Effect of Pd-Doping Concentrations on the Photocatalytic, Photoelectrochemical, and Photoantibacterial Properties of CeO2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis of CeO2 and Pd−CeO2 NPs
2.2. Fourier Transform-Infrared Spectroscopy of CeO2 and Pd−CeO2 NPs
2.3. X-ray Photoelectron Spectroscopy
2.4. Optical Studies of CeO2 and Pd−CeO2 Using UV-vis-DRS and Photoluminescence Spectroscopy
2.5. Transmission Electron Microscopy Analysis of CeO2 and Pd−CeO2 NPs
3. Applications
3.1. Photocatalytic Degradation of MB
3.2. Photoelectrochemical Studies of Pd−CeO2 NPs
3.3. Antibacterial Activities of Pd−CeO2 NPs
4. Experimental
4.1. Chemicals, Bacterial Strain, Culture Media, and Growth Conditions
4.2. Instrumentations
4.3. Microwave-Assisted Synthesis of Cerium Oxide Nanoparticles
4.4. Microwave-Assisted Synthesis of Pd−CeO2 Nanoparticles
4.5. Electrode Preparation
4.6. Photocatalytic Degradation of MB Dye
4.7. Photoelectrochemical Studies
4.8. Assays for Antibacterial Activities of Pd−CeO2 Nanoparticles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 2017, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadiyala, U.; Kotov, N.A.; VanEpps, J.S. Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Curr. Pharm. Des. 2018, 24, 896–903. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Thambiraj, S.; Sharmila, G.; Ravi Shankaran, D. Green Adsorbents from Solid Wastes for Water Purification Application. Mater. Today Proc. 2018, 5, 16675–16683. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic Degradation of Azo Dye Acid Red 14 in Water: Investigation of the Effect of Operational Parameters. J. Photochem. Photobiol. A Chem. 2003, 157, 111–116. [Google Scholar] [CrossRef]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Santoso, E.; Ediati, R.; Kusumawati, Y.; Bahruji, H.; Sulistiono, D.O.; Prasetyoko, D. Review on Recent Advances of Carbon Based Adsorbent for Methylene Blue Removal from Waste Water. Mater. Today Chem. 2020, 16, 100233. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Beitollahi, H.; van Le, Q.; Farha, O.K.; Shokouhimehr, M.; Tajik, S.; Nejad, F.G.; Kirlikovali, K.O.; Jang, H.W.; Varma, R.S. Recent Electrochemical Applications of Metal-Organic Framework-Based Materials. Cryst. Growth Des. 2020, 20, 7034–7064. [Google Scholar] [CrossRef]
- Basu, K.; Benetti, D.; Zhao, H.; Jin, L.; Vetrone, F.; Vomiero, A.; Rosei, F. Enhanced Photovoltaic Properties in Dye Sensitized Solar Cells by Surface Treatment of SnO2 Photoanodes. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhu, B.; Zhang, J.; Yan, C.; Wu, Y. Electrical Properties of Nanocube CeO2 in Advanced Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2018, 43, 12909–12916. [Google Scholar] [CrossRef]
- Liang, S.; Wang, H.; Li, Y.; Qin, H.; Luo, Z.; Huang, B.; Zhao, X.; Zhao, C.; Chen, L. Rare-Earth Based Nanomaterials and Their Composites as Electrode Materials for High Performance Supercapacitors: A Review. Sustain. Energy Fuels 2020, 4, 3825–3847. [Google Scholar] [CrossRef]
- Xie, W.; Liu, B.; Xiao, S.; Li, H.; Wang, Y.; Cai, D.; Wang, D.; Wang, L.; Liu, Y.; Li, Q.; et al. High Performance Humidity Sensors Based on CeO2 Nanoparticles. Sens. Actuators B Chem. 2015, 215, 125–132. [Google Scholar] [CrossRef]
- Manibalan, G.; Murugadoss, G.; Thangamuthu, R.; Ragupathy, P.; Kumar, M.R.; Mohan Kumar, R.; Jayavel, R. High Electrochemical Performance and Enhanced Electrocatalytic Behavior of a Hydrothermally Synthesized Highly Crystalline Heterostructure CeO2@NiO Nanocomposite. Inorg. Chem. 2019, 58, 13843–13861. [Google Scholar] [CrossRef]
