Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. COSMO-RS Prediction
2.2. Monkfish Liver Oil (MLO) Extraction
2.2.1. Extraction in the Two Systems: Roller Mixer (RM) and ULTRA-TURRAX® (UT)
2.2.2. Analysis of the Extracted Oil
2.3. Enzymatic Preparation of Fatty Acid Ethyl Esters (FAEEs)
2.3.1. One-Step Synthesis: Transesterification Reactions
2.3.2. Two-Step Synthesis: Hydrolysis and Esterification Reactions
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Computational Method
COSMO-RS Procedure
3.3. Monkfish Liver Oil Extraction
3.3.1. Extraction in a Roller Mixer
3.3.2. Extraction in an ULTRA-TURRAX® System
3.3.3. Preparation of Resting Cells
3.4. Enzymatic Preparation of Ethyl Esters
3.4.1. One-Step Synthesis: Transesterification Reaction
3.4.2. Two-Step Synthesis: Hydrolysis and Esterification Reactions
3.5. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Punia, S.; Sandhub, K.S.; Siroha, A.K.; Dhull, S.B. Omega 3-metabolism, absorption, bioavailability and health benefits—A Review. Pharma Nutr. 2019, 10, 100162. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P.S. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Von Schacky, C. A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels. Vasc. Health Risk Manag. 2006, 2, 251–262. [Google Scholar] [CrossRef]
- Golpour, P.; Nourbakhsh, M.; Mazaherioun, M.; Janani, L.; Yaghmaei, P. Improvement of NRF2 gene expression and antioxidant status in patients with type 2 diabetes mellitus after supplementation with omega-3 polyunsaturated fatty acids: A double-blind randomised placebo-controlled clinical trial. Diabetes Res. Clin. Pract. 2020, 162, 108120. [Google Scholar] [CrossRef]
- Calder, P.C. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 327–335. [Google Scholar] [CrossRef]
- Volpato, M.; Hull, M.A. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Rev. 2018, 37, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Nindrea, R.D.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Protective Effect of Omega-3 Fatty Acids in Fish Consumption Against Breast Cancer in Asian Patients: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2019, 20, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Mazahery, H.; Conlon, C.A.; Beck, K.L.; Mugridge, O.; Kruger, M.C.; Stonehouse, W.; Camargo, C.A., Jr.; Meyer, B.J.; Tsang, B.; Von Hurst, P.R. Inflammation (IL-1β) Modifies the Effect of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids on Core Symptoms of Autism Spectrum Disorder—An Exploratory Pilot Study. Nutrients 2020, 12, 661. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.; Block, B.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Kwatra, B.A. Review on Potential Properties and Therapeutic Applications of DHA and EPA. Int. J. Pharm. Pharm. Res. 2019, 16, 140–176. [Google Scholar]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Saari, N.; Jahurul, H.A.; Abbas, K.A.; Norulaini, N.A. PUFAs in Fish Extraction, Fractionation, Importance in Health. Compr. Rev. Food Sci. Food Saf. 2009, 8, 59–74. [Google Scholar] [CrossRef]
- Sargent, J.R.; Bell, M.V.; Bell, J.G.; Henderson, R.J.; Tocher, D.R. Origins and functions of n-3 polyunsaturated fatty acids in marine organisms. In Phospholipids: Characterization, Metabolism and Novel Biological Applications; Cevc, G., Paltauf, F., Eds.; AOCS Press: Champaign, IL, USA, 1995; pp. 248–258. [Google Scholar]
- Espinosa, S.; Diaza, M.S.; Brignolea, E.A. Food additives obtained by supercritical extraction from natural sources. J. Supercrit. Fluids 2008, 45, 213–219. [Google Scholar] [CrossRef]
- Pike, I.H.; Jackson, A. Fish oil: Production and use now and in the future. Lipid Technol. 2010, 22, 59–61. [Google Scholar] [CrossRef]
- Angulo, B.; Fraile, J.M.; Gil, L.; Herrerías, C.I. Comparison of chemical and enzymatic methods for the transesterification of waste fish oil Fatty Ethyl Esters with different Alcohols. ACS Omega 2020, 5, 1479–1487. [Google Scholar] [CrossRef] [Green Version]
- Informe Realizado por la Asociación Empresarial de Acuicultura de España (APROMAR). 2019, pp. 1–91. Available online: http://apromar.es/sites/default/files/2019/InformeAcui/APROMAR%20Informe%20ACUICULTURA%202019%20v-1-2.pdf (accessed on 15 August 2020).
