The Catalytic Wet Oxidation of Excess Activated Sludge from a Coal Chemical Wastewater Treatment Process
Abstract
:1. Introduction
2. Results
2.1. Effect of Catalyst Dosage
2.2. Effect of Reaction Temperature
2.3. Effect of Reaction Time
2.4. Effect of Initial Oxygen Pressure
2.5. Removal of COD and SCOD
2.6. Production of Acetate and VFAs
2.7. Characteristics of Sludge before and after WO
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. WO Reaction System
4.3. Preparation of Catalyst
4.4. Analysis Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arora, P.K.; Srivastava, A.; Singh, V.P. Diversity of 4-chloro-2-nitrophenol-degrading bacteria in a waste water sample. J. Chem. 2016, 2016, 7589068. [Google Scholar] [CrossRef]
- Wei, H.Z.; Yan, X.M.; Li, X.R.; He, S.B.; Sun, C.L. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4. J. Hazard. Mater. 2013, 244, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.K.; Srivastava, A.; Singh, V.P. Bacterial degradation of nitrophenols and their derivatives. J. Hazard. Mater. 2014, 266, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.K.; Sasikala, C.; Ramana, C.V. Degradation of chlorinated nitroaromatic compounds. Appl. Microbiol. Biotechnol. 2012, 93, 2265–2277. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.B.; Wang, D.L.; Li, Z.F. Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge. Bioresour. Technol. 2015, 177, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Zhu, Z.; Luo, Y.; Hu, Y.; Lu, S. Purification of caprolactam by means of an electrodeionization technique. Desalination 2005, 174, 231–235. [Google Scholar] [CrossRef]
- Cui, X.M. Supply and demand status and development prospect of caprolactam in China and abroad. China Fine Spec. Chem. 2021, 29, 12–15. [Google Scholar]
- Yi, C. Development of nylon 6 polymerization technology and functional products. China Syn. Fiber Ind. 2021, 44, 59–65. [Google Scholar]
- Zhang, G.H.; Dong, H. Analysis of domestic caprolactam production and market. Chem. Ind. 2019, 37, 38–41. [Google Scholar]
- Liu, J.Q.; Wang, C.Z.; Liu, W.R.; Jiang, B.; Yang, Q.J.; Wu, M. Study on the biodegradability of caprolactam production wastewater. Technol. Water Treat. 2009, 35, 37–39. [Google Scholar]
- Liu, F.; Liu, G.H.; Zhang, M.; Shu, W.; Chen, J.H. Study on Treatment of Nylon-6 Wastewater by Using Hydrolysis. China Water Wastewater 2007, 23, 104–108. [Google Scholar]
- Ramos, M.D.N.; Santana, C.S.; Velloso, C.C.V.; Silva, A.H.M.; Magalhaes, F.; Aguiar, A. A review on the treatment of textile industry effluents through Fenton processes. Process Saf. Environ. Prot. 2021, 155, 366–386. [Google Scholar] [CrossRef]
- Bustillo, C.F.; Mehrvar, M. Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobiceaerobic and UV/H2O2 processes. J. Environ. Manag. 2014, 134, 145–152. [Google Scholar] [CrossRef]
- Yu, H.; Nie, E.; Xu, J. Degradation of diclofenac by advanced oxidation and reduction processes: Kinetic studies, degradation pathways and toxicity assessments. Water Res. 2013, 47, 1909–1918. [Google Scholar] [CrossRef]
- Luck, F. Wet air oxidation, past, present and future. Catal. Today 1999, 53, 81–91. [Google Scholar] [CrossRef]
