Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials
Abstract
:1. Introduction
- Defect sites
- Heteroatoms
- Heterostructures
- Interesting means to increase water splitting in hydrogen and oxygen evolution reactions, such as defect sites, doping of heteroatoms, and heterostructures.
- Fuel cell technology using ORR and OER.
- Specific electronic processing with urea decomposition to address environmental problems.
2. Methods of Increasing Water Splitting in HER and OER
2.1. Defect Sites
2.1.1. Tafel Reaction of MoSe2 through Coalesced Vacancies
- Reducing stable MoO3 to reactive MoO3−x to improve the activity between Se and metal oxides under hydrogen assistance.
- Selenization of MoO3−x to MoSe2 via the substitution reaction of Se and O.
- Use of the substrate for nucleation and growth of MoSe2.
- Etching of Se atoms in MoSe2 by generating H2Se gas under hydrogen assistance.
2.1.2. Hollow and Porous Structured Using NiS2(1−x)Se2x in Neutral Condition
2.2. Doping of Heteroatoms
2.2.1. Ir-O-V Group Effect
2.2.2. Effect of Multiplane Ni3S2 Superstructures
2.3. Heterostructure
2.3.1. Components as the Ni-Based Heterostructure
2.3.2. Co and β-Mo2C NPs Composed of N-Doped CNTs
3. Redox-Mediated OER and ORR for LOBs with Soluble Redox Catalysts
3.1. Introduction
3.2. Application of TMPPA and DTBBQ as Redox Mediators to RFLOB
4. Application of Hydrogen Production via HER and UOR Activities
4.1. Introduction
4.2. The Application of Electrocatalyst via Synthesis of Facile Melt-Infiltration
4.3. Results
- The existence of Ni3+ cationic active material at NiOOH enables effortless electron jumping mechanism and can also induce electrocatalytic reaction transmission.
- OMC has very large surface area, pore volume, and pore diameters that may indicate higher UOR electroactive interfacial sites and ion/e− transfer speeds.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NPs | nanoparticles |
OER | oxygen evolution reaction |
HER | hydrogen evolution reaction |
ORR | oxygen reduction reaction |
TMP | transition metal phosphide |
LOB | lithium−oxygen batteries |
CVD | chemical vapor deposition |
ADF-STEM | atomic-resolution annular dark field-scanning transmission electron microscope |
HAADF | high angle annular dark field |
EDX | energy dispersive X-ray |
PXRD | powder X-ray diffraction |
Pa3 | cubic pyrite-type phase |
BET | Brunauer-Emmett-Teller |
PBS | phosphate-buffered saline |
NF | nickel foam |
RHE | reversible hydrogen electrode |
EIS | electrochemical impedance spectroscopy |
CV | cyclic voltammetry |
CA | chronoamperometry |
LSV | linear sweep voltammetry |
TMD | transition metal dichalcogenide |
LDH | layered double hydroxide |
DI | deionized |
EDA | ethylene diamine |
CC | carbon cloth |
HRTEM | high-resolution transmission electron microscope |
Pi | inorganic phosphate |
XRD | X-ray diffraction |
Cdl | double-layer capacitance |
RFLB | rechargeable redox flow lithium battery |
RFLOB | lithium-oxygen redox flow battery |
GDT | gas diffusion tank |
TMPPA | tris{4-[2-(2-methoxyethoxy)ethoxy]phenyl}amine |
DTBBQ | 2,5-di-tert-butyl-p-benzoquinone |
RDE | rotating disk electrode |
UOR | urea electro-oxidation reaction |
OMC | ordered mesoporous carbon |
BJH | Barrett-Joyner-Haldenda |
fcc | face centered cubic |
References
- Ghosh, T.; Mohammad, A.; Mobin, S.M. Hybrid Cobalt Doped-Cerium Oxide as a Multifunctional Nanocatalyst for Various Organic Transformations. ACS Sustain. Chem. Eng. 2019, 7, 13746–13763. [Google Scholar] [CrossRef]
- Díaz, U.; Brunel, D.; Corma, A. Catalysis using Multifunctional Organosiliceous Hybrid Materials. Chem. Soc. Rev. 2013, 42, 4083–4097. [Google Scholar] [CrossRef] [PubMed]
- Loy, D.A.; Shea, K.J. Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chem. Rev. 1995, 95, 1431–1442. [Google Scholar] [CrossRef]
- Di Carlo, G.; Lualdi, M.; Venezia, A.M.; Boutonnet, M.; Sanchez-Dominguez, M. Design of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica. Catalysts 2015, 5, 442–459. [Google Scholar] [CrossRef]
- Jang, S.; Hira, S.A.; Annas, D.; Song, S.; Yusuf, M.; Park, J.C.; Park, S.; Park, K.H. Recent Novel Hybrid Pd-Fe3O4 Nanoparticles as Catalysts for Various C-C Coupling Reactions. Processes 2019, 7, 422–452. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Wu, X.; Chen, D.; Liu, H.; Meng, X.; Tang, F. Confining Alloy or Core-Shell Au-Pd Bimetallic Nanocrystals in Silica Nanorattles for Enhanced Catalytic Performance. J. Mater. Chem. A 2013, 1, 10382–10388. [Google Scholar] [CrossRef]
- Moussa, S.; Siamaki, A.R.; Gupton, B.F.; El-Shall, M.S. Pd-Partially Reduced Graphene Oxide Catalysts (Pd/PRGO): Laser Synthesis of pd Nanoparticles Supported on PRGO Nanosheets for Carboncarbon Cross Coupling Reactions. ACS Catal. 2012, 2, 145–154. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Mohammad Sajadi, S.; Rostami-Vartooni, A.; Khalaj, M. Green Synthesis of Pd/Fe3O4 Nanoparticles Using Euphorbia Condylocarpa M. Bieb Root Extract and Their Catalytic Applications as Magnetically Recoverable and Stable Recyclable Catalysts for the Phosphine-Free Sonogashira and Suzuki Coupling Reactions. J. Mol. Catal. A Chem. 2015, 396, 31–39. [Google Scholar] [CrossRef]
- Siamaki, A.R.; Khder, A.E.R.S.; Abdelsayed, V.; El-Shall, M.S.; Gupton, B.F. Microwave-Assisted Synthesis of Palladium Nanoparticles Supported on Graphene: A Highly Active and Recyclable Catalyst for Carbon-Carbon Cross-Coupling Reactions. J. Catal. 2011, 279, 1–11. [Google Scholar] [CrossRef]
- Truong, Q.D.; Le, T.S.; Ling, Y.C. Pt Deposited TiO2 Catalyst Fabricated by Thermal Decomposition of Titanium Complex for Solar Hydrogen Production. Solid State Sci. 2014, 38, 18–24. [Google Scholar] [CrossRef]
