Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Characterization
2.2. Studies of Zr/CrO2 Photo-Catalysts for the Degradation of Dyes
2.2.1. The Degradation Study of MB and MO Dyes
2.2.2. The MB and MO Kinetic Study
2.2.3. MB and MO Percent Photo Catalytic Degradation Curve of Zr-doped CrO2 as Function of time
3. Tentative Mechanism
- After illumination with UV light, the electrons move from the conduction band to the valence band, leaving a positive hole in the valence band.CrO2 + hv → CrO2 (h+ vb) + CrO2 (e− cb)
- The electrons in the conduction band of Zr-doped CrO2 can be trapped by dopant Zr4+, thereby holding up the recombination process of electrons.CrO2 (e−) + Zr4+ → CrO2 + Zr3+ (unstable)
- The trapped electrons (Zr4+→Zr3+) were scavenged by molecular oxygen, which is adsorbed on the surface of CrO2 to generate superoxide radicals, in turn producing hydrogen peroxide (H2O2), hydroperoxyl (HO2•), and hydroxyl (•OH) radicals.CrO2 (e−) + O2 → CrO2 + O2• −CrO2 (e−) + O2• − + H2O → CrO2 + HO2• + HO−CrO2 (e−) + HO• + H+ → CrO2 + H2O2CrO2 (e−) + H2O2 → CrO2 + HO2• + HO−
- Finally, the holes act as oxidizing agents and electrons act as reducing agents for the degradation of MB and MO dyes in aqueous solution.•OH (hv) + Pollutant → Degradation product
4. Materials and Methods
4.1. Materials
4.2. Synthesis of Zr/CrO2 Photocatalyst by Solid-State Reaction Method
4.3. Photocatalytic Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, A.Y.L.; Lo, C.K.Y.; Kan, C.-W. Textile dyes and human health: A systematic and citation network analysis review. Coloration Technol. 2018, 134, 245–257. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004, 55, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Nagajyothi, P.C.; Prabhakar Vattikuti, S.V.; Devarayapalli, K.C.; Yoo, K.; Shim, J.; Sreekanth, T. Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2617–2723. [Google Scholar] [CrossRef]
- Huang, S.; Wu, X.; Niu, J.; Qin, S. Structural, magnetic and electronic properties of CrO2 at multimegabar pressures. RSC Adv. 2018, 8, 24561–24570. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Ahmad, S.; Dar, A.; Kotnala, R. An Inexpensive Route to Synthesize High-Purity CrO. ISRN Mater. Sci. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cheng, M.; Lu, Z.; Yu, Z.; Liu, S.; Liang, R.; Liu, Y.; Shi, J.; Xiong, R. Magnetic properties and thermal stability of Ti-doped CrO2 films. J. Magn. Magn. Mater. 2018, 451, 572–576. [Google Scholar] [CrossRef]
- Chamberland, B.L. The chemical and physical properties of CrO2 and tetravalent chromium oxide derivatives. Crit. Rev. Solid State Mater. Sci. 1977, 7, 1–31. [Google Scholar] [CrossRef]
- Larbi, T.; Amara, M.; Ouni, B.; Amlouk, M. Enhanced photocatalytic degradation of methylene blue dye under UV-sunlight irradiation by cesium doped chromium oxide thin films. Mater. Res. Bull. 2017, 95, 152–162. [Google Scholar] [CrossRef]
- Ireland, C.; Bennett, S.C.; Darwent, J.R.; Palgrave, R.G.; Smith, A.W.J.; Claridge, J.B.; Poulston, S.; Clark, J.H.; Rosseinsky, M.J. Visible light photocatalysis by metal-to-metal charge transfer for degradation of methyl orange. J. Mater. Chem. A 2016, 4, 12479–12486. [Google Scholar] [CrossRef]
- Biswas, S. Correlation-induced charge ordering in the metal-insulator transition of Ru-doped tetragonal CrO2. Mater. Sci. Eng. B 2018, 238, 100–107. [Google Scholar] [CrossRef]
- Ding, Y.; Yuan, C.; Wang, Z.; Liu, S.; Shi, J.; Xiong, R.; Yin, D.; Lu, Z. Improving thermostability of CrO2 thin films by doping with Sn. Appl. Phys. Lett. 2014, 105, 092401. [Google Scholar] [CrossRef]
- Yuan, C.; Lu, Z.; Liu, S.; Gan, Z.; Guo, F.; Xiong, R.; Mei, X.; Liu, H.; Shi, J. Half metallicity and magnetic properties of CrO2 doped with Ti, Sn or Ru. J. Magn. Magn. Mater. 2016, 417, 80–86. [Google Scholar] [CrossRef]
- Mataré, H.F. Defect Electronics in Semiconductors; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Khan, M.A.M.; Khan, W.; Khan, M.N.; Alhazaa, A.N. Enhanced visible light-driven photocatalytic performance of Zr doped CeO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2019, 30, 8291–8300. [Google Scholar] [CrossRef]