- Nwachukwu, I.M.; Nwanya, A.C.; Osuji, R.; Ezema, F.I. Nanostructured Mn-Doped CeO2 Thin Films with Enhanced Electrochemical Properties for Pseudocapacitive Applications. J. Alloys Compd. 2021, 886, 161206. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, M.; Huang, H.; Xu, H.M.; Hong, R.J.; Shen, H. Multifunctional TiO2 nanowires-Modified Nanoparticles Bilayer Film for 3D Dye-Sensitized Solar Cells. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1166–1169. [Google Scholar] [CrossRef]
- Rahman, A.; Harunsani, M.H.; Tan, A.L.; Ahmad, N.; Khan, M.M. Antioxidant and Antibacterial Studies of Phytogenic Fabricated ZnO Using Aqueous Leaf Extract of Ziziphus Mauritiana Lam. Chem. Pap. 2021, 75, 3295–3308. [Google Scholar] [CrossRef]
- Aboutaleb, W.A.; El-Salamony, R.A. Effect of Fe2O3-CeO2 Nanocomposite Synthesis Method on the Congo Red Dye Photodegradation under Visible Light Irradiation. Mater. Chem. Phys. 2019, 236, 121724. [Google Scholar] [CrossRef]
- Naidi, S.N.; Khan, F.; Tan, A.L.; Harunsani, M.H.; Kim, Y.-M.; Khan, M.M. Photoantioxidant and Antibiofilm Studies of Green Synthesized Sn-Doped CeO2 Nanoparticles Using Aqueous Leaf Extracts of Pometia Pinnata. New J. Chem. 2021, 45, 7816–7829. [Google Scholar] [CrossRef]
- Su, Z.; Si, W.; Liu, H.; Xiong, S.; Chu, X.; Yang, W.; Peng, Y.; Chen, J.; Cao, X.; Li, J. Boosting the Catalytic Performance of CeO2 in Toluene Combustion via the Ce-Ce Homogeneous Interface. Environ. Sci. Technol. 2021, 55, 12630–12639. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, Y.; Xue, M.; Li, J. Roles of Oxygen Vacancies in the Bulk and Surface of CeO2 for Toluene Catalytic Combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef] [PubMed]
- Gnanam, S.; Gajendiran, J.; Ramana Ramya, J.; Ramachandran, K.; Gokul Raj, S. Glycine-Assisted Hydrothermal Synthesis of Pure and Europium Doped CeO2 Nanoparticles and Their Structural, Optical, Photoluminescence, Photocatalytic and Antibacterial Properties. Chem. Phys. Lett. 2021, 763, 138217. [Google Scholar] [CrossRef]
- Bača, Ľ.; Steiner, H.; Stelzer, N. Upconversion Luminescence and Optical Thermometry in Er3+/Yb3+ Co-Doped CeO2 for Space Application. J. Alloys Compd. 2019, 774, 418–424. [Google Scholar] [CrossRef]
- Khan, M.M.; Rahman, A.; Matussin, S.N. Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts. Nanomaterials 2022, 12, 2820. [Google Scholar] [CrossRef]
- dos Santos, A.P.B.; Dantas, T.C.M.; Costa, J.A.P.; Souza, L.D.; Soares, J.M.; Caldeira, V.P.S.; Araújo, A.S.; Santos, A.G.D. Formation of CeO2 Nanotubes through Different Conditions of Hydrothermal Synthesis. Surf. Interfaces 2020, 21, 100746. [Google Scholar] [CrossRef]
- Seong, G.; Dejhosseini, M.; Adschiri, T. A Kinetic Study of Catalytic Hydrothermal Reactions of Acetaldehyde with Cubic CeO2 Nanoparticles. Appl. Catal. A Gen. 2018, 550, 284–296. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q.; Yuan, S.; Liu, S.; Zhang, M.; Ohno, T. Synthesis and Photocatalytic Performance of Yttrium-Doped CeO2 with a Hollow Sphere Structure. Catal. Today 2017, 281, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Liu, P.; Jin, C.; Liu, Q.Y.; Zhang, X.; Zhang, X. Flower-like CeO2/CoO p-n Heterojuncted Nanocomposites with Enhanced Peroxidase-Mimicking Activity for l-Cysteine Sensing. ACS Sustain. Chem. Eng. 2020, 8, 17540–17550. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, Z.; Gao, G.; Liu, Z.; Wang, Q.; Yan, Y. Construction of Spindle Structured CeO2 Modified with Rod-like Attapulgite as a High-Performance Photocatalyst for CO2 Reduction. Catal. Sci. Technol. 2019, 9, 3788–3799. [Google Scholar] [CrossRef]