- Arana, J.; Rendon, E.T.; Rodrıguez, J.D.; Melian, J.H.; Diaz, O.G.; Pena, J.P. Highly concentrated phenolic wastewater treatment by the Photo-Fenton reaction, mechanism study by FTIR-ATR. Chemosphere 2001, 44, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, J.; Li, H. Simultaneous degradation of micro plastics and sludge during wet air oxidation. Environ. Pollut. 2023, 335, 122348–122357. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, X.; Fang, K. Enhanced Wet Oxidation of Excess Sludge from Pharmaceutical Wastewater Treatment by NaOH. Catalysts 2023, 13, 1070. [Google Scholar] [CrossRef]
- Zhang, Y. Wet oxidation technology based on organic wastewater treatment. J. Phys. Conf. Ser. 2020, 1549, 022040–022046. [Google Scholar] [CrossRef]
- Dietrich, M.; Randall, T.; Canney, P. Wet air oxidation of hazardous organics in wastewater. Environ. Prog. 1985, 4, 171–177. [Google Scholar] [CrossRef]
- Bertanza, G.; Galessi, R.; Menoni, L.; Salvetti, R.; Slavik, E.; Zanaboni, S. Wet oxidation of sewage sludge: Full-scale experience and process modeling. Environ. Sci. Pollut. Res. 2015, 22, 7306–7316. [Google Scholar] [CrossRef] [PubMed]
- Mantzavinos, D.; Psillakis, E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J. Chem. Technol. 2004, 79, 431–454. [Google Scholar] [CrossRef]
- Levec, J.; Pintar, A. Catalytic wet-air oxidation processes: A review. Catal. Today 2007, 124, 172–184. [Google Scholar] [CrossRef]
- Gomesa, H.T.; Figueiredo, J.L.; Faria, J.L.; Serp, P.; Kalck, P. Carbon-supported iridium catalysts in the catalytic wet air oxidation of carboxylic acids: Kinetics and mechanistic interpretation. J. Mol. Catal. A Chem. 2002, 182, 47–60. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Pastrana-Martinez, L.M.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Graphene-based materials for the catalytic wet peroxide oxidation of highly concentrated 4-nitrophenol solutions. Catal. Today 2015, 249, 204–212. [Google Scholar] [CrossRef]
- Huang, K.; Xu, Y.; Wang, L.G.; Wu, D.F. Heterogeneous catalytic wet peroxide oxidation of simulated phenol wastewater by copper metal organic frameworks. RSC Adv. 2015, 5, 32795–32803. [Google Scholar] [CrossRef]
- Li, Y.Z.; Fan, Z.Y.; Shi, J.W.; Liu, Z.Y.; Zhou, J.W.; Shangguan, W.F. Catalytic oxidation of low concentration formaldehyde with the assist of ozone over supported cobalt-manganese composite oxides. J. Mol. Catal. 2014, 1, 60–66. [Google Scholar]
- Shan, H.; Oh, R.; Fan, J. Developing Pt-M/C catalyst (M = Pb, Cu) for efficient catalytic wet air oxidation of phenol wastewater under mild conditions. J. Environ. Chem. Eng. 2023, 11, 109854–109863. [Google Scholar] [CrossRef]
- Chou, B.; Tsai, J.L.; Cheng, S. Cu-substituted molecular sieves as liquid phase oxidation catalysts. Microporous Mesoporous Mater. 2001, 48, 309–317. [Google Scholar] [CrossRef]
- Taran, O.P.; Zagoruiko, A.N.; Ayusheev, A.B.; Yashnik, S.A.; Prihod’ko, R.V.; Ismagilov, Z.R.; Goncharuk, V.V.; Parmon, V.N. Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: Reaction kinetics. Res. Chem. Intermed. 2015, 41, 9521–9537. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Yang, S.; Wang, W.; Zhou, Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Appl. Catal. B Environ. 2008, 78, 30–37. [Google Scholar] [CrossRef]
- Barbier, J.; Oliviero, L.; Renard, B.; Duprez, D. Role of ceria-supported noble metal catalysts (Ru, Pd, Pt) in wet air oxidation of nitrogen and oxygen containing compounds. Top. Catal. 2005, 33, 77–86. [Google Scholar] [CrossRef]