- Woo, H.; Lee, K.; Park, J.C.; Park, K.H. Facile Synthesis of Pd/Fe3O4/Charcoal Bifunctional Catalysts with High Metal Loading for High Product Yields in Suzuki-Miyaura Coupling Reactions. New J. Chem. 2014, 38, 5626–5632. [Google Scholar] [CrossRef]
- Tan, Q.; Du, C.; Sun, Y.; Yin, G.; Gao, Y. Pd-around-CeO2-x Hybrid Nanostructure Catalyst: Three-Phase-Transfer Synthesis, Electrocatalytic Properties and Dual Promoting Mechanism. J. Mater. Chem. A 2014, 2, 1429–1435. [Google Scholar] [CrossRef]
- Hosseini, S.G.; Abazari, R.; Ghavi, A. Pure CuCr2O4 Nanoparticles: Synthesis, Characterization and Their Morphological and Size Effects on the Catalytic Thermal Decomposition of Ammonium Perchlorate. Solid State Sci. 2014, 37, 72–79. [Google Scholar] [CrossRef]
- Veisi, H.; Sedrpoushan, A.; Maleki, B.; Hekmati, M.; Heidari, M.; Hemmati, S. Palladium Immobilized on Amidoxime-Functionalized Magnetic Fe3O4 Nanoparticles: A Highly Stable and Efficient Magnetically Recoverable Nanocatalyst for Sonogashira Coupling Reaction. Appl. Organomet. Chem. 2015, 29, 834–839. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y. One-Pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. J. Am. Chem. Soc. 2010, 132, 6280–6281. [Google Scholar] [CrossRef]
- Jin, X.; Dang, L.; Lohrman, J.; Subramaniam, B.; Ren, S.; Chaudhari, R.V. Lattice-Matched Bimetallic CuPd-Graphene Nanocatalysts for Facile Conversion of Biomass-Derived Polyols to Chemicals. ACS Nano 2013, 7, 1309–1316. [Google Scholar] [CrossRef]
- Dong, B.; Miller, D.L.; Li, C.Y. Polymer Single Crystal as Magnetically Recoverable Support for Nanocatalysts. J. Phys. Chem. Lett. 2012, 3, 1346–1350. [Google Scholar] [CrossRef]
- Omar, S.; Abu-Reziq, R. Palladium Nanoparticles Supported on Magnetic Organic-Silica Hybrid Nanoparticles. J. Phys. Chem. C 2014, 118, 30045–30056. [Google Scholar] [CrossRef]
- Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and Stabilization of Metal Nanocatalysts for Reduction Reactions—A Review. J. Mater. Chem. A 2015, 3, 11157–11182. [Google Scholar] [CrossRef]
- Askari, S.; Halladj, R.; Azarhoosh, M.J. Modeling and Optimization of Catalytic Performance of SAPO-34 Nanocatalysts Synthesized Sonochemically using a New Hybrid of Non-Dominated Sorting Genetic Algorithm-II based Artificial Neural Networks (NSGA-II-ANNs). RSC Adv. 2015, 5, 52788–52800. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property. J. Phys. Chem. C 2008, 112, 10773–10777. [Google Scholar] [CrossRef]
- Sharma, R.K.; Sharma, S.; Dutta, S.; Zboril, R.; Gawande, M.B. Silica-Nanosphere-Based Organic-Inorganic Hybrid Nanomaterials: Synthesis, Functionalization and Applications in Catalysis. Green Chem. 2015, 17, 3207–3230. [Google Scholar] [CrossRef]
- Song, H. Metal Hybrid Nanoparticles for Catalytic Organic and Photochemical Transformations. Acc. Chem. Res. 2015, 48, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.T.; Cai, Y.Y.; Ge, J.M.; Zhang, Y.N.; Gong, L.H.; Li, X.H.; Wang, K.X.; Ren, Q.Z.; Su, J.; Chen, J.S. Multifunctional Au-Co@CN Nanocatalyst for Highly Efficient Hydrolysis of Ammonia Borane. ACS Catal. 2015, 5, 388–392. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, S.J.; Kim, S.H.; Kwon, S.; Yee, K.J.; Song, H.; Somorjai, G.A.; Park, J.Y. Hot Carrier-Driven Catalytic Reactions on Pt-CdSe-Pt Nanodumbbells and Pt/GaN under Light Irradiation. Nano Lett. 2013, 13, 1352–1358. [Google Scholar] [CrossRef]
- Tollefson, J. Fuel of the Future? Automot. Eng. Int. 1977, 85, 48–52. [Google Scholar]
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and Fuels from Electrochemical Interfaces. Nat. Mater. 2016, 16, 57–69. [Google Scholar] [CrossRef]
- Greeley, J.; Jaramillo, T.F.; Bonde, J.; Chorkendorff, I.; Nørskov, J.K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. [Google Scholar] [CrossRef]
- Gao, M.R.; Xu, Y.F.; Jiang, J.; Yu, S.H. Nanostructured Metal Chalcogenides: Synthesis, Modification, and Applications in Energy Conversion and Storage Devices. Chem. Soc. Rev. 2013, 42, 2986–3017. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.R.; Liang, J.X.; Zheng, Y.R.; Xu, Y.F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.H. An Efficient Molybdenum Disulfide/Cobalt Diselenide Hybrid Catalyst for Electrochemical Hydrogen Generation. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.F.; Muckerman, J.T.; Fujita, E. Recent Developments in Transition metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts. Chem. Commun. 2013, 49, 8896–8909. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Sato, E. Electrocatalytic Properties of Transition Metal Oxides for Oxygen Evolution Reaction. Mater. Chem. Phys. 1986, 14, 397–426. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Ivanovskaya, A.; McFarland, E.W. High-Throughput Screening System for Catalytic Hydrogen-Producing Materials. J. Comb. Chem. 2002, 4, 17–22. [Google Scholar] [CrossRef]
- Chen, G.; Delafuente, D.A.; Sarangapani, S.; Mallouk, T.E. Combinatorial Discovery of Bifunctional Oxygen Reduction - Water Oxidation Electrocatalysts for Regenerative Fuel Cells. Catal. Today 2001, 67, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Gerken, J.B.; Chen, J.Y.C.; Massé, R.C.; Powell, A.B.; Stahl, S.S. Development of an O2-Sensitive Fluorescence-Quenching Assay for the Combinatorial Discovery of Electrocatalysts for Water Oxidation. Angew. Chem. Int. Ed. 2012, 51, 6676–6680. [Google Scholar] [CrossRef]
- Liu, X.; Shen, Y.; Yang, R.; Zou, S.; Ji, X.; Shi, L.; Zhang, Y.; Liu, D.; Xiao, L.; Zheng, X.; et al. Inkjet Printing Assisted Synthesis of Multicomponent Mesoporous Metal Oxides for Ultrafast Catalyst Exploration. Nano Lett. 2012, 12, 5733–5739. [Google Scholar] [CrossRef]
- Gregoire, J.M.; Xiang, C.; Mitrovic, S.; Liu, X.; Marcin, M.; Cornell, E.W.; Fan, J.; Jin, J. Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts. J. Electrochem. Soc. 2013, 160, F337–F342. [Google Scholar] [CrossRef]