- Bezkrovnyi, O.S.; Lisiecki, R.; Kepinski, L. Relationship between Morphology and Structure of Shape-Controlled CeO2 Nanocrystals Synthesized by Microwave-Assisted Hydrothermal Method. Cryst. Res. Technol. 2016, 51, 554–560. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Pradhan, D.; Han, D.H.; Lee, J.; Cho, M.H. Defect-Induced Band Gap Narrowed CeO2 Nanostructures for Visible Light Activities. Ind. Eng. Chem. Res. 2014, 53, 9754–9763. [Google Scholar] [CrossRef]
- Abbas, F.; Iqbal, J.; Jan, T.; Naqvi, M.S.H.; Gul, A.; Abbasi, R.; Mahmood, A.; Ahmad, I.; Ismail, M. Differential Cytotoxicity of Ferromagnetic Co Doped CeO2 Nanoparticles against Human Neuroblastoma Cancer Cells. J. Alloys Compd. 2015, 648, 1060–1066. [Google Scholar] [CrossRef]
- Matussin, S.N.; Rahman, A.; Khan, M.M. Role of Anions in the Synthesis and Crystal Growth of Selected Semiconductors. Front. Chem. 2022, 10, 881518. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, Y.; Ma, J.; Chen, C.; Cheng, P.; Zhang, S. Hydrothermal Synthesis of Pd-Doped CeO2 Nanomaterials and Electrochemical Detection for Phenol. J. Cryst. Growth 2022, 586, 126626. [Google Scholar] [CrossRef]
- Gad, S.C. Palladium. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 751–753. [Google Scholar] [CrossRef]
- Hegde, M.S.; Madras, G.; Patil, K.C. Noble Metal Ionic Catalysts. Acc. Chem. Res. 2009, 42, 704–712. [Google Scholar] [CrossRef]
- Wang, B.; Weng, D.; Wu, X.; Ran, R. Modification of Pd–CeO2 Catalyst by Different Treatments: Effect on the Structure and CO Oxidation Activity. Appl. Surf. Sci. 2011, 257, 3878–3883. [Google Scholar] [CrossRef]
- George, S.E.; George, M.; Alex, J.; Joy, L.K.; Aravind, A.; Sajan, D.; Thakur, A.; Hussain, S.; Vinitha, G. Nonlinear Optical and Photocatalytic Dye Degradation of Co Doped CeO2 Nanostructures Synthesized through a Modified Combustion Technique. Ceram. Int. 2020, 46, 13932–13940. [Google Scholar] [CrossRef]
- Matussin, S.N.; Khan, M.M. Phytogenic Fabrication of CeO2@SnO2 Heterojunction Nanostructures for Antioxidant Studies. Chem. Pap. 2022, 76, 2071–2084. [Google Scholar] [CrossRef]
- Naidi, S.N.; Harunsani, M.H.; Tan, A.L.; Khan, M.M. Green-Synthesized CeO2 Nanoparticles for Photocatalytic, Antimicrobial, Antioxidant and Cytotoxicity Activities. J. Mater. Chem. B 2021, 9, 5599–5620. [Google Scholar] [CrossRef]
- Tou, M.; Michalsky, R.; Steinfeld, A. Solar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 across a Ceria Redox Membrane Reactor. Joule 2017, 1, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Channei, D.; Nakaruk, A.; Jannoey, P.; Phanichphant, S. Preparation and Characterization of Pd Modified CeO2 Nanoparticles for Photocatalytic Degradation of Dye. Solid State Sci. 2019, 87, 9–14. [Google Scholar] [CrossRef]
- Syed Khadar, Y.A.; Balamurugan, A.; Devarajan, V.P.; Subramanian, R.; Dinesh Kumar, S. Synthesis, Characterization and Antibacterial Activity of Cobalt Doped Cerium Oxide (CeO2:Co) Nanoparticles by Using Hydrothermal Method. J. Mater. Res. Technol. 2019, 8, 267–274. [Google Scholar] [CrossRef]
- He, L.; Ren, Y.; Fu, Y.; Yue, B.; Edman Tsang, S.C.; He, H. Morphology-Dependent Catalytic Activity of Ru/CeO2 in Dry Reforming of Methane. Molecules 2019, 24, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Xu, W.; Xie, Z.; Dorman, J.A.; Gutierrez-Wing, M.T.; Wang, Y. Effect of Dopant Concentration on Visible Light Driven Photocatalytic Activity of Sn1-XAgxS2. Dalton Trans. 2016, 45, 16290–16297. [Google Scholar] [CrossRef]
