Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives
Abstract
:1. Introduction
2. Results
2.1. Immobilization of RoL in Polypropylene Support
2.2. Biocatalytic Properties of Immobilized RoL
2.2.1. Effect of Temperature on Lipase Activity
2.2.2. Effect of Temperature on Lipase Stability
2.2.3. Effect of pH on Lipase Activity
2.3. Scanning of Electron Microscopy (SEM)
2.4. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5. Enzymatic Esterification of Oleic Acid
3. Discussion
3.1. Immobilization of RoL on Polypropylene Support
3.2. Characterization of RoL Immobilized on Polypropylene Support
4. Materials and Methods
4.1. Materials
4.2. Methods
4.3. Immobilization of RoL in Polypropylene Support
4.4. Lipase Activity Determination
4.5. Characterization of Immobilized RoL
4.5.1. Effect of Temperature on Enzyme Activity
4.5.2. Effect of Temperature on Enzyme Stability
4.5.3. Effect of pH on Enzyme Activity
4.5.4. Scanning of Electron Microscopy
4.5.5. Fourier-Transform Infrared Spectroscopy
4.6. Enzymatic Esterification of Oleic Acid
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abaházi, E.; Boros, Z.; Poppe, L. Additives Enhancing the Catalytic Properties of Lipase from Burkholderia cepacia Immobilized on Mixed-Function-Grafted Mesoporous Silica Gel. Molecules 2014, 19, 9818–9837. [Google Scholar] [CrossRef] [Green Version]
- Palomo, J.M.; Ortiz, C.; Fuentes, M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. J. Chromatogr. A 2004, 1038, 267–273. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [Green Version]
- Palomo, J.M.; Filice, M.; Romero, O.; Guisan, J.M. Improving Lipase Activity by Immobilization and Post-immobilization Strategies. Methods Mol. Biol. 2013, 1051, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.; Narayanan, G.K.; Gandhi, S.; Sethuraman, S.; Krishnan, U.M. Rhizopus oryzae Lipase Immobilized on Hierarchical Mesoporous Silica Supports for Transesterification of Rice Bran Oil. Appl. Biochem. Biotechnol. 2015, 175, 2332–2346. [Google Scholar] [CrossRef] [PubMed]
- Tufvesson, P.; Törnvall, U.; Carvalho, J.; Karlsson, A.J.; Hatti-Kaul, R. Towards a cost-effective immobilized lipase for the synthesis of specialty chemicals. J. Mol. Catal. B Enzym. 2011, 68, 200–205. [Google Scholar] [CrossRef]
- Manoel, E.A.; Ribeiro, M.F.; dos Santos, J.C.; Coelho, M.A.Z.; Simas, A.B.; Fernandez-Lafuente, R.; Freire, D.M. Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia: Application to the kinetic resolution of myo-inositol derivatives. Process. Biochem. 2015, 50, 1557–1564. [Google Scholar] [CrossRef]
- Salis, A.; Sanjust, E.; Solinas, V.; Monduzzi, M. Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilisation. J. Mol. Catal. B Enzym. 2003, 24, 75–82. [Google Scholar] [CrossRef]
- Foresti, M.; Ferreira, M. Ethanol pretreatment effect and particle diameter issues on the adsorption of Candida rugosa lipase onto polypropylene powder. Appl. Surf. Sci. 2004, 238, 86–90. [Google Scholar] [CrossRef]
- Salis, A.; Sanjust, E.; Solinas, V.; Monduzzi, M. Commercial lipase immobilization on Accurel MP 1004 porous polypropylene. Biocatal. Biotransformation 2005, 23, 381–386. [Google Scholar] [CrossRef]
- Tecelão, C.; Guillén, M.; Valero, F.; Ferreira-Dias, S. Immobilized heterologous Rhizopus oryzae lipase: A feasible biocatalyst for the production of human milk fat substitutes. Biochem. Eng. J. 2012, 67, 104–110. [Google Scholar] [CrossRef]
- Cao, H.; Jiang, Y.; Zhang, H.; Nie, K.; Lei, M.; Deng, L.; Wang, F.; Tan, T. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. Enzym. Microb. Technol. 2017, 96, 157–162. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Batalla, P.; Mateo, C.; Carrascosa, A.V.; Pessela, B.C.; Guisán, J.M. Selective adsorption of small proteins on large-pore anion exchangers coated with medium size proteins. Colloids Surf. B Biointerfaces 2010, 78, 140–145. [Google Scholar] [CrossRef]
- Matijasevic, B.; Banhart, J. Improvement of aluminium foam technology by tailoring of blowing agent. Scr. Mater. 2006, 54, 503–508. [Google Scholar] [CrossRef]
- Madalozzo, A.D.; Muniz, L.S.; Baron, A.M.; Piovan, L.; Mitchell, D.A.; Krieger, N. Characterization of an immobilized recombinant lipase from Rhizopus oryzae: Synthesis of ethyl-oleate. Biocatal. Agric. Biotechnol. 2014, 3, 13–19. [Google Scholar] [CrossRef]
- Kartal, F. Enhanced esterification activity through interfacial activation and cross-linked immobilization mechanism of Rhizopus oryzaelipase in a nonaqueous medium. Biotechnol. Prog. 2016, 32, 899–904. [Google Scholar] [CrossRef]