- Informe EL MERCADO PESQUERO DE LA UE 2019. 2019, p. 1. Available online: https://www.eumofa.eu/documents/20178/314856/ES_El+mercado+pesquero+de+la+UE_2019.pdf/ (accessed on 29 August 2020).
- Erasmus, V.N.; Kadhila, T.; Gabriel, N.N.; Thyberg, K.L.; Ilungu, S.; Machado, T. Assessment and quantification of Namibian seafood waste production. Ocean Coast. Manag. 2021, 199, 105402. [Google Scholar] [CrossRef]
- Iñarra, B.; Bald, C.; San Martín, D.; Orive, M.; Cebrián, M.; Zufía, J. Guía para la Valorización de Subproductos de la Acuicultura. AZTI, Derio. 2018, pp. 1–44. Available online: https://www.azti.es/wp-content/uploads/2018/12/AZTI_guia_VALACUI101218online.pdf (accessed on 15 August 2020).
- Fisher, R.A.; DuPaul, B. A Fisherman’s Guide: Getting the Most out of Monkfish. Marine. Resource Advisory No. 37; Virginia Institute of Marine Science, College of William and Mary: Gloucester Point, VA, USA, 1990; pp. 1–7. [Google Scholar] [CrossRef]
- Manipulación de la Pesca del día en Embarcaciones de Red de Enmalle; Servicio Central de Publicaciones Gobierno Vasco, Departamento de Medio Ambiente, Planificación Territorial y Pesca; ISBN 978-84-457-3186-433-34. Colección ITSASO 37; 2011; pp. 33–34. Available online: http://www.euskadi.net/ejgvbiblioteka (accessed on 15 July 2020).
- Guía de Buenas Prácticas de Higiene para Buques Palanqueros y Buques Factoría Congeladores. Organización de Productores de Buques Congeladores de Merlúcidos, Cefalópodos y Especies Varias. OPPC-3. 2017, pp. 78–80. Available online: http://www.arvi.org/publicaciones/GUIA_DE_BUENAS_PRACTICAS_DE_HIGIENE.PDF (accessed on 15 July 2020).
- Pacetti, D.; Alberti, F.; Boselli, E.; Frega, N.G. Characterisation of furan fatty acids in Adriatic fish. Food Chem. 2010, 122, 209–215. [Google Scholar] [CrossRef]
- Folch, A.J.; Lees, M.; Sloane-Stanlet, G.H. Simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. Available online: http://www.jbc.org/ (accessed on 16 May 2019). [CrossRef]
- Cascant, M.M.; Breil, B.; Garrigues, S.; De la Guardia, M.; Fabiano-Tixier, A.S.; Chemat, F. A green analytical chemistry approach for lipid extraction: Computation methods in the selection of green solvents as alternative to hexane. Anal. Bioanal. Chem. 2017, 409, 3527–3539. [Google Scholar] [CrossRef]
- Yara-Varón, E.; Fabiano-Tixier, A.S.; Balcells, M.; Canela- Garayoa, R.; Billy, A.; Chemat, F. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Adv. 2016, 6, 27750–27759. [Google Scholar] [CrossRef] [Green Version]
- Ivanovs, K.; Blumberga, D. Extraction of fish oil using green extraction methods: A short review. Energy Procedia 2017, 128, 477–483. [Google Scholar] [CrossRef]
- Codex Alimentarius. NORMA PARA ACEITES DE PESCADO: CXS 329-2017. Adoptada en. 2017. Available online: www.codexalimentarios.org (accessed on 20 August 2020).