- Meshesha, D.S.; Matangi, R.C.; Tirukkovalluri, S.R.; Bojja, S. Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co-doped TiO2 nanomaterial for degradation of methylene blue. J. Asian Ceram. Soc. 2017, 5, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Subash, B.; Krishnakumar, B.; Swaminathan, M.; Shanthi, M. Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir 2013, 29, 939–949. [Google Scholar] [CrossRef]
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 2015, 10, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Ojha, A.K. Oxygen vacancy induced photoluminescence properties and enhanced photocatalytic activity of ferromagnetic ZrO2 nanostructures on methylene blue dye under ultra-violet radiation. J. Alloys Compd. 2015, 644, 654–662. [Google Scholar] [CrossRef]
- Koirala, R.; Gunugunuri, K.R.; Pratsinis, S.E.; Smirniotis, P.G. Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles. J. Phys. Chem. C 2011, 115, 24804–24812. [Google Scholar] [CrossRef]
- Jung, K.T.; Bell, A.T. An in Situ Infrared Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Zirconia. J. Catal. 2001, 204, 339–347. [Google Scholar] [CrossRef]
- Tseng, T.K.; Lin, Y.S.; Chen, Y.J.; Chu, H. A review of photocatalysts prepared by sol-gel method for VOCs removal. Int. J. Mol. Sci. 2010, 11, 2336–2361. [Google Scholar] [CrossRef] [PubMed]
- Somraksa, W.; Suwanboon, S.; Amornpitoksuk, P.; Randorn, C. Physical and Photocatalytic Properties of CeO2/ZnO/ZnAl2O4 Ternary Nanocomposite Prepared by Co-precipitation Method. Mater. Res. 2020, 23. [Google Scholar] [CrossRef]
- Bao, X.-W.; Yan, S.-S.; Chen, F.; Zhang, J. Preparation of TiO2 photocatalyst by hydrothermal method from aqueous peroxotitanium acid gel. Mater. Lett. 2005, 59, 412–415. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Kuna, E.; Lisowski, P. Synthesis of photoactive materials by sonication: Application in photocatalysis and solar cells. In Sonochemistry; Springer: Berlin/Heidelberg, Germany, 2017; pp. 95–115. [Google Scholar]
- Ye, M.; Pan, J.; Guo, Z.; Liu, X.; Chen, Y. Effect of ball milling process on the photocatalytic performance of CdS/TiO2 composite. Nanotechnol. Rev. 2020, 9, 558–567. [Google Scholar] [CrossRef]
- Stark, W.J.; Maciejewski, M.; Mädler, L.; Pratsinis, S.E.; Baiker, A. Flame-made nanocrystalline ceria/zirconia: Structural properties and dynamic oxygen exchange capacity. J. Catal. 2003, 220, 35–43. [Google Scholar] [CrossRef]
- Hu, J.; Cao, Y.; Wang, K.; Jia, D. Green solid-state synthesis and photocatalytic hydrogen production activity of anatase TiO2 nanoplates with super heat-stability. RSC Adv. 2017, 7, 11827–11833. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Ram, S.; Eckert, J.; Fecht, H. Synthesis and morphological stability in CrO2 single crystals of a half-metallic ferromagnetic compound. J. Phys. Conf. Ser. 2009, 144, 012110. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Khan, W.; Khan, M.N.; Alhazaa, A.N. Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals OPEN. J. Nat. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Jansons, A.W.; Koskela, K.M.; Crockett, B.M.; Hutchison, J.E. Transition metal-doped metal oxide nanocrystals: Efficient substitutional doping through a continuous growth process. Chem. Mater. 2017, 29, 8167–8176. [Google Scholar] [CrossRef]
- Singh, D.K.; Pandey, D.K.; Yadav, R.R.; Singh, D. Characterization of CrO2-poly-vinyl pyrrolidone magnetic nanofluid. J. Magn. Magn. Mater. 2012, 324, 3662–3667. [Google Scholar] [CrossRef]
- Bhati, I.; Punjabi, P.B.; Ameta, S.C. Photocatalytic degradation of fast green using nanosized CeCrO3. Maced. J. Chem. Chem. Eng. 2010, 29, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Alaam, M.; El-Haes, H.; Jalbout, A.F.; de Leon, A. Analysis of the structure and vibrational spectra of glucose and fructose. Eclet. Quim. 2006, 31, 15–21. [Google Scholar] [CrossRef]
- Chertihin, G.V.; Bare, W.D.; Andrews, L. Reactions of laser-ablated chromium atoms with dioxygen. Infrared spectra of CrO, OCrO, CrOO, CrO3, Cr(OO)2, Cr2O2, Cr2O3 and Cr2O4 in solid argon. J. Chem. Phys. 1997, 107, 2798–2806. [Google Scholar] [CrossRef]
- Lim, G.; Minami, K.; Yamamoto, K.; Sugihara, M.; Uchiyama, M.; Esashi, M. Multi-link active catheter snake-like motion. Robotica 1996, 14, 499–506. [Google Scholar] [CrossRef]
