Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of the Catalysts
2.1.1. Elemental Analysis of LDHs
2.1.2. X−ray Diffraction (XRD) Analysis
2.1.3. Scanning Electron Microscope (SEM)
2.1.4. Fourier-Transform Infrared Spectroscopy Analysis (FT−IR)
2.2. Photochemical Properties
2.3. Photocatalytic Performance of Ni/Cr LDHs in MO Degradation
2.3.1. Necessity of Organic-Intercalated Structure
2.3.2. Effect of the Content of Organic Intercalated into the Interlayer
2.3.3. Positive Role of Ni and Active Effect of Cr
2.4. Mechanism of MO Degradation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Ni/Cr LDHs
3.3. Photocatalytic Decolorization Process
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Li, Y.; Zhang, G.; Yang, F.; He, P. NiO-NiFe2O4-rGO magnetic nanomaterials for activated peroxymonosulfate degradation of rhodamine B. Water 2019, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.J.; Wu, J.Z.; Zhang, J.; Chen, H.; Zhou, J.Z.; Qian, G.R.; Xu, Z.P.; Du, Z.; Rao, Q.L. A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. Catal. Sci. Technol. 2018, 8, 1207–1228. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, F.; Zhang, C.; Zeng, G.; Tan, X.; Yu, Z.; Zhong, Y.; Wang, H.; Cui, F. Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: A review. RSC Adv. 2016, 6, 79415–79436. [Google Scholar] [CrossRef]
- Yin, H.; Tang, Z. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 2016, 45, 4873–4891. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Sun, F.; Frost, R.L. Adsorption characteristics of assembled and unassembled Ni/Cr layered double hydroxides towards methyl orange. J. Colloid Interface Sci. 2022, 617, 363–371. [Google Scholar] [CrossRef]
- Tzou, Y.M.; Wang, S.L.; Hsu, L.C.; Chang, R.R.; Lin, C. Deintercalation of Li/Al LDH and its application to recover adsorbed chromate from used adsorbent. Appl. Clay Sci. 2007, 37, 107–114. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M. Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review. Trends Environ. Anal. Chem. 2017, 16, 1–15. [Google Scholar] [CrossRef]
- Kuthati, Y.; Kankala, R.K.; Lee, C.H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl. Clay Sci. 2015, 112–113, 100–116. [Google Scholar] [CrossRef]
- Fan, G.; Li, F.; Evans, D.G. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef]
- Mohamed, F.; Abukhadra, M.R.; Shaban, M. Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci. Total Environ. 2018, 640–641, 352–363. [Google Scholar] [CrossRef]
- Shao, M.; Han, J.; Wei, M. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis. Chem. Eng. J. 2011, 168, 519–524. [Google Scholar] [CrossRef]
- Hou, Y.; Feng, X. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods 2017, 1, 1700090. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, Z.; Li, L. Uptake and degradation of Orange II by zinc aluminum layered double oxides. J. Colloid Interface Sci. 2016, 469, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zhao, Y.; Waterhouse, G.I.N. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. Adv. Mater. 2017, 29, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Mantilla, A.; Jácome-Acatitla, G.; Morales-Mendoza, G. Photoassisted degradation of 4-chlorophenol and p-cresol using MgAl hydrotalcites. Ind. Eng. Chem. Res. 2011, 50, 2762–2767. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Bhattacharyya, K.G. Ni/Ti layered double hydroxide: Synthesis, characterization and application as a photocatalyst for visible light degradation of aqueous methylene blue. Dalton Trans. 2015, 44, 6809–6824. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yu, X.; Han, A. Noble-metal-free Ni(OH)2-modified CdS/reduced graphene oxide nanocomposite with enhanced photocatalytic activity for hydrogen production under visible light irradiation. J. Phys. Chem. C 2014, 118, 22896–22903. [Google Scholar] [CrossRef]