- Seley, D.; Ayers, K.; Parkinson, B.A. Combinatorial Search for Improved Metal Oxide Oxygen Evolution Electrocatalysts in Acidic Electrolytes. ACS Comb. Sci. 2013, 15, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.P.; Lee, H.C.; Núñez, P.D.; Bard, A.J.; Mullins, C.B. Screening of Transition and Post-Transition Metals to Incorporate into Copper Oxide and Copper Bismuth Oxide for Photoelectrochemical Hydrogen Evolution. Phys. Chem. Chem. Phys. 2013, 15, 4554–4565. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Wang, A.L.; Cheng, H.; Gong, Y.; Yun, Q.; Yang, N.; Li, B.; Chen, B.; Zhang, Q.; Zong, Y.; et al. Synthesis of Hierarchical 4H/fcc Ru Nanotubes for Highly Efficient Hydrogen Evolution in Alkaline Media. Small 2018, 14, 1–5. [Google Scholar] [CrossRef]
- Tian, H.; Cui, X.; Zeng, L.; Su, L.; Song, Y.; Shi, J. Oxygen Vacancy-Assisted Hydrogen Evolution Reaction of the Pt/WO3 Electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S.Z. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhang, J.; Li, H.; Tang, Z.; Wang, X. Nanosheet-Assembled MoSe2 and S-doped MoSe2-x Nanostructures for Superior Lithium Storage Properties and Hydrogen Evolution Reactions. Inorg. Chem. Front. 2015, 2, 931–937. [Google Scholar] [CrossRef]
- Peng, S.; Li, L.; Tan, H.; Cai, R.; Shi, W.; Li, C.; Mhaisalkar, S.G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics. Adv. Funct. Mater. 2014, 24, 2155–2162. [Google Scholar] [CrossRef]
- Lu, X.F.; Yu, L.; Lou, X.W. Highly Crystalline Ni-Doped FeP/Carbon Hollow Nanorods as all-pH Efficient and Durable Hydrogen Evolving Electrocatalysts. Sci. Adv. 2019, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Wu, R.; Zhang, R.; Ha, Y.; Chen, Z.; Wang, L.; Yang, Y.; Ma, X.; Sun, D.; Fang, F.; et al. Electroless Plating of Highly Efficient Bifunctional Boride-Based Electrodes toward Practical Overall Water Splitting. Adv. Energy Mater. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Ha, Y.; Shi, L.; Chen, Z.; Wu, R. Phase-Transited Lysozyme-Driven Formation of Self-Supported Co3O4@C Nanomeshes for Overall Water Splitting. Adv. Sci. 2019, 6, 1–8. [Google Scholar]
- Chen, Z.; Ha, Y.; Liu, Y.; Wang, H.; Yang, H.; Xu, H.; Li, Y.; Wu, R. In Situ Formation of Cobalt Nitrides/Graphitic Carbon Composites as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 7134–7144. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Rodriguez, J.A. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871–14878. [Google Scholar] [CrossRef]
- Görlin, M.; Chernev, P.; De Araújo, J.F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.P.; Liu, Y.P.; Ren, T.Z.; Yuan, Z.Y. Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347. [Google Scholar] [CrossRef]
- Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chem. Rev. 2013, 113, 7981–8065. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, J.; Chen, G.; Chen, W.; Song, C.; Li, C.; Ostrikov, K. In Situ Engineering Bi-Metallic Phospho-Nitride Bi-Functional Electrocatalysts for Overall Water Splitting. Appl. Catal. B Environ. 2019, 254, 414–423. [Google Scholar] [CrossRef]
- Wu, R.; Wang, D.P.; Zhou, K.; Srikanth, N.; Wei, J.; Chen, Z. Porous Cobalt Phosphide/Graphitic Carbon Polyhedral Hybrid Composites for Efficient Oxygen Evolution Reactions. J. Mater. Chem. A 2016, 4, 13742–13745. [Google Scholar] [CrossRef]
- Lin, Y.; Pan, Y.; Liu, S.; Sun, K.; Cheng, Y.; Liu, M.; Wang, Z.; Li, X.; Zhang, J. Construction of Multi-Dimensional Core/Shell Ni/NiCoP Nano-Heterojunction for Efficient Electrocatalytic Water Splitting. Appl. Catal. B Environ. 2019, 259, 118036–118039. [Google Scholar] [CrossRef]
- Li, J.S.; Kong, L.X.; Wu, Z.; Zhang, S.; Yang, X.Y.; Sha, J.Q.; Liu, G.D. Polydopamine-Assisted Construction of Cobalt Phosphide Encapsulated in N-Doped Carbon Porous Polyhedrons for Enhanced Overall Water Splitting. Carbon 2019, 145, 694–700. [Google Scholar] [CrossRef]
- Dutta, S.; Indra, A.; Han, H.S.; Song, T. An Intriguing Pea-Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogen-Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting. ChemSusChem 2018, 11, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Hoa, V.H.; Tran, D.T.; Le, H.T.; Kim, N.H.; Lee, J.H. Hierarchically Porous Nickel–Cobalt Phosphide Nanoneedle Arrays Loaded Micro-Carbon Spheres as an Advanced Electrocatalyst for Overall Water Splitting Application. Appl. Catal. B Environ. 2019, 253, 235–245. [Google Scholar] [CrossRef]
- Xu, H.; Jia, H.; Fei, B.; Ha, Y.; Li, H.; Guo, Y.; Liu, M.; Wu, R. Charge Transfer Engineering via Multiple Heteroatom Doping in Dual Carbon-Coupled Cobalt Phosphides for Highly Efficient Overall Water Splitting. Appl. Catal. B Environ. 2020, 268, 118404–118412. [Google Scholar] [CrossRef]
- Lin, H.; Shi, Z.; He, S.; Yu, X.; Wang, S.; Gao, Q.; Tang, Y. Heteronanowires of MoC-Mo2C as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Chem. Sci. 2016, 7, 3399–3405. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, Q.; Han, C.; Xing, Z.; Yang, X. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting. ACS Cent. Sci. 2018, 4, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Rui, K.; Zhao, G.; Chen, Y.; Lin, Y.; Zhou, Q.; Chen, J.; Zhu, J.; Sun, W.; Huang, W.; Dou, S.X. Hybrid 2D Dual-Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. Adv. Funct. Mater. 2018, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Wu, J.; Tao, L.; Shen, A.; Huo, J.; Wang, S. Carbon-Coated MoS2 Nanosheets as Highly Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nanotechnology 2016, 27, 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Q.; Zhao, G.; Yu, Z.; Wang, X.; Dou, S.X.; Sun, W. Electrochemically Inert g-C3N4 Promotes Water Oxidation Catalysis. Adv. Funct. Mater. 2018, 28, 1–7. [Google Scholar]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kellogg, W.; Xu, H.; Liu, X.; Cho, J.; Wu, G. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chem. Asian J. 2016, 11, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.M.; Jiang, Z. ELECTROCHEMICAL SCIENCE AND TECHNOLOGY A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1–5. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O2 and Li-S Batteries with High Energy Storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. [Google Scholar] [CrossRef] [PubMed]
