The Promotional Effect of Na on Ru for pH-Universal Hydrogen Evolution Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Synthesis and Characterization
2.2. Electrochemical Characterization
3. Experimental
3.1. Chemicals
3.2. Synthesis of Electrocatalysts
3.2.1. Synthesis of Ru0.3/C−800
3.2.2. Synthesis of C−800, Ru0.2/C−800, and Ru0.4/C−800
3.2.3. Synthesis of Ru0.3/C−700, Ru0.3/C−900, and Ru0.3/C−1000
3.2.4. Synthesis of Ru0.3/C−800−WF (Wash First)
3.3. Material Characterization
3.4. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, B.; Wang, Z.; Cheng, L.; Chen, Z.; Dong, Y.; Wang, X.; Wang, T.; Mao, X.; Gao, Y.; Xu, Z.; et al. Regulating charge distribution of Ru atoms in ruthenium phosphide/carbon nitride/carbon for promoting hydrogen evolution reaction. J. Alloy. Compd. 2023, 939, 168717. [Google Scholar] [CrossRef]
- Abdollahi, A.; Ghaffarinejad, A.; Arabi, M. Electrodeposition of Ni-Fe on graphite rod as an efficient and binder-free electrocatalyst for oxygen and hydrogen evolution reactions. J. Alloy. Compd. 2023, 937, 168400. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhang, D.; Qin, Y.; Wang, M.; Han, Y.; Zhan, T.; Yang, B.; Li, S.; Lai, J.; et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Luo, M.; Liu, Z.; Peng, M.; Chen, D.; Lu, Y.-R.; Chan, T.-S.; de Groot, F.M.F.; Tan, Y. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, W.; Wu, H.; Lu, S. Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline. Acta Phys. Chim. Sin. 2021, 37, 2009082. [Google Scholar] [CrossRef]
- Zhou, S.; Jang, H.; Qin, Q.; Li, Z.; Kim, M.G.; Li, C.; Liu, X.; Cho, J. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci. China Mater. 2021, 64, 1408–1417. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, X.; Wang, S.; Liang, L.; Cao, M.; Wang, L.; Li, G.; Xu, Y.; Huang, X. Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution. Angew. Chem. Int. Ed. 2022, 61, e202116867. [Google Scholar] [CrossRef]
- Feng, T.; Yu, G.; Tao, S.; Zhu, S.; Ku, R.; Zhang, R.; Zeng, Q.; Yang, M.; Chen, Y.; Chen, W.; et al. A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J. Mater. Chem. A 2020, 8, 9638–9645. [Google Scholar] [CrossRef]
- Anantharaj, S.; Noda, S. Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem 2020, 7, 2297–2308. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Dang, N.K.; Sultan, S.; Thangavel, P.; Jeong, H.Y.; Kim, K.S. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat. Sustain. 2020, 3, 556–563. [Google Scholar] [CrossRef]
- Cai, C.; Liu, K.; Zhu, Y.; Li, P.; Wang, Q.; Liu, B.; Chen, S.; Li, H.; Zhu, L.; Li, H.; et al. Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angew. Chem. Int. Ed. 2022, 61, e202113664. [Google Scholar] [CrossRef]
- Ren, R.; Wang, X.; Chen, H.; Miller, H.A.; Salam, I.; Varcoe, J.R.; Wu, L.; Chen, Y.; Liao, H.; Liu, E.; et al. Reshaping the Cathodic Catalyst Layer for Anion Exchange Membrane Fuel Cells: From Heterogeneous Catalysis to Homogeneous Catalysis. Angew. Chem. Int. Ed. 2021, 60, 4049–4054. [Google Scholar] [CrossRef]
- Ha, Y.; Fei, B.; Yan, X.; Xu, H.; Chen, Z.; Shi, L.; Fu, M.; Xu, W.; Wu, R. Atomically Dispersed Co-Pyridinic N-C for Superior Oxygen Reduction Reaction. Adv. Energy Mater. 2020, 10, 2002592. [Google Scholar] [CrossRef]
