NO Reduction Reaction by Kiwi Biochar-Modified MnO2 Denitrification Catalyst: Redox Cycle and Reaction Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Morphology and Structure
2.2. NH3-SCR Activity
2.3. Surface Acidity
2.4. Active Sites
2.5. Reaction Process
3. Materials and Methods
3.1. Synthesis of the Catalyst
3.2. Catalyst Characterization
3.3. NH3-SCR Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, C.; Li, X.; Li, J.; Duan, J.; Wu, H.; Zhu, F. Investigation on the ammonia emission characteristics in coal-fired power plants of China. Fuel 2022, 314, 123046–123054. [Google Scholar] [CrossRef]
- Chen, C.; Shen, A.; Duan, Y.; Meng, J.; Hu, B.; Tan, H.; Ruan, R.; Liu, X.; Liu, M. Removal characteristics of particulate matters and hazardous trace elements in a 660 MW ultra-low emission coal-fired power plant. Fuel 2022, 311, 122535–122545. [Google Scholar] [CrossRef]
- Chen, J.H.; Tseng, T.H.; Ho, Y.C.; Lin, H.H.; Lin, W.L.; Wang, C.J. Gaseous nitrogen oxides stimulate cell cycle progression by retinoblastoma phosphorylation via activation of cyclins/Cdks. Toxicol. Sci. 2003, 76, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Jiang, J.; Zheng, R.; Guo, L.; Yuan, J.; Zhang, S.; Gu, M. Insight into the reaction mechanism over PMoA for low temperature NH3-SCR: A combined In-situ DRIFTs and DFT transition state calculations. J. Hazard. Mater. 2021, 412, 125258–125272. [Google Scholar] [CrossRef]
- Cao, J.; Rohani, S.; Liu, W.; Liu, H.; Lu, Z.; Wu, H.; Jiang, L.; Kong, M.; Liu, Q.; Yao, X. Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NOx removal from co-incineration flue gas of domestic waste and municipal sludge. J. Colloid Interface Sci. 2022, 610, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, L.; Zhu, H.; Qiu, Y.; Yin, D.; Zhang, T.; Chen, J.; Peng, Y.; Li, J. Balancing redox and acidic properties for optimizing catalytic performance of SCR catalysts: A case study of nanopolyhedron CeOx-supported WOx. J. Environ. Chem. Eng. 2021, 9, 105828–105838. [Google Scholar] [CrossRef]
- Kubota, H.; Toyao, T.; Maeno, Z.; Inomata, Y.; Murayama, T.; Nakazawa, N.; Inagaki, S.; Kubota, Y.; Shimizu, K.-I. Analogous Mechanistic Features of NH3-SCR over Vanadium Oxide and Copper Zeolite Catalysts. ACS Catal. 2021, 11, 11180–11192. [Google Scholar] [CrossRef]
- Croisé, C.; Pointecouteau, R.; Akil, J.; Demourgues, A.; Bion, N.; Courtois, X.; Can, F. Insight into the praseodymium effect on the NH3-SCR reaction pathways over W or Nb supported ceria-zirconia based catalysts. Appl. Catal. B Environ. 2021, 298, 120563–120576. [Google Scholar] [CrossRef]
- Liu, K.; He, H.; Chu, B. Microkinetic study of NO oxidation, standard and fast NH3-SCR on CeWOx at low temperatures. Chem. Eng. J. 2021, 423, 130128–130140. [Google Scholar] [CrossRef]
- Li, M.; Sakong, S.; Groß, A. In Search of the Active Sites for the Selective Catalytic Reduction on Tungsten-Doped Vanadia Monolayer Catalysts Supported by TiO2. ACS Catal. 2021, 11, 7411–7421. [Google Scholar] [CrossRef]
- Wang, X.; Lei, Y.; Yan, L.; Liu, T.; Zhang, Q.; He, K. A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015. Sci. Total Environ. 2019, 676, 18–30. [Google Scholar] [CrossRef]
- Zhao, S.; Shi, J.-W.; Niu, C.; Wang, B.; He, C.; Liu, W.; Xiao, L.; Ma, D.; Wang, H.; Cheng, Y. FeVO4-supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NOx by NH3. Catal. Sci. Technol. 2021, 11, 6770–6781. [Google Scholar] [CrossRef]