- Tanzi, D.C.; Vian, M.A.; Ginies, C.; Elmaataoui, M.; Chemat, F. Terpenes as Green Solvents for Extraction of Oil from Microalgae. Molecules 2012, 17, 8196–8205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Vian, M.A.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano-Tixier, A.S. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Yara-Varón, E.; Selka, A.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Touaibiac, M.; Chemat, F. Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chem. 2016, 18, 6596–6608. [Google Scholar] [CrossRef]
- De Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Wolf, M.R.M.; Filho, R.M. Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Yara-Varón, E.; Li, Y.; Balcells, M.; Canela-Garayoa, R.; Fabiano-Tixier, A.S.; Chemat, F. Review. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products. Molecules 2017, 22, 1474. [Google Scholar] [CrossRef]
- Sicaire, A.G.; Vian, M.; Fine, F.; Joffre, F.; Carré, P.; Tostain, S.; Chemat, F. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing. Int. J. Mol. Sci. 2015, 16, 8430–8453. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, F.; Ma, X.; Huang, H.; Wang, Y. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols. J. Agric. Food Chem. 2018, 66, 218–227. [Google Scholar] [CrossRef]
- Miyashita, K.; Uemura, M.; Hosokawa, M. Effective Prevention of Oxidative Deterioration of Fish Oil: Focus on Flavor Deterioration. Annu. Rev. Food Sci. Technol. 2018, 9, 209–226. [Google Scholar] [CrossRef]
- Moreno-Perez, S.; Machado, D.F.; Pires, J.; Luna, P.; Señorans, F.J.; Guisan, J.M.; Fernandez-Lorente, G. Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of Sardine Oil. J. Agric. Food Chem. 2017, 65, 117–122. [Google Scholar] [CrossRef]
- Castejón, N.; Señoráns, F.J. Strategies for Enzymatic Synthesis of Omega-3 Structured Triacylglycerols from Camelina sativa Oil Enriched in EPA and DHA. Eur. J. Lipid Sci. Technol. 2019, 121, 1800412. [Google Scholar] [CrossRef]
- Ranjan-Moharana, T.; Byreddy, A.R.; Puri, M.; Barrow, C.; Rao, N.M. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1. PLoS ONE 2016, 11, e0151370. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, M.; Gentili, F. A single-step method for rapid extraction of total lipids from green microalgae. PLoS ONE 2014, 9, e89643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Gu, S.; Liu, S.; Zhang, J.; Ding, Y.; Liu, J. Extraction of oil from high-moisture tuna liver by subcritical dimethyl ether: Feasibility and optimization by the response surface method. RSC Adv. 2018, 8, 2723–2733. [Google Scholar] [CrossRef] [Green Version]
- Routray, W.; Dave, D.; Ramakrishnan, V.V.; Murphy, W. Production of High Quality Fish Oil by Enzymatic Protein Hydrolysis from Cultured Atlantic Salmon By-Products: Investigation on Effect of Various Extraction Parameters Using Central Composite Rotatable Design. Waste Biomass Valor 2018, 9, 2003–2014. [Google Scholar] [CrossRef]
- Ciriminna, R.; Scurria, A.; Fabiano-Tixier, A.S.; Lino, C.; Avellone, G.; Chemat, F.; Pagliaro, M. Omega-3 Extraction from Anchovy Fillet Leftovers with Limonene: Chemical, Economic, and Technical Aspects. ACS Omega 2019, 4, 15359–15363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18, 3879. [Google Scholar] [CrossRef]
- Henderson, R.K.; Jimenez-Gonzalez, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s solvent selection guide-embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854–862. [Google Scholar] [CrossRef]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehadad, S.; Dunne, P.J. CHEM21 selection guide of classical- and less classical-solvent. Green Chem. 2016, 18, 288. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, S.; Filho, R.M. Recent advances in lipid extraction using green solvents. Renew. Sustain. Energy Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Catrin, E.T.; Brecker, L.; Wagner, K.H. 1H NMR spectroscopy as tool to follow changes in the fatty acids of fish oils. Eur. J. Lipid Sci. Technol. 2008, 110, 141–148. [Google Scholar] [CrossRef]