- Parida, K.; Mohapatra, L.; Baliarsingh, N. Effect of Co2+ Substitution in the Framework of Carbonate Intercalated Cu/Cr LDH on Structural, Electronic, Optical, and Photocatalytic Properties. J. Phys. Chem. C 2012, 116, 22417–22424. [Google Scholar] [CrossRef]
- Meng, Y.; Luo, W.; Xia, X.; Ni, Z. Preparation of Salen-Metal Complexes (Metal = Co or Ni) Intercalated ZnCr-LDHs and Their Photocatalytic Degradation of Rhodamine B. Catalysts 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Yan, H.; Wei, M. Band Structure Engineering of Transition-Metal-Based Layered Double Hydroxides toward Photocatalytic Oxygen Evolution from Water: A Theoretical- Experimental Combination Study. J. Phys. Chem. C. 2017, 121, 2683–2695. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Zhu, Y. Experimental and theoretical investigation into the elimination of organic pollutants from solution by layered double hydroxides. Appl. Catal. B 2013, 140–141, 241–248. [Google Scholar] [CrossRef]
- Ruan, X.; Huang, S.; Chen, H. Sorption of aqueous organic contaminants onto dodecyl sulfate intercalated magnesium iron layered double hydroxide. Appl. Clay Sci. 2013, 72, 96–103. [Google Scholar] [CrossRef]
- Ruan, X.; Chen, Y.; Chen, H. Sorption behavior of methyl orange from aqueous solution on organic matter and reduced graphene oxides modified Ni-Cr layered double hydroxides. Chem. Eng. J. 2016, 297, 295–303. [Google Scholar] [CrossRef]
- Chaara, D.; Bruna, F.; Ulibarri, M.A. Organo/layered double hydroxide nanohybrids used to remove non ionic pesticides. J. Hazard. Mater. 2011, 196, 350–359. [Google Scholar] [CrossRef]
- Chai, H.; Xu, X.; Lin, Y. Synthesis and UV absorption properties of 2,3-dihydroxynaphthalene-6-sulfonate anion-intercalated Zn-Al layered double hydroxides. Polym. Degrad. Stab. 2009, 94, 744–749. [Google Scholar] [CrossRef]
- Ahmed, A.A.A.; Talib, Z.A.; Hussein, M.Z. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn-Cd-Al layered double hydroxide. Mater. Res. Bull. 2015, 62, 122–131. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Liu, Y.; Li, D.; Lin, Y. Basic intensity regulation of layered double oxide for CO2 adsorption process at medium temperature in coal gasification. Chem. Eng. J. 2022, 446, 136842. [Google Scholar] [CrossRef]
- Smalenskaite, A.; Pavasaryte, L.; Yang, T.; Kareiva, A. Undoped and Eu3+ Doped Magnesium-Aluminium Layered Double Hydroxides: Peculiarities of Intercalation of Organic Anions and Investigation of Luminescence Properties. Materials 2019, 12, 736. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Nguyen, T.K.N.; Matsui, Y.; Fujii, K.; Grasset, F.; Ohashi, N.; Matsuda, M.; Uchikoshi, T. Observation of stacking faults and photoluminescence of laurate ion intercalated Zn/Al layered double hydroxide. Mater. Lett. 2018, 213, 323–325. [Google Scholar] [CrossRef]
- Xia, S.; Qian, M.; Zhou, X. Theoretical and experimental investigation into the photocatalytic degradation of hexachlorobenzene by ZnCr layered double hydroxides with different anions. J. Mol. Catal. 2017, 435, 118–127. [Google Scholar] [CrossRef]
- Zhu, Y.; Laipan, M.; Zhu, R. Enhanced photocatalytic activity of Zn/Ti-LDH via hybridizing with C60. J. Mol. Catal. 2017, 427, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, R.; Okamoto, A.; Osawa, H. Design of All-Inorganic Molecular-Based Photocatalysts Sensitive to Visible Light Ti(IV)-O-Ce(III) Bimetallic Assemblies on Mesoporous Silica. J. Am. Chem. Soc. 2007, 129, 9596–9597. [Google Scholar] [CrossRef] [PubMed]