- Urbańczyk, E.; Sowa, M.; Simka, W. Urea Removal from Aqueous Solutions—A Review. J. Appl. Electrochem. 2016, 46, 1011–1029. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zhang, H.; Li, G.; Wu, Z. Nickel-Cobalt Bimetallic Anode Catalysts for Direct Urea Fuel Cell. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Zhu, B.; Liang, Z.; Zou, R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small 2020, 16, 1906133. [Google Scholar] [CrossRef]
- Xie, J.; Yang, X.; Xie, Y. Defect Engineering in Two-Dimensional Electrocatalysts for Hydrogen Evolution. Nanoscale 2020, 12, 4238–4294. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C.; Choi, K.S.; Seo, J.; Choi, Y.; Choi, W.; Kim, Y.M.; Jeong, H.Y.; Lee, J.H.; Kim, G.; et al. In-Situ Coalesced Vacancies on MoSe2 Mimicking Noble Metal: Unprecedented TAFEL Reaction in Hydrogen Evolution. Nano Energy 2019, 63, 103844–1038446. [Google Scholar] [CrossRef]
- Shu, H.; Zhou, D.; Li, F.; Cao, D.; Chen, X. Defect Engineering in MoSe2 for the Hydrogen Evolution Reaction: From Point Defects to Edges. ACS Appl. Mater. Interfaces 2017, 9, 42688–42698. [Google Scholar] [CrossRef]
- He, J.; Zou, Y.; Wang, S. Defect Engineering on Electrocatalysts for Gas-Evolving Reactions. Dalton Trans. 2019, 48, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Li, Y.; Jiang, H.; Jiang, H.; Li, C. Continuous Oxygen Vacancy Engineering of the Co3O4 Layer for an Enhanced Alkaline Electrocatalytic Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7, 13506–13510. [Google Scholar] [CrossRef]
- Liu, T.; Feng, Z.; Li, Q.; Yang, J.; Li, C.; Dupuis, M. Role of Oxygen Vacancies on Oxygen Evolution Reaction Activity: β-Ga2O3 as a Case Study. Chem. Mater. 2018, 30, 7714–7726. [Google Scholar] [CrossRef]
- Hirai, S.; Morita, K.; Yasuoka, K.; Shibuya, T.; Tojo, Y.; Kamihara, Y.; Miura, A.; Suzuki, H.; Ohno, T.; Matsuda, T.; et al. Oxygen Vacancy-Originated Highly Active Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2018, 6, 15102–15109. [Google Scholar] [CrossRef]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F.; et al. Activating and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef]
- Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S.T.; Zhou, W.; Vajtai, R.; Ajayan, P.M. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Lett. 2016, 16, 1097–1103. [Google Scholar] [CrossRef]
- Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H.S.; Nørskov, J.K.; Zheng, X.; Abild-Pedersen, F. Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Li, B.; Gong, Y.; Hu, Z.; Brunetto, G.; Yang, Y.; Ye, G.; Zhang, Z.; Lei, S.; Jin, Z.; Bianco, E.; et al. Solid–Vapor Reaction Growth of Transition-Metal Dichalcogenide Monolayers. Angew. Chem. Int. Ed. 2016, 55, 1–7. [Google Scholar]
- Shaw, J.C.; Zhou, H.; Chen, Y.; Weiss, N.O.; Liu, Y.; Huang, Y.; Duan, X. Chemical Vapor Deposition Growth of Monolayer MoSe2 Nanosheets. Nano Res. 2014, 7, 1–7. [Google Scholar] [CrossRef]
- Mahmood, J.; Li, F.; Jung, S.M.; Okyay, M.S.; Ahmad, I.; Kim, S.J.; Park, N.; Jeong, H.Y.; Baek, J.B. An Efficient and pH-Universal Ruthenium-Based Catalyst for the Hydrogen Evolution Reaction. Nat. Nanotechnol. 2017, 12, 441–446. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Bao, S.; Zhang, Z.; Fei, H.; Wu, Z. Phase Engineering of a Multiphasic 1T/2H MoS2 Catalyst for Highly Efficient Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 2681–2688. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, J.; Wu, M.; Jian, W.; Xue, H.; Ng, T.W.; Lee, C.S.; Xu, J. Synthesis of 1T-MoSe2 Ultrathin Nanosheets with an Expanded Interlayer Spacing of 1.17 nm for Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2016, 4, 14949–14953. [Google Scholar] [CrossRef]
- Xu, C.; Peng, S.; Tan, C.; Ang, H.; Tan, H.; Zhang, H.; Yan, Q. Ultrathin S-Doped MoSe2 Nanosheets for Efficient Hydrogen Evolution. J. Mater. Chem. A 2014, 2, 5597–5601. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhou, Y.; Yang, D.R.; Xu, W.X.; Wang, C.; Wang, F.B.; Xu, J.J.; Xia, X.H.; Chen, H.Y. Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, L.; Xiong, W.; Ma, M. Cobalt-Nanocrystal-Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutral-pH Water. Angew. Chem. Int. Ed. 2016, 55, 6725–6729. [Google Scholar] [CrossRef]
- Xu, K.; Cheng, H.; Liu, L.; Lv, H.; Wu, X.; Wu, C.; Xie, Y. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media. Nano Lett. 2017, 17, 578–583. [Google Scholar] [CrossRef]
- Zheng, G.; Peng, Z.; Jia, D.; Al-Enizi, A.M.; Elzatahry, A.A. From Water Oxidation to Reduction: Homologous Ni-Co Based Nanowires as Complementary Water Splitting Electrocatalysts. Adv. Energy Mater. 2015, 5, 1–7. [Google Scholar]
- Huang, Z.F.; Song, J.; Li, K.; Tahir, M.; Wang, Y.T.; Pan, L.; Wang, L.; Zhang, X.; Zou, J.J. Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365. [Google Scholar] [CrossRef]
- Boppella, R.; Tan, J.; Yang, W.; Moon, J. Homologous CoP/NiCoP Heterostructure on N-Doped Carbon for Highly Efficient and pH-Universal Hydrogen Evolution Electrocatalysis. Adv. Funct. Mater. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B.R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 2014, 53, 4372–4376. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, R.; Cui, L.; Liu, D.; Hao, S.; Ma, Y.; Du, G.; Asiri, A.M.; Sun, X. High-Performance Electrolytic Oxygen Evolution in Neutral Media Catalyzed by a Cobalt Phosphate Nanoarray. Angew. Chem. Int. Ed. 2017, 56, 1064–1068. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590. [Google Scholar] [CrossRef]