- Huang, X.; Dong, F.; Zhang, G.; Guo, Y.; Tang, Z. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3. Chem. Eng. J. 2021, 419, 129572–129584. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Yan, X.; Fang, P.; Chen, X.; Chen, D.; Cen, C. Impact of toluene poisoning on MnCe/HZSM-5 SCR catalyst. Chem. Eng. J. 2021, 414, 128838–128847. [Google Scholar] [CrossRef]
- Ye, L.; Lu, P.; Chen, D.; Chen, D.; Wu, H.; Dai, W.; Gan, Y.; Xiao, J.; Xie, Z.; Li, Z.; et al. Activity enhancement of acetate precursor prepared on MnOx-CeO2 catalyst for low-temperature NH3-SCR: Effect of gaseous acetone addition. Chin. Chem. Lett. 2021, 32, 2509–2512. [Google Scholar] [CrossRef]
- Kang, K.; Yao, X.; Huang, Y.; Cao, J.; Rong, J.; Zhao, W.; Luo, W.; Chen, Y. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction. J. Hazard. Mater. 2021, 416, 125821–125833. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yi, H.; Gao, F.; Zhao, S.; Xie, Z.; Tang, X. Evolution mechanism of transition metal in NH3-SCR reaction over Mn-based bimetallic oxide catalysts: Structure-activity relationships. J. Hazard. Mater. 2021, 413, 125361–125373. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Zhan, W.; Guo, Y.; Guo, Y.; Wang, L.; Lu, G. A Highly Effective Catalyst of Sm-MnOx for the NH3-SCR of NOx at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catal. 2015, 5, 5973–5983. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Guo, Y.; He, J.; Wu, R.; Song, L.; Zhang, G.; Zhao, J.; Wang, D.; He, H. A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. Appl. Catal. B Environ. 2020, 270, 118860–118875. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, N.; Chen, J.; Jin, J.; Wang, H.; Hu, P. Insight into the NH3-Assisted Selective Catalytic Reduction of NO on β-MnO2(110): Reaction Mechanism, Activity Descriptor, and Evolution from a Pristine State to a Steady State. ACS Catal. 2018, 8, 9269–9279. [Google Scholar] [CrossRef]
- Zhang, B.; Liebau, M.; Suprun, W.; Liu, B.; Zhang, S.; Gläser, R. Suppression of N2O formation by H2O and SO2 in the selective catalytic reduction of NO with NH3 over a Mn/Ti–Si catalyst. Catal. Sci. Technol. 2019, 9, 4759–4770. [Google Scholar] [CrossRef]
- Wang, D.; Yao, Q.; Mou, C.; Hui, S.; Niu, Y. New insight into N2O formation from NH3 oxidation over MnO/TiO2 catalyst. Fuel 2019, 254, 115719–115725. [Google Scholar] [CrossRef]
- Fan, H.; Fan, J.; Chang, T.; Wang, X.; Wang, X.; Huang, Y.; Zhang, Y.; Shen, Z. Low-temperature Fe–MnO2 nanotube catalysts for the selective catalytic reduction of NOx with NH3. Catal. Sci. Technol. 2021, 11, 6553–6563. [Google Scholar] [CrossRef]
- Jiang, Z.; Zou, Y.; Li, Y.; Kong, F.; Yang, D. Environmental life cycle assessment of supercapacitor electrode production using algae derived biochar aerogel. Biochar 2021, 3, 701–714. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Yao, X.; Yang, L.; Jiang, W.; Jiang, X. Highly efficient MnOx/biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO. Fuel 2021, 283, 119336–119343. [Google Scholar] [CrossRef]