- Ca, N.X.; Van, H.T.; Do, P.V.; Thanh, L.D.; Tan, P.M.; Truong, N.X.; Oanh, V.T.K.; Binh, N.T.; Hien, N.T. Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots. RSC Adv. 2020, 10, 25618–25628. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 903–922. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: New York, NY, USA, 1971. [Google Scholar]
- El-Molla, S.A.; Ibrahim, S.M.; Ebrahim, M.M. Influence of ZnO doping and calcination temperature of nanosized CuO/MgO system on the dehydrogenation reactions of methanol. Int. J. Ind. Chem. 2016, 7, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Yan, A.; Zhao, H. Influences of doping on photocatalytic properties of TiO2 photocatalyst. In Semiconductor Photocatalysis—Materials, Mechanisms and Applications; Cao, W., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 31–80. [Google Scholar]
- Akpan, U.; Hameed, B. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef]
- Ali, N.; Ali, F.; Khurshid, R.; Ikramullah; Ali, Z.; Afzal, A.; Bilal, M.; Iqbal, H.M.N.; Ahmad, I. TiO2 Nanoparticles and Epoxy-TiO2 Nanocomposites: A Review of Synthesis, Modification Strategies, and Photocatalytic Potentialities. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4829–4846. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Niaei, A.; Khataee, A. Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: Comparison and modeling of reaction kinetics. J. Environ. Sci. Health Part B 2006, 41, 1273–1290. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ali, F.; Said, A.; Begum, T.; Bilal, M.; Rab, A.; Sheikh, Z.A.; Iqbal, H.M.N.; Ahmad, I. Characterization and Deployment of Surface-Engineered Cobalt Ferrite Nanospheres as Photocatalyst for Highly Efficient Remediation of Alizarin Red S Dye from Aqueous Solution. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5063–5073. [Google Scholar] [CrossRef]
- Zheng, S.; Jiang, W.; Cai, Y.; Dionysiou, D.D.; O'Shea, K.E. Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catal. Today 2014, 224, 83–88. [Google Scholar] [CrossRef]
- Ali, N.; Ali, F.; Ullah, I.; Ali, Z.; Duclaux, L.; Reinert, L.; Lévêque, J.M.; Farooq, A.; Bilal, M.; Ahmad, I. Organically modified micron-sized vermiculite and silica for efficient removal of Alizarin Red S dye pollutant from aqueous solution. Environ. Technol. Innov. 2020, 19, 101001. [Google Scholar] [CrossRef]
Peak Number | Functional Group | Peak Position cm−1 | Mode |
---|---|---|---|
1 | Cr16O2 | 428 | Stretching |
2 | Cr18O18O | 503 | Stretching |
3 | CrOO (O-O) | 653 | Stretching |
4 | Zr-O | 815 | Bending |
5 | Cr-O | 1110 | Stretching |
6 | C-O-C | 1239 | Stretching |
7 | O52CrO | 1789 | Bending |
8 | CO2 | 1986 | Bending |
9 | C-C | 3010 | Bending |
10 | C-H | 3100 | Vibration |
11 | OH | 3400 | Stretching |
Samples | CrO2 | Zr1CrO2 | Zr3CrO2 | Zr5CrO2 | Zr7CrO2 | Zr9CrO2 |
---|---|---|---|---|---|---|
Band gap (E) eV | 4.3 | 3.2 | 2.9 | 2.87 | 2.7 | 2.4 |
Samples | Pore Size (cm3/g) | BET S.A. (m2/g) |
---|---|---|
Zr1CrO2 | 4.8 | 3.5 |
Zr3CrO2 | 12 | 8.7 |
Zr5CrO2 | 13.4 | 9.9 |
Zr7CrO2 | 11.1 | 8.1 |
Zr9CrO2 | 11.2 | 8.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, Z.; Ali, F.; Sajjad, M.; Ali, N.; Bilal, M.; Shaik, M.R.; Adil, S.F.; Sharaf, M.A.F.; Awwad, E.M.; Khan, M. Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes. Catalysts 2021, 11, 117. https://doi.org/10.3390/catal11010117
Muhammad Z, Ali F, Sajjad M, Ali N, Bilal M, Shaik MR, Adil SF, Sharaf MAF, Awwad EM, Khan M. Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes. Catalysts. 2021; 11(1):117. https://doi.org/10.3390/catal11010117
Chicago/Turabian StyleMuhammad, Zahir, Farman Ali, Muhammad Sajjad, Nisar Ali, Muhammad Bilal, Mohammed Rafi Shaik, Syed Farooq Adil, Mohammed A.F. Sharaf, Emad Mahrous Awwad, and Mujeeb Khan. 2021. "Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes" Catalysts 11, no. 1: 117. https://doi.org/10.3390/catal11010117
APA StyleMuhammad, Z., Ali, F., Sajjad, M., Ali, N., Bilal, M., Shaik, M. R., Adil, S. F., Sharaf, M. A. F., Awwad, E. M., & Khan, M. (2021). Zirconium-Doped Chromium IV Oxide Nanocomposites: Synthesis, Characterization, and Photocatalysis towards the Degradation of Organic Dyes. Catalysts, 11(1), 117. https://doi.org/10.3390/catal11010117