCX-type (X = N, O, S) pentadentate chelates by formal [3+1] cycloadditions of metalla-azirines with terminal alkynes. CCS Chem. 2020, 2, 758–763. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, C.; Wang, Y.; Lin, G.; Yang, Y.; Wang, X.; Zhu, J.; Chen, X.; Lu, X.; Liu, G.; et al. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties. Sci. Adv. 2016, 2, e1601031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; He, X.; Li, S.; Zhuo, K.; Qin, W.; Dong, S.; Chen, J.; Ren, L.; Liu, G.; Xia, H. Amphipathic metal-containing macromolecules with photothermal properties. Polym. Chem. 2017, 8, 3674–3678. [Google Scholar] [CrossRef]
- Wu, F.; Huang, W.; Zhuo, K.; Hua, Y.; Lin, J.; He, G.; Chen, J.; Nie, L.; Xia, H. Carbolong complexes as photothermal materials. Chin. J. Org. Chem. 2019, 39, 1743–1752. [Google Scholar] [CrossRef]
- Yang, C.; Lin, G.; Zhu, C.; Pang, X.; Zhang, Y.; Wang, X.; Li, X.; Wang, B.; Xia, H.; Liu, G. Metalla-aromatic loaded magnetic nanoparticles for MRI/photoacoustic imaging-guided cancer phototherapy. J. Mater. Chem. B 2018, 6, 2528–2535. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, H.; Zhuo, K.; Hua, Y.; Chen, J.; He, X.; Weng, W.; Xia, H. “Carbolong” polymers with near infrared triggered; spatially resolved and rapid self-healing properties. Polym. Chem. 2019, 10, 386–394. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Li, C. Acetylenic Carbon-Containing Stable Five-Membered Metallacycles. Catalysts 2020, 10, 1268. https://doi.org/10.3390/catal10111268
Hu B, Li C. Acetylenic Carbon-Containing Stable Five-Membered Metallacycles. Catalysts. 2020; 10(11):1268. https://doi.org/10.3390/catal10111268
Chicago/Turabian StyleHu, Bowen, and Chunxiang Li. 2020. "Acetylenic Carbon-Containing Stable Five-Membered Metallacycles" Catalysts 10, no. 11: 1268. https://doi.org/10.3390/catal10111268
APA StyleHu, B., & Li, C. (2020). Acetylenic Carbon-Containing Stable Five-Membered Metallacycles. Catalysts, 10(11), 1268. https://doi.org/10.3390/catal10111268