- Baliarsingh, N.; Mohapatra, L.; Parida, K. Design and development of a visible light harvesting Ni-Zn/Cr-CO32− LDH system for hydrogen evolution. J. Mater. Chem. A 2013, 1, 4236–4243. [Google Scholar] [CrossRef]
- Fragoso, J.; Pastor, A.; Yustai, M.; Martin, F.; Miguel, G.; Pavlovic, I.; Sanchez, M.; Sanchez, L. Graphene quantum dots/NiTi layered double hydroxide heterojunction as a highly efficient De-NOx photocatalyst with long persistent post-illumination action. Appl. Catal. B. 2023, 322, 122115. [Google Scholar] [CrossRef]
- Mersly, L.; Mouchtari, E.; Moujahid, E.; Forano, C.; Haddad, M.; Briche, S.; Tahiri, A.; Rafqah, S. ZnCr-LDHs with dual adsorption and photocatalysis capability for the removal of acid orange 7 dye in aqueous solution. J. Sci.-Adv. Mater. Dev. 2021, 6, 118–126. [Google Scholar] [CrossRef]
- Ren, Z.; Xie, J.; Li, X.; Guo, L.; Zhang, Q.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Fu, Y.; et al. Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the effificient production of reactive oxygen species through stirring-promoted piezo-photocatalysis. J. Colloid Interface Sci. 2023, 632, 271–284. [Google Scholar] [CrossRef]
- Li, D.; Long, M.; Zhao, Q. Synergetic effect of photocatalysis and peroxymonosulfate activation by CoTiOc/SBA-15, NiTiO3/SBA-15 and Fe2TiO5/SBA-15 for efficient photocatalytic removal of oxytetracycline hydrochloride. Environ. Sci. Water Res. Technol. 2022, 8, 1763–1776. [Google Scholar] [CrossRef]
Samples | C (%) | N (%) | Ni2+ (mg/g) | Cr3+ (mg/g) | Ni2+/Cr3+ (mol/mol) | Band Gap (eV) |
---|---|---|---|---|---|---|
Ni/Cr(2/1)-1.0LA LDH | 26.7 | 0.270 | 230.7 | 112.7 | 1.81 | 4.31 |
Ni/Cr(2/1)-0.5LA LDH | 14.6 | 0.980 | 218.5 | 104.1 | 1.85 | 4.10 |
Ni/Cr(1/1)-1.0LA LDH | 27.7 | 0.315 | 162.3 | 155.7 | 0.92 | / |
Ni/Cr(3/1)-1.0LA LDH | 21.4 | 0.754 | 273.9 | 92.3 | 2.63 | / |
LDH Samples | Ni2+ (mg/g) | Cr3+ (mg/g) | Mg2+ (mg/g) | Fe3+ (mg/g) | n(M2+)/n(M3+) | D (nm) | Band Gap (eV) |
---|---|---|---|---|---|---|---|
Ni/Cr(2/1)-1.0LA LDH | 230.7 | 112.7 | / | / | 1.81 | 9.45 | 4.31 |
Ni/Fe(2/1)-1.0LA LDH | 237.6 | / | / | 123.3 | 1.86 | 11.4 | 4.13 |
Mg/Cr(2/1)-1.0LA LDH | / | 175.2 | 160.1 | / | 1.98 | 24.7 | 4.92 |
LDH Sample | Kapp (h−1) | T1/2 (h) | R2 |
---|---|---|---|
Ni/Cr(2/1)−0.5LA LDH | 0.5471 | 1.26 | 0.99 |
Metal Ions | 0.5 h | 1 h | 1.5 h | 2 h | 2.5 h | 3 h |
---|---|---|---|---|---|---|
Ni (%) | - * | - * | 0.12 | 0.24 | 0.28 | 0.30 |
Cr (%) | - * | - * | - * | - * | - * | - * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Jiang, Z.; Sun, F.; Chen, Y.; Shi, C.; Zhang, Z.; Qian, G.; Ruan, X. Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides. Catalysts 2023, 13, 698. https://doi.org/10.3390/catal13040698
Zhang X, Jiang Z, Sun F, Chen Y, Shi C, Zhang Z, Qian G, Ruan X. Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides. Catalysts. 2023; 13(4):698. https://doi.org/10.3390/catal13040698
Chicago/Turabian StyleZhang, Xuehua, Zili Jiang, Fengting Sun, Yuhan Chen, Changrong Shi, Zhanying Zhang, Guangren Qian, and Xiuxiu Ruan. 2023. "Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides" Catalysts 13, no. 4: 698. https://doi.org/10.3390/catal13040698
APA StyleZhang, X., Jiang, Z., Sun, F., Chen, Y., Shi, C., Zhang, Z., Qian, G., & Ruan, X. (2023). Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides. Catalysts, 13(4), 698. https://doi.org/10.3390/catal13040698