- Tabassum, H.; Guo, W.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q.; Zou, R. Metal–Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Co-Doped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution. Adv. Energy Mater. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, C.; Lyu, M.; Lin, Y.; Cai, W.; Huang, P.; Tong, W.; Zou, Y.; Xie, Y. Ultrathin Co3S4Nanosheets that Synergistically Engineer Spin States and Exposed Polyhedra that Promote Water Oxidation under Neutral Conditions. Angew. Chem. Int. Ed. 2015, 54, 11231–11235. [Google Scholar] [CrossRef] [PubMed]
- Anantharaj, S.; Kennedy, J.; Kundu, S. Microwave-Initiated Facile Formation of Ni3Se4 Nanoassemblies for Enhanced and Stable Water Splitting in Neutral and Alkaline Media. ACS Appl. Mater. Interfaces 2017, 9, 8714–8728. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, X.; Zhao, J.; Jia, G.; Gu, L.; Zhang, Q.; Meng, L.; Shi, Z.; Zheng, L.; Wang, C.; et al. Rational Design of Fe-N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catal. 2019, 9, 336–344. [Google Scholar] [CrossRef]
- Zhang, G.; Feng, Y.S.; Lu, W.T.; He, D.; Wang, C.Y.; Li, Y.K.; Wang, X.Y.; Cao, F.F. Enhanced Catalysis of Electrochemical Overall Water Splitting in Alkaline Media by Fe Doping in Ni3S2 Nanosheet Arrays. ACS Catal. 2018, 8, 5431–5441. [Google Scholar] [CrossRef]
- Cheng, N.; Liu, Q.; Asiri, A.M.; Xing, W.; Sun, X. A Fe-Doped Ni3S2 Particle Film as a High-Efficiency Robust Oxygen Evolution Electrode with very High Current Density. J. Mater. Chem. A 2015, 3, 23207–23212. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, F.; Huang, Y.; Sun, J.; Zhu, Z.; Nielsen, R.J.; He, R.; Bao, J.; Goddard, W.A.; Chen, S.; et al. Efficient Hydrogen Evolution by Ternary Molybdenum Sulfoselenide Particles on Self-Standing Porous Nickel Diselenide Foam. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Xie, D.; Tang, W.; Wang, Y.; Xia, X.; Zhong, Y.; Zhou, D.; Wang, D.; Wang, X.; Tu, J. Facile Fabrication of Integrated Three-Dimensional C-MoSe2/Reduced Graphene Oxide Composite with Enhanced Performance for Sodium Storage. Nano Res. 2016, 9, 1618–1629. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, F.; Sun, J.; Zhu, H.; Mishra, I.K.; Chen, S.; Ren, Z. Highly Efficient Hydrogen Evolution from Edge-Oriented WS2(1-x)Se2x Particles on Three-Dimensional Porous NiSe2 Foam. Nano Lett. 2016, 16, 7604–7609. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J. Component-Controllable WS2(1-x)Se2x Nanotubes for Efficient Hydrogen Evolution Reaction. ACS Nano 2014, 8, 8468–8476. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, C.; Xi, D.; Shi, Z.; He, C.; Xia, H.; Liu, G.; Qiao, G. Component-Controllable Synthesis of Co(SxSe1-x)2 Nanowires Supported by Carbon Fiber Paper as High-Performance Electrode for Hydrogen Evolution Reaction. Nano Energy 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Ma, X.; Ma, M.; Liu, D.; Hao, S.; Qu, F.; Du, G.; Asiri, A.M.; Sun, X. Core–Shell-Structured NiS2@Ni-Bi Nanoarray for Efficient Water Oxidation at Near-Neutral pH. ChemCatChem 2017, 9, 3138–3143. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, K.; Chen, Y.; Liu, Z.; Chen, Y.; Pan, Y.; Zhao, R.; Liu, Y.; Liu, C. Neutral-pH Overall Water Splitting Catalyzed Efficiently by a Hollow and Porous Structured Ternary Nickel Sulfoselenide Electrocatalyst. J. Mater. Chem. A 2019, 7, 16793–16802. [Google Scholar] [CrossRef]
- Anjum, M.A.R.; Lee, J.S. Sulfur and Nitrogen Dual-Doped Molybdenum Phosphide Nanocrystallites as an Active and Stable Hydrogen Evolution Reaction Electrocatalyst in Acidic and Alkaline Media. ACS Catal. 2017, 7, 3030–3038. [Google Scholar] [CrossRef]
- Wang, R.; Dong, X.Y.; Du, J.; Zhao, J.Y.; Zang, S.Q. MOF-Derived Bifunctional Cu3P Nanoparticles Coated by a N,P-Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction. Adv. Mater. 2018, 30, 1–10. [Google Scholar]
- Du, J.; Wang, R.; Lv, Y.R.; Wei, Y.L.; Zang, S.Q. One-Step MOF-Derived Co/Co9S8 Nanoparticles Embedded in Nitrogen, Sulfur and Oxygen Ternary-Doped Porous Carbon: An Efficient Electrocatalyst for Overall Water Splitting. Chem. Commun. 2019, 55, 3203–3206. [Google Scholar] [CrossRef]
- Li, S.; Xi, C.; Jin, Y.Z.; Wu, D.; Wang, J.Q.; Liu, T.; Wang, H.B.; Dong, C.K.; Liu, H.; Kulinich, S.A.; et al. Ir-O-V Catalytic Group in Ir-Doped NiV(OH)2 for Overall Water Splitting. ACS Energy Lett. 2019, 4, 1823–1829. [Google Scholar] [CrossRef]
- Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Appl. Mater. Interfaces 2018, 10, 26283–26292. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Zhang, B.; Ruan, Y.; Lv, L.; Ji, X.; Xu, K.; Miao, L.; Jiang, J. Hierarchical NiCo2S4@NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Appl. Mater. Interfaces 2017, 9, 15364–15372. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Q.; Pi, Y.; Guo, J.; Huang, X. A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting. Small 2017, 13, 1–7. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-Level Insight into Super-Efficient Electrocatalytic Oxygen Evolution on Iron and Vanadium Co-Doped Nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P.M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y.; et al. Nickel-Vanadium Monolayer Double Hydroxide for Efficient Electrochemical Water Oxidation. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Dinh, K.N.; Zheng, P.; Dai, Z.; Zhang, Y.; Dangol, R.; Zheng, Y.; Li, B.; Zong, Y.; Yan, Q. Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2018, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.B.; Trang, C.D.M.; Enman, L.J.; Deng, J.; Boettcher, S.W. Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. J. Am. Chem. Soc. 2017, 139, 11361–11364. [Google Scholar] [CrossRef]