- Rapson, T.D.; Ju, H.; Marshall, P.; Devilla, R.; Jackson, C.J.; Giddey, S.; Sutherland, T.D. Engineering a solid-state metalloprotein hydrogen evolution catalyst. Sci. Rep. 2020, 10, 3774. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Sun, Q.; Chen, P.; Chen, L.; Fei, Z.; Dyson, P.J. Nitrogen-Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting. ChemSusChem 2020, 13, 5112–5118. [Google Scholar] [CrossRef]
- Ding, R.; Lin, L.; Pei, C.; Yu, X.; Sun, Q.; Park, H.S. Hierarchical Architectures Based on Ru Nanoparticles/Oxygen-Rich-Carbon Nanotubes for Efficient Hydrogen Evolution. Chem.—A Eur. J. 2021, 27, 11150–11157. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, N.; Zhang, C.; Sun, N.; Pan, Y.; Chen, C.; Li, J.; Tan, M.; Cui, R.; Shi, Z.; et al. Doping Ruthenium into Metal Matrix for Promoted pH-Universal Hydrogen Evolution. Adv. Sci. 2022, 9, 2200010. [Google Scholar] [CrossRef]
- Su, P.; Pei, W.; Wang, X.; Ma, Y.; Jiang, Q.; Liang, J.; Zhou, S.; Zhao, J.; Liu, J.; Lu, G.Q. Exceptional Electrochemical HER Performance with Enhanced Electron Transfer between Ru Nanoparticles and Single Atoms Dispersed on a Carbon Substrate. Angew. Chem. Int. Ed. 2021, 60, 16044–16050. [Google Scholar] [CrossRef]
- Wang, C.; Qi, L. Heterostructured Inter-Doped Ruthenium–Cobalt Oxide Hollow Nanosheet Arrays for Highly Efficient Overall Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 17219–17224. [Google Scholar] [CrossRef]
- Rao, Y.; Xu, L.; Zhou, M.; Yin, B.; Osuka, A.; Song, J. Expanded Azaporphyrins Consisting of Multiple BODIPY Units: Global Aromaticity and High Affinities Towards Alkali Metal Ions. Angew. Chem. Int. Ed. 2022, 61, e202206899. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A. Review of ammonia catalysis. Catal. Rev. 1971, 4, 1–26. [Google Scholar] [CrossRef]
- Williams, F.J.; Palermo, A.; Tracey, S.; Tikhov, M.S.; Lambert, R.M. Electrochemical Promotion by Potassium of the Selective Hydrogenation of Acetylene on Platinum: Reaction Studies and XP Spectroscopy. J. Phys. Chem. B 2002, 106, 5668–5672. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Dongil, A.B.; Conesa, J.M.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Promotion of Ru or Ni on Alumina Catalysts with a Basic Metal for CO2 Hydrogenation: Effect of the Type of Metal (Na, K, Ba). Nanomaterials 2022, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Liu, L.; Zhuang, J.; Wang, H.; Li, Y.; Shen, W.; Xu, Y.; Bao, X. Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts. Catal. Lett. 2003, 91, 155–167. [Google Scholar] [CrossRef]
- Zhao, B.; Zhai, P.; Wang, P.; Li, J.; Li, T.; Peng, M.; Zhao, M.; Hu, G.; Yang, Y.; Li, Y.-W.; et al. Direct Transformation of Syngas to Aromatics over Na-Zn-Fe5C2 and Hierarchical HZSM-5 Tandem Catalysts. Chem 2017, 3, 323–333. [Google Scholar] [CrossRef]
- Chen, I.; Chen, F.L. Effect of alkali and alkaline-earth metals on the resistivity to coke formation and sintering of nickel-alumina catalysts. Ind. Eng. Chem. Res. 1990, 29, 534–539. [Google Scholar] [CrossRef]