- Hou, Y.; Liang, Y.; Hu, H.; Tao, Y.; Zhou, J.; Cai, J. Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: Kinetics, isotherms, and regeneration studies. Bioresour. Technol. 2021, 329, 124877–124883. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Y.; Shi, R.; Chen, H.; Du, Y.; Liu, B.; Zeng, Z.; Yin, Z.; Li, L. Natural Honeycomb-like structure cork carbon with hierarchical Micro-Mesopores and N-containing functional groups for VOCs adsorption. Appl. Surf. Sci. 2021, 565, 150550–150559. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Ren, S.; Chen, Z.; Zhou, Y.; Liu, W. Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. J. Energy Inst. 2021, 98, 234–243. [Google Scholar] [CrossRef]
- Yang, J.; Su, Z.; Ren, S.; Long, H.; Kong, M.; Jiang, L. Low-temperature SCR of NO with NH3 over biomass char supported highly dispersed Mn-Ce mixed oxides. J. Energy Inst. 2019, 92, 883–891. [Google Scholar] [CrossRef]
- Fan, H.; Shen, Z.; Wang, X.; Fan, J.; Sun, J.; Chang, T.; Huang, Y.; Wang, X.; Sun, J. Kiwi twig biochar recycling promoting the reduction of NO by a MnO2 catalyst. Appl. Surf. Sci. 2022, 596, 153644. [Google Scholar] [CrossRef]
- Xiong, X.; Yu, I.K.M.; Dutta, S.; Masek, O.; Tsang, D.C.W. Valorization of humins from food waste biorefinery for synthesis of biochar-supported Lewis acid catalysts. Sci. Total Environ. 2021, 775, 145851–145858. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Dong, B.; Dai, X. Facile and scalable synthesis of high-quality few-layer graphene from biomass by a universal solvent-free approach. Appl. Surf. Sci. 2021, 562, 150203–150210. [Google Scholar] [CrossRef]
- Nanda, S.S.; Kim, M.J.; Yeom, K.S.; An, S.S.A.; Ju, H.; Yi, D.K. Raman spectrum of graphene with its versatile future perspectives. TrAC Trends Anal. Chem. 2016, 80, 125–131. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, Z.; Zhang, Y.; Meng, B.; Zhou, A.; Qiu, J. Graphene Sheets from Graphitized Anthracite Coal: Preparation, Decoration, and Application. Energy Fuel 2012, 26, 5186–5192. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, Z.; Wu, X.; Wen, Y.; Chen, H.; Ni, X.; Liu, G.; Huang, J.; Peng, S. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 2022, 64, 23–32. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Y.; Zhang, W.; Li, C.; Zhao, Q.; Gao, J.; Li, X. A new type Ni-MOF catalyst with high stability for selective catalytic reduction of NOx with NH3. Catal. Commun. 2018, 114, 104–108. [Google Scholar] [CrossRef]
- Saha, S.; Pal, A. Microporous assembly of MnO2 nanosheets for malachite green degradation. Sep. Purif. Technol. 2014, 134, 26–36. [Google Scholar] [CrossRef]
- Shi, X.; Guo, J.; Shen, T.; Fan, A.; Yuan, S.; Li, J. Enhancement of Ce doped La–Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance. Chem. Eng. J. 2021, 421, 129995–130005. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Q.; Wang, H.; Chen, Y.; Zhang, M. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOx with NH3. ACS Appl. Mater. Inter. 2016, 8, 26817–26826. [Google Scholar] [CrossRef]