- Stevens, M.B.; Enman, L.J.; Batchellor, A.S.; Cosby, M.R.; Vise, A.E.; Trang, C.D.M.; Boettcher, S.W. Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chem. Mater. 2017, 29, 120–140. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, K.; Yang, Z.; Xie, S.; Chen, Y.; Liu, Z.; Liu, Y.; Zhao, J.; Liu, Y.; Liu, C. Tunable 3D Hierarchical Ni3S2 Superstructures as Efficient and Stable Bifunctional Electrocatalysts for both H2 and O2 Generation. J. Mater. Chem. A 2018, 6, 4485–4493. [Google Scholar] [CrossRef]
- Wu, Y.; Li, G.D.; Liu, Y.; Yang, L.; Lian, X.; Asefa, T.; Zou, X. Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheet-Built, Hollow Ni3S2-Based Electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, K.; Lin, H.; Li, X.; Chan, H.C.; Yang, L.; Gao, Q. MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2017, 7, 2357–2366. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.Y.; Zhao, B.; Wang, X. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting. J. Mater. Chem. A 2016, 4, 17587–17603. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wu, X.J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 Nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution. Energy Environ. Sci. 2013, 6, 2921–2924. [Google Scholar] [CrossRef]
- Feng, J.X.; Xu, H.; Dong, Y.T.; Ye, S.H.; Tong, Y.X.; Li, G.R. FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2016, 55, 3694–3698. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Y.; Duan, Y.; Gao, M.R.; Lang, C.C.; Zheng, Y.R.; Yu, S.H. A One-Dimensional Porous Carbon-Supported Ni/Mo2C Dual Catalyst for Efficient Water Splitting. Chem. Sci. 2017, 8, 968–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Z.; Sheng, W.; Yan, Y. Synthesis of Monodispere Au@Co3O4 Core-Shell Nanocrystals and Their Enhanced Catalytic Activity for Oxygen Evolution Reaction. Adv. Mater. 2014, 26, 3950–3955. [Google Scholar] [CrossRef]
- Song, F.; Hu, X. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, N.; Liu, Q.; Sun, X.; He, Y.; Asiri, A.M. Self-Supported NiMo Hollow Nanorod Array: An Efficient 3D Bifunctional Catalytic Electrode for Overall Water Splitting. J. Mater. Chem. A 2015, 3, 20056–20059. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Zhou, L.; Li, Z.; Shao, M.; Wei, M. Layer-by-Layer Assembly of Exfoliated Layered Double Hydroxide Nanosheets for Enhanced Electrochemical Oxidation of Water. J. Mater. Chem. A 2016, 4, 11516–11523. [Google Scholar] [CrossRef]
- Li, P.; Jin, Z.; Wang, R.; Jin, Y.; Xiao, D. Three-Dimensional Flexible Electrode Derived from Low-Cost Nickel-Phytate with Improved Electrochemical Performance. J. Mater. Chem. A 2016, 4, 9486–9495. [Google Scholar] [CrossRef]
- Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M.N.; Alshareef, H.N. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications. Adv. Mater. 2016, 28, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, C.; Li, Y.; Lu, X.; Zhao, C. Bifunctional Porous NiFe/NiCo2O4/Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Adv. Funct. Mater. 2016, 26, 3515–3523. [Google Scholar] [CrossRef]
- Hou, Y.; Lohe, M.R.; Zhang, J.; Liu, S.; Zhuang, X.; Feng, X. Vertically Oriented Cobalt Selenide/NiFe Layered-Double-Hydroxide Nanosheets Supported on Exfoliated Graphene Foil: An Efficient 3D Electrode for Overall Water Splitting. Energy Environ. Sci. 2016, 9, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Asiri, A.M.; Sun, X. Electrodeposited Co-Doped NiSe2 Nanoparticles Film: A Good Electrocatalyst for Efficient Water Splitting. Nanoscale 2016, 8, 3911–3915. [Google Scholar] [CrossRef]
- Yan, X.; Li, K.; Lyu, L.; Song, F.; He, J.; Niu, D.; Liu, L.; Hu, X.; Chen, X. From Water Oxidation to Reduction: Transformation from NixCo3-xO4 Nanowires to NiCo/NiCoOx Heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 3208–3214. [Google Scholar] [CrossRef]
- Liu, D.; Lu, Q.; Luo, Y.; Sun, X.; Asiri, A.M. NiCo2S4 Nanowires Array as an Efficient Bifunctional Electrocatalyst for Full Water Splitting with Superior Activity. Nanoscale 2015, 7, 15122–15126. [Google Scholar] [CrossRef]
- Yu, Y.; Li, P.; Wang, X.; Gao, W.; Shen, Z.; Zhu, Y.; Yang, S.; Song, W.; Ding, K. Vanadium Nanobelts Coated Nickel Foam 3D Bifunctional Electrode with Excellent Catalytic Activity and Stability for Water Electrolysis. Nanoscale 2016, 8, 10731–10738. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, M.; Sheng, W.; Yan, Y. Hollow Chevrel-Phase NiMo3S4 for Hydrogen Evolution in Alkaline Electrolytes. Angew. Chem. Int. Ed. 2016, 55, 15240–15245. [Google Scholar] [CrossRef]
- Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.P.; Qin, Y.; Qu, Y.; Ho, J.C. Hierarchical NiMo-Based 3D Electrocatalysts for Highly-Efficient Hydrogen Evolution in Alkaline Conditions. Nano Energy 2016, 27, 247–254. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Liu, Y.; Zheng, J.; Li, X. A Highly Efficient and Stable Biphasic Nanocrystalline Ni-Mo-N Catalyst for Hydrogen Evolution in both Acidic and Alkaline Electrolytes. Nano Energy 2016, 22, 111–119. [Google Scholar] [CrossRef]