- Kang, K.; Quitain, A.T.; Daimon, H.; Noda, R.; Goto, N.; Hu, H.Y.; Fujie, K. Optimization of amino acids production from waste fish entrails by hydrolysis in sub- and supercritical water. Can. J. Chem. Eng. 2001, 79, 65–70. [Google Scholar] [CrossRef]
- Gapes, D.J.; Stuthridge, T.R.; Strong, P.J.; Lei, R.J.; Aggrey, A. Treatment of Biomass. WO2013128390A1, 6 September 2013. [Google Scholar]
- Chung, J.; Lee, M.; Ahn, J.; Bae, W.; Lee, Y.W.; Shim, H. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation. J. Hazard. Mater. 2009, 162, 10–16. [Google Scholar] [CrossRef]
- Wu, Y.C.; Hao, O.J.; Olmstead, D.G.; Hsieh, K.P.; Scholze, R.J. Wet air oxidation of anaerobically digested-sludge. J. Water Pollut. Control Fed. 1987, 59, 39–46. [Google Scholar]
- Baroutian, S.; Smit, A.M.; Andrews, J.; Young, B.; Gapes, D. Hydrothermal degradation of organic matter in municipal sludge using non-catalytic wet oxidation. Chem. Eng. J. 2015, 260, 846–854. [Google Scholar] [CrossRef]
- Shanableh, A. Production of useful organic matter from sludge using hydrothermal treatment. Water Res. 2000, 34, 945–951. [Google Scholar] [CrossRef]
- Mishra, V.S.; Mahajani, V.V.; Joshi, J.B. Wet air oxidation. Ind. Eng. Chem. Res. 1995, 34, 2–48. [Google Scholar] [CrossRef]
- Lin, S.H.; Ho, S.J.; Wu, C.L. Kinetic and performance characteristics of wet air oxidation of high-concentration wastewater. Ind. Eng. Chem. Res. 1996, 35, 307–314. [Google Scholar] [CrossRef]
- Urrea, J.; Collado, S.; Oulego, P.; Díaz, M. Wet oxidation of the structural sludge fractions. J. Clean. Prod. 2017, 168, 1163–1170. [Google Scholar] [CrossRef]
- Jin, F.M.; Zeng, X.; Jing, Z.Z.; Enomoto, H. A potentially useful technology by mimicking nature by rapid conversion of biomass and CO2 into chemicals and fuels under hydrothermal conditions. Ind. Eng. Chem. Res. 2012, 51, 9921–9937. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, J.; Zhao, J. Wet oxidation and catalytic wet oxidation of pharmaceutical sludge. Sci. Rep. 2023, 13, 2544–2551. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, J.; Zhao, J.F. Highly efficient treatment of pharmaceutical sludge by catalytic wet oxidation using CuO-CeO2/gamma-Al2O3 as a catalyst. PLoS ONE 2018, 13, e0199520. [Google Scholar] [CrossRef] [PubMed]
- Lipps, W.C.; Baxter, T.E.; Braun-Howland, E.B.; Association, A.P.H.; Association, A.W.W. Standard Methods for the Examination of Water and Wastewater, 24th ed.; American Public Health Association: Washington, DC, USA, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Qin, S.; Zheng, W.; Lou, X.; Zeng, X.; Wu, T. The Catalytic Wet Oxidation of Excess Activated Sludge from a Coal Chemical Wastewater Treatment Process. Catalysts 2023, 13, 1352. https://doi.org/10.3390/catal13101352
Wang Z, Qin S, Zheng W, Lou X, Zeng X, Wu T. The Catalytic Wet Oxidation of Excess Activated Sludge from a Coal Chemical Wastewater Treatment Process. Catalysts. 2023; 13(10):1352. https://doi.org/10.3390/catal13101352
Chicago/Turabian StyleWang, Zhongquan, Shulin Qin, Weicheng Zheng, Xiaodan Lou, Xu Zeng, and Taihang Wu. 2023. "The Catalytic Wet Oxidation of Excess Activated Sludge from a Coal Chemical Wastewater Treatment Process" Catalysts 13, no. 10: 1352. https://doi.org/10.3390/catal13101352
APA StyleWang, Z., Qin, S., Zheng, W., Lou, X., Zeng, X., & Wu, T. (2023). The Catalytic Wet Oxidation of Excess Activated Sludge from a Coal Chemical Wastewater Treatment Process. Catalysts, 13(10), 1352. https://doi.org/10.3390/catal13101352