- Xing, J.; Jiang, H.B.; Chen, J.F.; Li, Y.H.; Wu, L.; Yang, S.; Zheng, L.R.; Wang, H.F.; Hu, P.; Zhao, H.J.; et al. Active Sites on Hydrogen Evolution Photocatalyst. J. Mater. Chem. A Mater. 2013, 1, 15258. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Ce3+-Ion, Surface Oxygen Vacancy, and Visible Light-Induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Sci. Rep. 2017, 7, 5928. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.M.; Mahendhiran, M.; Diaz, M.C.; Hernandez-Como, N.; Hernandez-Eligio, A.; Torres-Torres, G.; Godavarthi, S.; Gomez, L.M. Green Synthesis of Ce3+ Rich CeO2 Nanoparticles and Its Antimicrobial Studies. Mater. Lett. 2018, 214, 15–19. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, B.; Li, Y.; Zhang, S.; Zhang, Y.; Hua, X.; Liu, G.; Li, B.; Zhou, J.; Xie, E.; et al. Methanol Gas Detection of Electrospun CeO2 Nanofibers by Regulating Ce3+/Ce4+ Mole Ratio via Pd Doping. Sens. Actuators B Chem. 2020, 307, 127638. [Google Scholar] [CrossRef]
- Choudhury, B.; Chetri, P.; Choudhury, A. Oxygen Defects and Formation of Ce3+ Affecting the Photocatalytic Performance of CeO2 Nanoparticles. RSC Adv. 2014, 4, 4663–4671. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous Photodegradation of Industrial Dyes: An Insight to Different Mechanisms and Rate Affecting Parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Yang, C.; Yang, J.; Duan, X.; Hu, G.; Liu, Q.; Ren, S.; Li, J.; Kong, M. Roles of Photo-Generated Holes and Oxygen Vacancies in Enhancing Photocatalytic Performance over CeO2 Prepared by Molten Salt Method. Adv. Powder Technol. 2020, 31, 4072–4081. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, Z.P. Particle Size, Shape and Activity for Photocatalysis on Titania Anatase Nanoparticles in Aqueous Surroundings. J. Am. Chem. Soc. 2011, 133, 15743–15752. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ansari, S.A.; Pradhan, D.; Ansari, M.O.; Han, D.H.; Lee, J.; Cho, M.H. Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies. J. Mater. Chem. A Mater 2014, 2, 637–644. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Xie, S.; Zhai, T.; Yu, M.; Liang, C.; Ouyang, X.; Lu, X.; Li, H.; Tong, Y. Improving the Photoelectrochemical and Photocatalytic Performance of CdO Nanorods with CdS Decoration. Cryst. Eng. Comm. 2013, 15, 4212. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, D.; Zhang, P.; Liang, C.; Liu, P.; Tong, Y. Facile Synthesis of Free-Standing CeO2 Nanorods for Photoelectrochemical Applications. Chem. Commun. 2010, 46, 7721. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Kalathil, S.; Lee, J.; Cho, M.H. Band Gap Engineering of CeO2 Nanostructure Using an Electrochemically Active Biofilm for Visible Light Applications. RSC Adv. 2014, 4, 16782–16791. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Niu, J.; Chen, Y. Photogeneration of Reactive Oxygen Species on Uncoated Silver, Gold, Nickel, and Silicon Nanoparticles and Their Antibacterial Effects. Langmuir 2013, 29, 4647–4651. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Surface-Coating-Dependent Dissolution, Aggregation, and Reactive Oxygen Species (ROS) Generation of Silver Nanoparticles under Different Irradiation Conditions. Environ. Sci. Technol. 2013, 47, 10293–10301. [Google Scholar] [CrossRef]