- Gentner, T.X.; Mulvey, R.E. Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry. Angew. Chem. Int. Ed. 2021, 60, 9247–9262. [Google Scholar] [CrossRef]
- Qin, R.; Zhou, L.; Liu, P.; Gong, Y.; Liu, K.; Xu, C.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, M.; Yin, J.; Abou-Hamad, E.; Schwingenschlögl, U.; Costa, P.M.F.J.; Alshareef, H.N. A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 1355–1363. [Google Scholar] [CrossRef]
- Zimmermann, P.; Ar, D.; Rößler, M.; Holze, P.; Cula, B.; Herwig, C.; Limberg, C. Selective Transformation of Nickel-Bound Formate to CO or C−C Coupling Products Triggered by Deprotonation and Steered by Alkali-Metal Ions. Angew. Chem. Int. Ed. 2021, 60, 2312–2321. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, X.; Qian, Y.; Gao, H.; Weber, D.H.; Zhang, L.; Goodenough, J.B.; Yu, G. In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite-Free Alkali-Metal-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 12170–12177. [Google Scholar] [CrossRef]
- Zhang, L.; Jang, H.; Liu, H.; Kim, M.G.; Yang, D.; Liu, S.; Liu, X.; Cho, J. Sodium-Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH-Universal Oxygen Evolution Electrocatalyst. Angew. Chem. Int. Ed. 2021, 60, 18821–18829. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Z.; Liu, X.; Shao, Z.; Xia, L.; Zhong, L.; Wang, H.; Sun, Y. Tuning the interaction between Na and Co2C to promote selective CO2 hydrogenation to ethanol. Appl. Catal. B Environ. 2021, 293, 120207. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Gong, Y.; Wang, Y. Directly immobilizing a Ru–tannic acid linkage coordination complex on carbon cloth: An efficient and ultrastable catalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 11038–11043. [Google Scholar] [CrossRef]
- Sun, S.-W.; Wang, G.-F.; Zhou, Y.; Wang, F.-B.; Xia, X.-H. High-Performance Ru@C4N Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Solutions. ACS Appl. Mater. Interfaces 2019, 11, 19176–19182. [Google Scholar] [CrossRef]
- Xu, C.; Ming, M.; Wang, Q.; Yang, C.; Fan, G.; Wang, Y.; Gao, D.; Bi, J.; Zhang, Y. Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution. J. Mater. Chem. A 2018, 6, 14380–14386. [Google Scholar] [CrossRef]
- Kweon, D.H.; Okyay, M.S.; Kim, S.-J.; Jeon, J.-P.; Noh, H.-J.; Park, N.; Mahmood, J.; Baek, J.-B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-S.; Huang, M.-J.; Kong, L.-X.; Chen, X.-N.; Zhou, Y.-W.; Li, J.-L.; Wang, M.-Y. Ruthenium Nanoparticles Anchored on Graphene Hollow Nanospheres Superior to Platinum for the Hydrogen Evolution Reaction in Alkaline Media. Inorg. Chem. 2020, 59, 930–936. [Google Scholar] [CrossRef]
- Chithaiah, P.; Binwal, D.C.; Raos, C.N.R. Simple Synthesis of 2D Molybdenum Carbide Nanosheets and Their Application in the Hydrogen Evolution Reaction. Eur. J. Inorg. Chem. 2022, 2022, e202101086. [Google Scholar] [CrossRef]