- Du, H.; Han, Z.; Wu, X.; Wang, Q.; Li, C.; Gao, Y.; Yang, S.; Song, L.; Dong, J.; Pan, X. Enhancement effects of Er modification on comprehensive performance of FeMn/TiO2 catalysts for selective reduction of NO with NH3 at low temperature. J. Environ. Chem. Eng. 2021, 9, 105653–105666. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Cao, J.; Yang, F.; Tang, C.; Dong, L. Effect of Ti4+ and Sn4+ co-incorporation on the catalytic performance of CeO2-MnOx catalyst for low temperature NH3-SCR. Appl. Surf. Sci. 2019, 476, 283–292. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, X.; Xu, X.; He, L.; Yan, M.; Han, C.; Li, Y.; Yang, W.; Mai, L. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Res. 2017, 10, 2471–2481. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Z.; Zhao, S.; Mei, J.; Quan, F.; Yan, N. Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. J. Hazard. Mater. 2015, 299, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Liu, T.; Li, Q.; Xin, Y.; Lu, X.; Tang, W.; Zhang, Z.; Gao, P.-X.; Anderson, J.A. Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2-x nanosheet array. Appl. Catal. B Environ. 2019, 246, 312–321. [Google Scholar] [CrossRef]
- Chen, B.; Wu, B.; Yu, L.; Crocker, M.; Shi, C. Investigation into the Catalytic Roles of Various Oxygen Species over Different Crystal Phases of MnO2 for C6H6 and HCHO Oxidation. ACS Catal. 2020, 10, 6176–6187. [Google Scholar] [CrossRef]
- Gong, P.; Xie, J.; Fang, D.; Han, D.; He, F.; Li, F.; Qi, K. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures. Chin. J. Catal. 2017, 38, 1925–1934. [Google Scholar] [CrossRef]
- Fang, D.; Xie, J.; Hu, H.; Yang, H.; He, F.; Fu, Z. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chem. Eng. J. 2015, 271, 23–30. [Google Scholar] [CrossRef]
- Niu, C.; Wang, B.; Xing, Y.; Su, W.; He, C.; Xiao, L.; Xu, Y.; Zhao, S.; Cheng, Y.; Shi, J. Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. J. Clean. Prod. 2021, 290, 125858–125869. [Google Scholar] [CrossRef]
- Yao, X.; Chen, L.; Cao, J.; Yang, F.; Tan, W.; Dong, L. Morphology and Crystal-Plane Effects of CeO2 on TiO2/CeO2 Catalysts during NH3-SCR Reaction. Ind. Eng. Chem. Res. 2019, 57, 12407–12419. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Liu, L.; Chen, Y.; Zhang, Z.; Wang, X. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Appl. Surf. Sci. 2014, 313, 660–669. [Google Scholar] [CrossRef]
Samples | SBET (m2·g−1) | Vtotal (cm3·g−1) | Pore Size (nm) | ID/IG | Mn4+/Mn3+ | Oα/(Oα + Oβ) |
---|---|---|---|---|---|---|
C1MnO2 | 36.48 | 0.17 | 185.47 | 1.01 | 1.77 | 0.43 |
C2MnO2 | 119.74 | 0.18 | 59.93 | 0.97 | 1.72 | 0.46 |
C1MnO2 | C2MnO2 | ||||
---|---|---|---|---|---|
Position (°C) | Area | Sum | Position (°C) | Area | Sum |
204 | 39.3 | 46.2 | 194 | 53.3 | 64.2 |
282 | 6.9 | 261 | 10.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Shen, Z.; Wang, X.; Fan, J.; Sun, J.; Sun, J. NO Reduction Reaction by Kiwi Biochar-Modified MnO2 Denitrification Catalyst: Redox Cycle and Reaction Process. Catalysts 2022, 12, 870. https://doi.org/10.3390/catal12080870
Fan H, Shen Z, Wang X, Fan J, Sun J, Sun J. NO Reduction Reaction by Kiwi Biochar-Modified MnO2 Denitrification Catalyst: Redox Cycle and Reaction Process. Catalysts. 2022; 12(8):870. https://doi.org/10.3390/catal12080870
Chicago/Turabian StyleFan, Hao, Zhenxing Shen, Xiuru Wang, Jie Fan, Jian Sun, and Jiaxiang Sun. 2022. "NO Reduction Reaction by Kiwi Biochar-Modified MnO2 Denitrification Catalyst: Redox Cycle and Reaction Process" Catalysts 12, no. 8: 870. https://doi.org/10.3390/catal12080870
APA StyleFan, H., Shen, Z., Wang, X., Fan, J., Sun, J., & Sun, J. (2022). NO Reduction Reaction by Kiwi Biochar-Modified MnO2 Denitrification Catalyst: Redox Cycle and Reaction Process. Catalysts, 12(8), 870. https://doi.org/10.3390/catal12080870