- Xu, K.; Chen, P.; Li, X.; Tong, Y.; Ding, H.; Wu, X.; Chu, W.; Peng, Z.; Wu, C.; Xie, Y. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Singh, S.K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C.P.; Kurungot, S.; Vaidhyanathan, R. Low Band Gap Benzimidazole COF Supported Ni3N as Highly Active OER Catalyst. Adv. Energy Mater. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; De La Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W. Ultrathin High Surface Area Nickel Boride (NixB) Nanosheets as Highly Efficient Electrocatalyst for Oxygen Evolution. Adv. Energy Mater. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Gao, M.Y.; Zhang, Q.B.; Zeng, J.R.; Li, X.T.; Abbott, A.P. In-Situ Activation of Self-Supported 3D Hierarchically Porous Ni3S2 Films Grown on Nanoporous Copper as Excellent pH-Universal Electrocatalysts for Hydrogen Evolution Reaction. Nano Energy 2017, 36, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Xie, Y.; Ma, H.; Tian, C.; Gu, Y.; Yan, H.; Zhang, X.; Yang, G.; Fu, H. Integrating the Active OER and HER Components as the Heterostructures for the Efficient Overall Water Splitting. Nano Energy 2018, 44, 353–363. [Google Scholar] [CrossRef]
- Ouyang, B.; Zhang, Y.; Zhang, Z.; Fan, H.J.; Rawat, R.S. Nitrogen-Plasma-Activated Hierarchical Nickel Nitride Nanocorals for Energy Applications. Small 2017, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Liu, J.Y.; Liu, Z.W.; Wang, W.C.; Luo, J.; Han, X.P.; Du, X.W.; Qiao, S.Z.; Yang, J. Identifying the Key Role of Pyridinic-N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Adv. Mater. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, L.; Zhang, Y.; Jiang, H.; Xiao, Z.; Wu, C.; Zhang, G.; Jiang, J.; Song, L. Defective Carbon–CoP Nanoparticles Hybrids with Interfacial Charges Polarization for Efficient Bifunctional Oxygen Electrocatalysis. Adv. Energy Mater. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Cheng, H.; Li, N.; Ma, T.Y.; Su, Y.Z. ZnCo2O4 Quantum Dots Anchored on Nitrogen-Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts. Adv. Mater. 2016, 28, 3777–3784. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, H.Y.; Jiang, C.; Zhang, T.H.; Zhan, R.; Li, X.; Li, J.F.; Tian, J.H.; Yang, R. NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. Adv. Funct. Mater. 2018, 28, 1–10. [Google Scholar] [CrossRef]
- Li, F.L.; Shao, Q.; Huang, X.; Lang, J.P. Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angew. Chem. Int. Ed. 2018, 57, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv. Mater. 2017, 29, 1605838–1605872. [Google Scholar] [CrossRef]
- Yu, L.; Xia, B.Y.; Wang, X.; Lou, X.W. General Formation of M-MoS3 (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Adv. Mater. 2016, 28, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yu, J.; Jia, J.; Yang, L.; Zhao, L.; Zhou, W.; Liu, H. Cobalt–Cobalt Phosphide Nanoparticles@Nitrogen-Phosphorus Doped Carbon/Graphene Derived from Cobalt Ions Adsorbed Saccharomycete Yeasts as an Efficient, Stable, and Large-Current-Density Electrode for Hydrogen Evolution Reactions. Adv. Funct. Mater. 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Ansaldo, A.; Prato, M.; Del Rio Castillo, A.E.; Bonaccorso, F. Engineered MoSe2-Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yun, Q.; Lu, Q.; Zhang, X.; Tan, C.; Zhang, H. Dreidimensionale Architekturen aus Übergangsmetall-Dichalkogenid-Nanomaterialien zur elektrochemischen Energiespeicherung und -umwandlung. Angew. Chem. 2018, 130, 634–655. [Google Scholar] [CrossRef]
- Ouyang, T.; Chen, A.N.; He, Z.Z.; Liu, Z.Q.; Tong, Y. Rational Design of Atomically Dispersed Nickel Active Sites in β-Mo2C for the Hydrogen Evolution Reaction at all pH Values. Chem. Commun. 2018, 54, 9901–9904. [Google Scholar] [CrossRef]
- Cheng, H.; Ding, L.X.; Chen, G.F.; Zhang, L.; Xue, J.; Wang, H. Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Adv. Mater. 2018, 30, 1–7. [Google Scholar] [CrossRef]
- Ouyang, T.; Ye, Y.Q.; Wu, C.Y.; Xiao, K.; Liu, Z.Q. Heterostructures Composed of N-Doped Carbon Nanotubes Encapsulating Cobalt and β-Mo2C Nanoparticles as Bifunctional Electrodes for Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 4923–4928. [Google Scholar] [CrossRef]
- Freunberger, S.A.; Chen, Y.; Drewett, N.E.; Hardwick, L.J.; Bardé, F.; Bruce, P.G. The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609–8613. [Google Scholar] [CrossRef]
- Freunberger, S.A.; Chen, Y.; Peng, Z.; Griffin, J.M.; Hardwick, L.J.; Bardé, F.; Novák, P.; Bruce, P.G. Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Freunberger, S.A.; Peng, Z.; Bardé, F.; Bruce, P.G. Li-O2 Battery with a Dimethylformamide Electrolyte. J. Am. Chem. Soc. 2012, 134, 7952–7957. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, B.D.; Speidel, A.; Scheffler, R.; Miller, D.C.; Viswanathan, V.; Hummelshøj, J.S.; Nørskov, J.K.; Luntz, A.C. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001. [Google Scholar] [CrossRef]
- Gallant, B.M.; Mitchell, R.R.; Kwabi, D.G.; Zhou, J.; Zuin, L.; Thompson, C.V.; Shao-Horn, Y. Chemical and Morphological Changes of Li-O2 Battery Electrodes upon Cycling. J. Phys. Chem. C 2012, 116, 20800–20805. [Google Scholar] [CrossRef]
- Grande, L.; Paillard, E.; Hassoun, J.; Park, J.B.; Lee, Y.J.; Sun, Y.K.; Passerini, S.; Scrosati, B. The Lithium/Air Battery: Still an Emerging System or a Practical Reality? Adv. Mater. 2015, 27, 784–800. [Google Scholar] [CrossRef]
- Kim, B.G.; Kim, H.J.; Back, S.; Nam, K.W.; Jung, Y.; Han, Y.K.; Choi, J.W. Improved Reversibility in Lithium-Oxygen Battery: Understanding Elementary Reactions and Surface Charge Engineering of Metal Alloy Catalyst. Sci. Rep. 2015, 4, 18–21. [Google Scholar] [CrossRef]
- Sun, B.; Huang, X.; Chen, S.; Munroe, P.; Wang, G. Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium-Oxygen Batteries. Nano Lett. 2014, 14, 3145–3152. [Google Scholar] [CrossRef]
- Ottakam Thotiyl, M.M.; Freunberger, S.A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P.G. A Stable Cathode for the Aprotic Li-O2 Battery. Nat. Mater. 2013, 12, 1050–1056. [Google Scholar] [CrossRef]
- Lu, Y.C.; Xu, Z.; Gasteiger, H.A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171. [Google Scholar] [CrossRef]