- Bratu, A.; Mihalache, M.; Hanganu, A.M.; Chira, N.A.; Todaşcă, M.C.; Roşca, S. Quantitative determination of fatty acids from fish oils using GC-MS method and 1H NMR spectroscopy. U.P.B. Sci. Bull. 2013, 75, 24–31. [Google Scholar]
- Nestor, G.; Bankefors, J.; Schlechtriem, G.; Brannas, E.; Pickova, J.; Sandstrom, C. High-Resolution 1H Magic Angle Spinning NMR Spectroscopy of Intact Arctic Char (Salvelinus Alpinus) Muscle. Quantitative Analysis of n-3 Fatty Acids, EPA and DHA. J. Agric. Food Chem. 2010, 58, 10799–10803. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Khaneghah, A.M.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Djoussé, L.; Matsumoto, C.; Hanson, N.Q.; Weir, N.L.; Tsai, M.Y.; Gaziano, J.M. Plasma cis-vaccenic acid and risk of heart failure with antecedent coronary heart disease in male physicians. Clin. Nutr. 2014, 33, 478–482. [Google Scholar] [CrossRef] [Green Version]
- Field, C.J.; Blewett, H.H.; Proctor, S.; Vine, D. Human health benefits of vaccenic acid. Appl. Physiol. Nutr. Metab. 2009, 34, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Sissener, N.H.; Ørnsrud, R.; Sanden, M.; Frøyland, L.; Remø, S.; Lundebye, A.K. Erucic Acid (22:1n-9) in Fish Feed, Farmed, and Wild Fish and Seafood Products. Nutrients 2018, 10, 1443. [Google Scholar] [CrossRef] [Green Version]
- Shimada, Y.; Maruyama, K.; Sugihara, A.; Moriyama, S.; Tominaga, Y. Purification of Docosahexaenoic Acid from Tuna Oil by a Two-Step Enzymatic Method: Hydrolysis and Selective Esterification. JAOCS 1997, 74, 1441. [Google Scholar] [CrossRef]
- Gudmundur, G.; Haraldsson, G.G.; Kristinsson, B.; Sigurdardottir, R.; Gudmundson, G.G.; Breivikb, H. The Preparation of Concentrates of Eicosapentaenoic Acid and Docosahexaenoic Acid by Lipase-Catalyzed Transesterification of Fish Oil with Ethanol. JAOCS 1997, 74, 1419–1424. [Google Scholar]
- Xu, Y.; Wang, D.; Mu, X.Q.; Zhao, K.A.; Zhang, K.C. Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase. J. Mol. Catal. B Enzym. 2002, 18, 29–37. [Google Scholar] [CrossRef]
- Aarthya, M.; Saravananb, P.; Ayyaduraia, N.; Gowthamana, M.K.; Kaminia, N.R. A two-step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455lipase. J. Mol. Catal. B Enzym. 2016, 125, 25–33. [Google Scholar] [CrossRef]
- Fraga, M.E.; Santana-N, D.M.; Gatti, J.M.; Direito, G.M.; Cavaglieri, L.R.; Rosa-R, C.A. Characterization of Aspergillus species based on fatty acid profiles. Mem. Inst. Oswaldo Cruz Rio Janeiro 2008, 103, 540–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asci, F.; Aydin, B.; Akkus, G.U.; Unal, A.; Erdogmus, S.F.; Korcan, S.E.; Jahan, I. Fatty acid methyl ester analysis of Aspergillus fumigatus isolated from fruit pulps for biodiesel production using GC-MS spectrometry. Bioengineered 2020, 11, 408–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuchardt, J.P.; Neubronner, J.; Kressel, G.; Merkel, M.; Schacky, C.V.; Hahn, A. Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in stat in-treated dyslipidemic subjects: Results from a six-month randomized controlled trial. Prostaglandins Leukot Essent Fat. Acids 2011, 85, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Ashjaria, M.; Mohammadic, M.; Badria, R. Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. J. Mol. Catal. B Enzym. 2015, 122, 147–155. [Google Scholar] [CrossRef]
- Klamt, A. Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS. Fluid Phase Equilib. 2003, 206, 223–235. [Google Scholar] [CrossRef] [Green Version]
- BIOVIA COSMOtherm 2020 User Guide; Dassault Systèmes: Vélizy-Villacoublay, France, 2019.