- Brunet, L.; Lyon, D.Y.; Hotze, E.M.; Alvarez, P.J.J.; Wiesner, M.R. Comparative Photoactivity and Antibacterial Properties of C60 Fullerenes and Titanium Dioxide Nanoparticles. Environ. Sci. Technol. 2009, 43, 4355–4360. [Google Scholar] [CrossRef] [PubMed]
- Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial Activity of Titanium Dioxide and Zinc Oxide Nanoparticles Supported in 4A Zeolite and Evaluation the Morphological Characteristic. Sci. Rep. 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.; Prema, D.; Venkataprasanna, K.S.; Prakash, J.; Sahabuddin, S.; Devanand Venkatasubbu, G. Photo Induced Antibacterial Activity of CeO2/GO against Wound Pathogens. Arab. J. Chem. 2020, 13, 7680–7694. [Google Scholar] [CrossRef]
- Shams, S.; Khan, A.U.; Yuan, Q.; Ahmad, W.; Wei, Y.; Khan, Z.U.H.; Shams, S.; Ahmad, A.; Rahman, A.U.; Ullah, S. Facile and Eco-Benign Synthesis of Au@Fe2O3 Nanocomposite: Efficient Photocatalytic, Antibacterial and Antioxidant Agent. J. Photochem. Photobiol. B 2019, 199, 111632. [Google Scholar] [CrossRef]
Sample | Average Crystallite Size (D, nm) | Lattice Parameter, a (Å) | Cell Volume (Å3) | Average Lattice Strain |
---|---|---|---|---|
S−CeO2 | 34.67 | 5.414 | 158.69 | 0.0022 |
0.5% Pd−CeO2 | 37.25 | 5.408 | 158.16 | 0.0009 |
1% Pd−CeO2 | 16.25 | 5.423 | 159.48 | 0.0004 |
3% Pd−CeO2 | 23.03 | 5.409 | 158.25 | 0.0019 |
5% Pd−CeO2 | 19.17 | 5.428 | 159.93 | 0.0022 |
Sample | Atomic Concentration (%) | |||
---|---|---|---|---|
C 1s | O 1s | Ce 3d | Pd 3d | |
S−CeO2 | 12.4 | 74.1 | 13.5 | - |
0.5% Pd−CeO2 | 12.6 | 72.1 | 15.1 | 0.2 |
5% Pd−CeO2 | 19.0 | 66.3 | 12.8 | 1.9 |
Sample | Band Gap Energy (eV) |
---|---|
C−CeO2 | 3.10 |
S−CeO2 | 2.56 |
0.5% Pd−CeO2 | 2.50 |
1% Pd−CeO2 | 2.47 |
3% Pd−CeO2 | 2.42 |
5% Pd−CeO2 | 2.27 |
C−CeO2 | S−CeO2 | 0.5% Pd−CeO2 | 1% Pd−CeO2 | 3% Pd−CeO2 | 5% Pd−CeO2 | |
---|---|---|---|---|---|---|
0 h | 3.87 ± 1.94 | 44.92 ± 3.60 | 42.21 ± 6.34 | 61.87 ± 3.97 | 39.57 ± 0.81 | 50.83 ± 1.52 |
1 h | 3.33 ± 1.04 | 47.22 ± 2.06 | 45.58 ± 7.54 | 61.20 ± 6.92 | 40.67 ± 1.03 | 50.18 ± 0.80 |
2 h | 4.19 ± 0.66 | 51.69 ± 2.77 | 48.19 ± 7.73 | 64.63 ± 7.92 | 44.07 ± 2.50 | 53.62 ± 2.72 |
3 h | 4.57 ± 1.33 | 54.13 ± 1.52 | 50.35 ± 6.55 | 67.42 ± 8.64 | 45.36 ± 2.02 | 54.85 ± 2.15 |
4 h | 7.12 ± 3.82 | 58.99 ± 2.29 | 54.72 ± 5.71 | 70.87 ± 9.48 | 47.31 ± 3.19 | 57.56 ± 3.31 |
5 h | 10.28 ± 3.13 | 60.48 ± 3.76 | 60.33 ± 1.76 | 72.07 ± 5.34 | 51.20 ± 3.47 | 62.10 ± 4.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matussin, S.N.; Khan, F.; Harunsani, M.H.; Kim, Y.-M.; Khan, M.M. Effect of Pd-Doping Concentrations on the Photocatalytic, Photoelectrochemical, and Photoantibacterial Properties of CeO2. Catalysts 2023, 13, 96. https://doi.org/10.3390/catal13010096
Matussin SN, Khan F, Harunsani MH, Kim Y-M, Khan MM. Effect of Pd-Doping Concentrations on the Photocatalytic, Photoelectrochemical, and Photoantibacterial Properties of CeO2. Catalysts. 2023; 13(1):96. https://doi.org/10.3390/catal13010096
Chicago/Turabian StyleMatussin, Shaidatul Najihah, Fazlurrahman Khan, Mohammad Hilni Harunsani, Young-Mog Kim, and Mohammad Mansoob Khan. 2023. "Effect of Pd-Doping Concentrations on the Photocatalytic, Photoelectrochemical, and Photoantibacterial Properties of CeO2" Catalysts 13, no. 1: 96. https://doi.org/10.3390/catal13010096
APA StyleMatussin, S. N., Khan, F., Harunsani, M. H., Kim, Y. -M., & Khan, M. M. (2023). Effect of Pd-Doping Concentrations on the Photocatalytic, Photoelectrochemical, and Photoantibacterial Properties of CeO2. Catalysts, 13(1), 96. https://doi.org/10.3390/catal13010096