- Chew, S.C.; Tan, C.P.; Nyam, K.L. Effect of Gum Arabic, β-Cyclodextrin, and Sodium Caseinate as Encapsulating Agent on the Oxidative Stability and Bioactive Compounds of Spray-Dried Kenaf Seed Oil. J. Food Sci. 2018, 83, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Jeyachandran, Y.L.; Mielczarski, E.; Rai, B.; Mielczarski, J.A. Quantitative and Qualitative Evaluation of Adsorption/Desorption of Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces. Langmuir 2009, 25, 11614–11620. [Google Scholar] [CrossRef] [PubMed]
- Razak, C.; Salleh, A.; Musani, R.; Samad, M.; Basri, M. Some characteristics of lipases from thermophilic fungi isolated from palm oil mill effluent. J. Mol. Catal. B Enzym. 1997, 3, 153–159. [Google Scholar] [CrossRef]
- Yu, X.-W.; Xu, Y.; Xiao, R. Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Prog. Lipid Res. 2016, 64, 57–68. [Google Scholar] [CrossRef]
- Gitlesen, T.; Bauer, M.; Adlercreutz, P. Adsorption of lipase on polypropylene powder. Biochim. Biophys. Acta Lipids Lipid Metab. 1997, 1345, 188–196. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Ghattas, N.; Abidi, F.; Galai, S.; Marzouki, M.N.; Ben, S.A. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase. Int. J. Biol. Macromol. 2014, 68, 1–6. [Google Scholar] [CrossRef]
- Kharrat, N.; Ben, A.Y.; Marzouk, S.; Gargouri, Y.-T.; Karra-Châabouni, M. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process. Biochem. 2011, 46, 1083–1089. [Google Scholar] [CrossRef]
- Collins, S.E.; Lassalle, V.; Ferreira, M.L. FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM IM and chitosan-immobilized RML. J. Mol. Catal. B Enzym. 2011, 72, 220–228. [Google Scholar] [CrossRef]
- Foresti, M.; Ferreira, M. Analysis of the interaction of lipases with polypropylene of different structure and polypropylene-modified glass surface. Colloids Surf. A Physicochem. Eng. Asp. 2007, 294, 147–155. [Google Scholar] [CrossRef]
- Sandoval, G.; Condoret, J.S.; Monsan, P.; Marty, A. Esterification by immobilized lipase in solvent-free media: Kinetic and thermodynamic arguments. Biotechnol. Bioeng. 2002, 78, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Trubiano, G.; Borio, D.; Ferreira, M.L. Ethyl Oleate Synthesis Using Candida rugosa Lipase in a Solvent-Free System. Role of Hydrophobic Interactions. Biomacromolecules 2004, 5, 1832–1840. [Google Scholar] [CrossRef]
- Li, W.-N.; Chen, B.-Q.; Tan, T.-W. Esterification Synthesis of Ethyl Oleate in Solvent-Free System Catalyzed by Lipase Membrane from Fermentation Broth. Appl. Biochem. Biotechnol. 2011, 163, 102–111. [Google Scholar] [CrossRef]
- Bosley, J.A.; Moore, S.R. Immobilized Lipases on a Dry, Porous Particulate Hydrophobic Support and Containing a Non-Ionic Surfactant. U.S. Patent USOO5773266A, 30 June 1998. [Google Scholar]
- Kwon, D.Y.; Rhee, J.S. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J. Am. Oil Chem. Soc. 1986, 63, 89–92. [Google Scholar] [CrossRef]
- Cea, M.; González, M.E.; Abarzúa, M.; Navia, R. Enzymatic esterification of oleic acid by Candida rugosa lipase immobilized onto biochar. J. Environ. Manag. 2019, 242, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Musa, N.; Latip, W.; Rahman, R.N.Z.A.; Salleh, A.B.; Ali, M.S.M. Immobilization of an Antarctic Pseudomonas AMS8 Lipase for Low Temperature Ethyl Hexanoate Synthesis. Catalysts 2018, 8, 234. [Google Scholar] [CrossRef] [Green Version]
Supports/Treatments | Percentage of Loss after Immobilization (%) |
---|---|
No Additives | 0 |
Hen egg albumin | 91 |
Sodium caseinate | 43 |
CAVAMAX® W6 | 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sani, F.; Mokhtar, N.F.; Mohamad Ali, M.S.; Raja Abd Rahman, R.N.Z. Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives. Catalysts 2021, 11, 303. https://doi.org/10.3390/catal11030303
Sani F, Mokhtar NF, Mohamad Ali MS, Raja Abd Rahman RNZ. Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives. Catalysts. 2021; 11(3):303. https://doi.org/10.3390/catal11030303
Chicago/Turabian StyleSani, Fatimah, Nur Fathiah Mokhtar, Mohd Shukuri Mohamad Ali, and Raja Noor Zaliha Raja Abd Rahman. 2021. "Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives" Catalysts 11, no. 3: 303. https://doi.org/10.3390/catal11030303
APA StyleSani, F., Mokhtar, N. F., Mohamad Ali, M. S., & Raja Abd Rahman, R. N. Z. (2021). Enhanced Performance of Immobilized Rhizopus oryzae Lipase on Coated Porous Polypropylene Support with Additives. Catalysts, 11(3), 303. https://doi.org/10.3390/catal11030303