- Canela-Garayoa, R.; Yara-Varón, E.; Balcells, M.; Torres, M.; Eras, J. Nuclear Magnetic Resonance Spectroscopy: An Alternative Fast Tool for Quantitative Analysis of the Solvent-free Ethanolysis of Coconut Oil Using Fungal Resting Cells. New Biotechnol. 2014, 31, S89. [Google Scholar] [CrossRef]
- Prakash, R.; Aulakh, S.S. Transesterification of used edible and non-edible oils to alkyl esters by Aspergillus sp. as a whole cell catalyst. J. Basic Microbiol. 2011, 51, 607–613. [Google Scholar] [CrossRef]
- De Jesus, M.D.P.M.; De Melo, L.N.; Da Silva, J.P.V.; Crispim, A.C.; Figueiredo, I.M.; Bortoluzzi, J.H.; Meneghetti, S.M.P. Evaluation of proton nuclear magnetic resonance spectroscopy for determining the yield of fatty acid ethyl esters obtained by transesterification. Energy Fuels 2015, 29, 7343–7349. [Google Scholar] [CrossRef]
- Di Pietro, M.E.; Mannu, A.; Mele, A. NMR Determination of Free Fatty Acids in Vegetable Oils. Processes 2020, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Knothe, G.; Kenar, J.A. Determination of the fatty acid profile by 1H-NMR spectroscopy. Eur. J. Lipid Sci. Technol. 2004, 106, 88–96. [Google Scholar] [CrossRef]
Solvent | TAG 1 | TAG 2 | TAG 3 | TAG 4 | ||||
---|---|---|---|---|---|---|---|---|
Log10 (x_solub) | Probability (%) | Log10 (x_solub) | Probability (%) | Log10 (x_solub) | Probability (%) | Log10 (x_solub) | Probability (%) | |
2-MeTHF | 0.0000 | 100.00 | 0.0000 | 100.00 | 0.0000 | 100.00 | 0.0000 | 100.00 |
CPME | 0.0000 | 100.00 | 0.0000 | 100.00 | 0.0000 | 100.00 | 0.0000 | 100.00 |
DMC | −0.9721 | 10.66 | −0.8726 | 13.41 | −0.6799 | 20.90 | 0.0000 | 100.00 |
LMN | 0.0000 | 100.00 | 0.0000 | 100.00 | 0.0000 | 100.00 | 0.0000 | 100.00 |
FR | −1.7547 | 1.76 | −1.5751 | 2.66 | −1.4406 | 3.63 | 0.0000 | 100.00 |
Solvent | Roller Mixer | ULTRA-TURRAX® System | ||
---|---|---|---|---|
Oil Yield (OY) (g Per 100 g FM) | OY Compared to Maximum Oil Content (%) | Oil Yield (OY) (g Per 100 g FM) | OY Compared to Maximum Oil Content (%) | |
Reference (FR) | 39.0 | 100 | 39.0 | 100 |
2-MeTHF | 39.0 ± 0.9 | 100 ± 3.0 | 33.9 ± 1.5 | 87.0 ± 2.2 |
CPME | 39.0 ± 2.4 | 100 ± 0.7 | 39.0 ± 0.3 | 100 ± 2.2 |
DMC | 38.6 ± 1.9 | 99.0 ± 0.4 | 29.3 ± 0.2 | 75.0 ± 5.0 |
LMN | 37.4 ± 1.7 | 96.0 ± 6.7 | 32.0 ± 2.6 | 82.0 ± 4.3 |
FR | 34.5 ± 1.5 | 89.0 ± 1.5 | 29.1 ± 1.5 | 75.0 ± 1.4 |
Common Name. | Common Symbol | FA (%w/w) |
---|---|---|
Saturate Fatty Acid (SFAs) | ||
Hendecanoic | C10:0 | 0.2 ± 0.3 |
Lauric | C12:0 | 0.3 ± 0.4 |
Myristic | C14:0 | 1.9 ± 3.3 |
Palmitic | C16:0 | 15.6 ± 0.8 |
Margaric | C17:0 | 1.1 ± 0.1 |
Stearic | C18:0 | 4.2 ± 0.1 |
Arachidic | C20:0 | 1.3 ± 0.2 |
Behemic | C22:0 | 3.5 ± 0.5 |
Tetracosenoic | C24:0 | 1.7 ± 0.2 |
Monosaturated Fatty Acids (MUFAs) | ||
Myristoleic | C14:1n5 | 0.7 ± 0.4 |