- Song, H.; Wu, M.; Tang, Z.; Tse, J.S.; Yang, B.; Lu, S. Single Atom Ruthenium-Doped CoP/CDs Nanosheets via Splicing of Carbon-Dots for Robust Hydrogen Production. Angew. Chem. Int. Ed. 2021, 60, 7234–7244. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Xu, K.; Zhang, C.; Dai, J.; Oliaee, S.N.; Li, L.; Zeng, X.; Wu, C.; Peng, Z. Free-Standing Two-Dimensional Ru Nanosheets with High Activity toward Water Splitting. ACS Catal. 2016, 6, 1487–1492. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L.H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S.-Z. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Li, Y.; Zhao, Z.; Li, R.; He, J.; Yin, J.; Yan, B.; Zhang, X. A Review of the Application of Heterostructure Catalysts in Hydrogen Evolution Reaction. ChemistrySelect 2022, 7, e202104041. [Google Scholar] [CrossRef]
- Lu, E.; Zhang, Z.; Tao, J.; Hou, Y.; Zhang, J.; Yu, Z. Enhanced Metal-Semiconductor Interaction for Photocatalytic Hydrogen Evolution Reaction. Chem.—A Eur. J. 2022, 28, e202201590. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Shen, T.; Wu, C.; Zu, L.; Zhang, L. Porous NiFe alloys synthesized via freeze casting as bifunctional electrocatalysts for oxygen and hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 37736–37745. [Google Scholar] [CrossRef]
- Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C.; et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73. [Google Scholar] [CrossRef]
- Liu, L.; Qin, C.; Yu, M.; Wang, Q.; Wang, J.; Hou, B.; Jia, L.; Li, D. Morphology Evolution of Hcp Cobalt Nanoparticles Induced by Ru Promoter. ChemCatChem 2020, 12, 2083–2090. [Google Scholar] [CrossRef]
- Niyitanga, T.; Jeong, H.K. Modification of thermally reduced graphite oxide and molybdenum disulfide by solution plasma for hydrogen evolution reaction. Mater. Chem. Phys. 2021, 263, 124345. [Google Scholar] [CrossRef]
- Ortiz-Restrepo, J.E.; Loaiza, O.A.; Urresta, J.D.; Velasquez, J.D.; Pastor, E.; Chaur, M.N.; Lizcano-Valbuena, W.H. A comparative study of different carbon materials as metal-free catalysts for oxygen reduction and hydrogen evolution reactions in alkaline media. Diam. Relat. Mater. 2021, 117, 108464. [Google Scholar] [CrossRef]
- Pham, N.N.; Kang, S.G.; Kim, H.-J.; Pak, C.; Han, B.; Lee, S.G. Catalytic activity of Ni3Mo surfaces for hydrogen evolution reaction: A density functional theory approach. Appl. Surf. Sci. 2021, 537, 147894. [Google Scholar] [CrossRef]
- Zhu, T.; Huang, J.; Huang, B.; Zhang, N.; Liu, S.; Yao, Q.; Haw, S.; Chang, Y.; Pao, C.; Chen, J.; et al. High-Index Faceted RuCo Nanoscrews for Water Electrosplitting. Adv. Energy Mater. 2020, 10, 2002860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Zhao, C.; Zhou, Y.; Guo, J.; Wei, Z.; Wang, J. The Promotional Effect of Na on Ru for pH-Universal Hydrogen Evolution Reactions. Catalysts 2023, 13, 552. https://doi.org/10.3390/catal13030552
Guo B, Zhao C, Zhou Y, Guo J, Wei Z, Wang J. The Promotional Effect of Na on Ru for pH-Universal Hydrogen Evolution Reactions. Catalysts. 2023; 13(3):552. https://doi.org/10.3390/catal13030552
Chicago/Turabian StyleGuo, Bingxin, Chengfei Zhao, Yingshuang Zhou, Junjie Guo, Zhongzhe Wei, and Jing Wang. 2023. "The Promotional Effect of Na on Ru for pH-Universal Hydrogen Evolution Reactions" Catalysts 13, no. 3: 552. https://doi.org/10.3390/catal13030552
APA StyleGuo, B., Zhao, C., Zhou, Y., Guo, J., Wei, Z., & Wang, J. (2023). The Promotional Effect of Na on Ru for pH-Universal Hydrogen Evolution Reactions. Catalysts, 13(3), 552. https://doi.org/10.3390/catal13030552