- Li, F.; Tang, D.M.; Zhang, T.; Liao, K.; He, P.; Golberg, D.; Yamada, A.; Zhou, H. Superior Performance of a Li-O2 Battery with Metallic RuO2 Hollow Spheres as the Carbon-Free Cathode. Adv. Energy Mater. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Yang, X.H.; He, P.; Xia, Y.Y. Preparation of Mesocellular Carbon Foam and Its Application for Lithium/Oxygen Battery. Electrochem. Commun. 2009, 11, 1127–1130. [Google Scholar] [CrossRef]
- Read, J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2002, 149, A1190–A1195. [Google Scholar] [CrossRef]
- Zhang, J.G.; Xiao, J.; Xu, W. Primary Lithium Air Batteries. In The Lithium Air Battery: Fundamentals; Springer: New York, NY, USA, 2014; pp. 225–289. [Google Scholar]
- Chen, Y.; Freunberger, S.A.; Peng, Z.; Fontaine, O.; Bruce, P.G. Charging a Li-O2 Battery Using a Redox Mediator. Nat. Chem. 2013, 5, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Lacey, M.J.; Frith, J.T.; Owen, J.R. A Redox Shuttle to Facilitate Oxygen Reduction in the Lithium Air Battery. Electrochem. Commun. 2013, 26, 74–76. [Google Scholar] [CrossRef]
- Bergner, B.J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K.Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y.H.; et al. Superior Rechargeability and Efficiency of Lithium-Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angew. Chem. Int. Ed. 2014, 53, 3926–3931. [Google Scholar] [CrossRef]
- Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z.; Yin, W.; Wang, D.; Huang, Y.; Wang, J.; Wang, D.; et al. A Solution-Phase Bifunctional Catalyst for Lithium-Oxygen Batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946. [Google Scholar] [CrossRef]
- Bergner, B.J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P.R.; Janek, J. Understanding the Fundamentals of Redox Mediators in Li-O2 batteries: A Case Study on Nitroxides. Phys. Chem. Chem. Phys. 2015, 17, 31769–31779. [Google Scholar] [CrossRef] [Green Version]
- Kwak, W.J.; Hirshberg, D.; Sharon, D.; Shin, H.J.; Afri, M.; Park, J.B.; Garsuch, A.; Chesneau, F.F.; Frimer, A.A.; Aurbach, D.; et al. Understanding the Behavior of Li-Oxygen Cells Containing LiI. J. Mater. Chem. A 2015, 3, 8855–8864. [Google Scholar] [CrossRef]
- Kundu, D.; Black, R.; Adams, B.; Nazar, L.F. A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium-Oxygen Batteries. ACS Cent. Sci. 2015, 1, 510–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, F.; Yang, J.; Huang, Q.; Wang, X.; Huang, H.; Wang, Q. Redox Targeting of Anatase TiO2 for Redox Flow Lithium-Ion Batteries. Adv. Energy Mater. 2014, 4, 1–7. [Google Scholar]
- Huang, Q.; Li, H.; Grätzel, M.; Wang, Q. Reversible Chemical Delithiation/Lithiation of LiFePO4: Towards a Redox Flow Lithium-Ion Battery. Phys. Chem. Chem. Phys. 2013, 15, 1793–1797. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Q. Next-Generation, High-Energy-Density Redox Flow Batteries. Chempluschem 2015, 80, 312–322. [Google Scholar] [CrossRef]
- Jia, C.; Pan, F.; Zhu, Y.G.; Huang, Q.; Lu, L.; Wang, Q. High-Energy Density Nonaqueous all Redox Flow Lithium Battery Enabled with a Polymeric Membrane. Sci. Adv. 2015, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.G.; Jia, C.; Yang, J.; Pan, F.; Huang, Q.; Wang, Q. Dual Redox Catalysts for Oxygen Reduction and Evolution Reactions: Towards a Redox Flow Li-O2 Battery. Chem. Commun. 2015, 51, 9451–9454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.G.; Wang, X.; Jia, C.; Yang, J.; Wang, Q. Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catal. 2016, 6, 6191–6197. [Google Scholar] [CrossRef]
- Chen, S.; Duan, J.; Vasileff, A.; Qiao, S.Z. Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angew. Chem. Int. Ed. 2016, 55, 3804–3808. [Google Scholar] [CrossRef]
- Muthuchamy, N.; Jang, S.; Park, J.C.; Park, S.; Park, K.H. Bimetallic NiPd Nanoparticle-Incorporated Ordered Mesoporous Carbon as Highly Efficient Electrocatalysts for Hydrogen Production via Overall Urea Electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 15526–15536. [Google Scholar] [CrossRef]
NiVIr-LDH | NiV-LDH | Ni(OH)2 | Ir/C | Pt/C | ||
---|---|---|---|---|---|---|
OER | Overpotential (mV) | 203 | 319 | 337 | 284 | - |
Tafel slope (mA dec−1) | 55.3 | 119.2 | 214.1 | 86.8 | - | |
HER | Overpotential (mV) | 41 | 148 | - | - | - |
Tafel slope (mA dec−1) | 35.9 | 119.2 | - | - | 32.8 |
Co/β-Mo2@N-CNTs | Co@N-CNTs | Mo2C@N-CNTs | Pt/C | IrO2 | ||
---|---|---|---|---|---|---|
HER | η10 (mV) | 170 | 275 | 452 | 36 | - |
Tafel plot (mV dec−1) | 92 | 115 | 171 | - | - | |
Current density (mA cm−2) | 0.14 | 0.020 | 0.053 | - | - | |
Cdl (mF cm−2) | 2.1 | 1.3 | 0.7 | - | ||
OER | η10 (mV) | 356 | - | - | - | 377 |
Tafel plot (mV dec−1) | 67 | 90 | 188 | - | - | |
Cdl (mF cm−2) | 2.6 | 1.2 | 0.4 | - | - |
NiPd/OMC | Ni/OMC | Pd/OMC | Bare-OMC | |
---|---|---|---|---|
Ni (wt%) | 10 | 10 | - | - |
Pd (wt%) | 10 | - | 10 | - |
Pore volume (cm3 g−1) | 0.91 | 1.17 | 1.26 | 1.45 |
Poer diameter (nm) a | 5.3 | 5.3 | 5.2 | 5.3 |
Surface area (m2 g−1) b | 862 | 1243 | 1078 | 1434 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Moon, K.; Park, Y.; Park, S.; Park, K.H. Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts 2020, 10, 621. https://doi.org/10.3390/catal10060621
Jang S, Moon K, Park Y, Park S, Park KH. Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts. 2020; 10(6):621. https://doi.org/10.3390/catal10060621
Chicago/Turabian StyleJang, Sanha, Kyeongmin Moon, Youchang Park, Sujung Park, and Kang Hyun Park. 2020. "Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials" Catalysts 10, no. 6: 621. https://doi.org/10.3390/catal10060621
APA StyleJang, S., Moon, K., Park, Y., Park, S., & Park, K. H. (2020). Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts, 10(6), 621. https://doi.org/10.3390/catal10060621