cis-10-Pentadecenoic | C15:1n5 | 0.5 ± 0.3 |
Palmitelaidic | C16:1n7t | 0.4 ± 0.0 |
Palmitoleic | C16:1n7c | 7.1 ± 0.2 |
cis-10-Heptadecenoic | C17:1n7 | 0.4 ± 0.1 |
Elaidic | C18:1n9t | 1.1 ± 0.1 |
Oleic | C18:1n9c | 21.1 ± 0.5 |
Vaccenic | C18:1n7 | 5.4 ± 0.3 |
Gadoleic | C20:1n9 | 3.9 ± 0.8 |
Erucic | C22:1n9 | 0.7 ± 0.1 |
Nervonic | C24:1n9 | 0.8 ± 0.0 |
Σ MUFAs | 43.7 | |
Polyunsaturated Fatty Acids (PUFAs) | ||
all cis-9,12-Hexadecatrienoic | C16:2n4 | 0.5 ± 0.1 |
all cis-6,9,12-Hexadecatrienoic | C16:3n4 | 0.2 ± 0.1 |
Linoelaidic | C18:2n6t | 0.3 ± 0.1 |
Linoleic | C18:2n6c | 1.0 ± 0.1 |
α-Linoleic | C18:3 n3 | 0.2 ± 0.1 |
γ-Linolenic | C18:3n6 | 0.4 ± 0.0 |
Stearidonic | C18:4n3 | 0.6 ± 0.1 |
cis-11,14-Eicosadienoic | C20:2n6 | 0.5 ± 0.1 |
cis-11,14,17-Eicosatrienoic | C20:3n3 | 0.4 ± 0.1 |
all cis-8,11,14-Eicosatrienoic | C20:3n6 | 0.1 ± 0.1 |
Arachidonic | C20:4n6 | 1.1 ± 0.1 |
Juniperonic | C20:4n3 | 0.6 ± 0.1 |
Eicosapentaenoic (EPA) | C20:5n3 | 4.4 ± 0.3 |
cis-13,16-Docosadienoic | C22:2n6 | 0.2 ± 0.1 |
Adrenic | C22:4n6 | 0.3 ± 0.0 |
Clupadonic | C22:5n3 | 0.5 ± 0.0 |
Docosahexaenoic (DHA) | C22:6n3 | 15.2 ± 0.2 |
Σ PUFAs | 26.5 |
Biocatalyst | One-Step | Two-Step | |||||
---|---|---|---|---|---|---|---|
Transesterification (%) | Hydrolysis (%) | Esterification (%) | |||||
24 h | 48 h | 72 h | 24 h | 24 h | 48 h | 72 h | |
Novozym 435 | 44.0 ± 2.8 | 61.0 ± 1.5 | 63.0 ± 0.4 | 83.1 ± 3.3 | 54.0 ± 0.5 | 70.0 ± 3.1 | 85.0 ± 1.4 |
R. oryzae | 53.0 ± 4.1 | 54.0 ± 5.0 | 61.0 ± 2.3 | 88.1 ± 1.7 | 42.0 ± 2.7 | 55.0 ± 1.7 | 65.0 ± 4.0 |
A. flavus | 32.0 ± 2.7 | 38.0 ± 3.4 | 46.0 ± 0.6 | 93.2 ± 0.0 | 37.0 ± 5.1 | 39.0 ± 3.1 | 41.0 ± 2.0 |
R. oryzae-A. flavus (1:1) | 34.0 ± 4.5 | 38.0 ± 3.6 | 45.0 ±1.7 | 87.9 ± 5.6 | 32.0 ± 3.2 | 37.0 ± 4.5 | 37.0 ± 4.5 |
R. oryzae-A. flavus (7:3) | 38.0 ± 4.2 | 45.0 ± 1.7 | 57.0 ± 4.2 | 95.7 ± 0.3 | 41.0 ± 0.6 | 34.0 ± 4.7 | 42.0 ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera-Oviedo, J.; Yara-Varón, E.; Torres, M.; Canela-Garayoa, R.; Balcells, M. Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil. Catalysts 2021, 11, 100. https://doi.org/10.3390/catal11010100
Aguilera-Oviedo J, Yara-Varón E, Torres M, Canela-Garayoa R, Balcells M. Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil. Catalysts. 2021; 11(1):100. https://doi.org/10.3390/catal11010100
Chicago/Turabian StyleAguilera-Oviedo, Johanna, Edinson Yara-Varón, Mercè Torres, Ramon Canela-Garayoa, and Mercè Balcells. 2021. "Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil" Catalysts 11, no. 1: 100. https://doi.org/10.3390/catal11010100
APA StyleAguilera-Oviedo, J., Yara-Varón, E., Torres, M., Canela-Garayoa, R., & Balcells, M. (2021). Sustainable Synthesis of Omega-3 Fatty Acid Ethyl Esters from Monkfish Liver Oil. Catalysts, 11(1), 100. https://doi.org/10.3390/catal11010100