The Effect of a Nitrogen-Based Ionic Liquid as a Coating over 1Pd9Ag/Al2O3 for the Selective Hydrogenation of 1,7-Octadiene vs 1-Octene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Competitive Hydrogenation of 1,7-Octadiene vs 1-Octene
2.2. Non-Competitive Hydrogenation Studies
2.3. IL Leaching Tests
2.4. XPS
3. Experiment
3.1. Catalyst Preparation
3.2. Brunauer–Emmett–Teller (BET) Measurements
3.3. High-Resolution-Transmission Electron Microscopy (HR-TEM)
3.4. H2-Chemisorption
3.5. Thermal Gravimetric Analysis-Differential Scanning Calorimetry (TGA-DSC)
3.6. X-ray Photoelectron Spectroscopy (XPS)
3.7. Competitive Hydrogenation of a Diene/Octene Mixture
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Tai, X.; Zhou, X.; Liu, L.; Zhang, X.; Ding, L.; Zhang, Y. Au–Pt bimetallic nanoparticle catalysts supported on UiO-67 for selective 1,3-butadiene hydrogenation. J. Taiwan Inst. Chem. Eng. 2020, 114, 220–227. [Google Scholar] [CrossRef]
- Yardimci, D.; Serna, P.; Gates, B.C. Tuning Catalytic Selectivity: Zeolite- and Magnesium Oxide-Supported Molecular Rhodium Catalysts for Hydrogenation of 1,3-Butadiene. ACS Catal. 2012, 2, 2100–2113. [Google Scholar] [CrossRef]
- Bu, W.; Zhao, L.; Zhang, Z.; Zhang, X.; Gao, J.; Xu, C. Effect of water on hydrogenation of 1,3-butadiene over Au (111): A joint theoretical and experimental study. Appl. Surf. Sci. 2014, 289, 6–13. [Google Scholar] [CrossRef]
- Yardimci, D.; Serna, P.; Gates, B.C. A Highly Selective Catalyst for Partial Hydrogenation of 1,3-Butadiene: MgO-Supported Rhodium Clusters Selectively Poisoned with CO. ChemCatChem 2012, 4, 1547–1550. [Google Scholar] [CrossRef]
- Méndez, F.J.; Piccolo, L.; Solano, R.; Aouine, M.; Villasana, Y.; Guerra, J.; Curbelo, S.; Olivera-Fuentes, C.; Brito, J.L. Promoting effect of ceria on the performance of NiPd/CeO2–Al2O3 catalysts for the selective hydrogenation of 1,3-butadiene in the presence of 1-butene. New J. Chem. 2018, 42, 11165–11173. [Google Scholar] [CrossRef]
- Jalal, A.; Uzun, A. An ordinary nickel catalyst becomes completely selective for partial hydrogenation of 1,3-butadiene when coated with tributyl(methyl)phosphonium methyl sulfate. Appl. Catal. A Gen. 2018, 562, 321–326. [Google Scholar] [CrossRef]
- Gunasekar, G.H.; Jung, K.D.; Yoon, S. Hydrogenation of CO2 to Formate using a Simple, Recyclable, and Efficient Heterogeneous Catalyst. Inorg. Chem. 2019, 58, 3717–3723. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tai, X.; Zhou, X. Au3+/Au0 Supported on Chromium(III) Terephthalate Metal Organic Framework (MIL-101) as an Efficient Heterogeneous Catalystfor Three-Component Coupling Synthesis of Propargylamines. Materials 2017, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Krier, J.M.; Michalak, W.D.; Cai, X.; Carl, L.; Komvopoulos, K.; Somorjai, G.A. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO2, Pd@SiO2, and Rh@SiO2 Core–Shell Catalysts. Nano Lett. 2015, 15, 39–44. [Google Scholar] [CrossRef]
- Liu, C.; Yang, K.; Zhao, J.; Pan, Y.; Liu, D. Hydrogenation of 1,3-butadiene over Au and Pt/SiO2-N catalysts at low temperature. Catal. Commun. 2015, 67, 72–77. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, J.; Zhuang, J.; Sun, H.; Zhang, H.; Yue, Y.; Zhu, H.; Bao, X.; Yuan, P. Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst. Appl. Catal. A Gen. 2020, 589, 117312. [Google Scholar] [CrossRef]
- Jalal, A.; Uzun, A. An exceptional selectivity for partial hydrogenation on a supported nickel catalyst coated with [BMIM][BF4]. J. Catal. 2017, 350, 86–96. [Google Scholar] [CrossRef]
- Katano, S.; Kato, H.S.; Kawai, M.; Domen, K. Partial Hydrogenation of 1,3-Butadiene on Hydrogen-Precovered Pd(110) in the Balance of π-Bonded C4 Hydrocarbon Reactions. J. Phys. Chem. C. 2008, 112, 17219–17224. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, H.; Xu, B.Q. Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angew. Chem. Int. Ed. 2005, 44, 7132–7135. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel, A.; Clotet, A.; Ricart, J.M.; Delbecq, F.; Sautet, P. Comparative DFT study of the adsorption of 1,3-butadiene, 1-butene and 2-cis/trans-butenes on the Pt(111) and Pd(111) surfaces. Surf. Sci. 2004, 549, 121–133. [Google Scholar] [CrossRef]
- Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. Single-Atom Pd1/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene. JACS 2015, 137, 10484–10487. [Google Scholar] [CrossRef]
- Hugon, A.; Delannoy, L.; Krafft, J.-M.; Louis, C. Selective Hydrogenation of 1,3-Butadiene in the Presence of an Excess of Alkenes over Supported Bimetallic Gold−Palladium Catalysts. J. Phys. Chem. C 2010, 114, 10823–10835. [Google Scholar] [CrossRef]
- Yang, D.; Odoh, S.O.; Borycz, J.; Wang, T.C.; Farha, O.K.; Hupp, J.T.; Cramer, C.J.; Gagliardi, L.; Gates, B.C. Tuning Zr6 Metal–Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catal. 2016, 6, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Xu, C.; Huang, X.; Ye, J.; Gu, L.; Li, G.; Tang, Z.; Wu, B.; Yang, H.; Zhao, Z.; et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004, 248, 2459–2477. [Google Scholar] [CrossRef]
- Steinrück, H.P.; Libuda, J.; Wasserscheid, P.; Cremer, T.; Kolbeck, C.; Laurin, M.; Maier, F.; Sobota, M.; Schulz, P.S.; Stark, M. Surface Science and Model Catalysis with Ionic Liquid-Modified Materials. Adv. Mater. 2011, 23, 2571–2587. [Google Scholar] [CrossRef] [PubMed]
- Babucci, M.; Uzun, A. Effects of interionic interactions in 1,3-dialkylimidazolium ionic liquids on the electronic structure of metal sites in solid catalysts with ionic liquid layer (SCILL). J. Mol. Liq. 2016, 216, 293–297. [Google Scholar] [CrossRef]
- Kernchen, U.; Etzold, B.; Korth, W.; Jess, A. Solid Catalyst with Ionic Liquid Layer (SCILL)—A New Concept to Improve Selectivity Illustrated by Hydrogenation of Cyclooctadiene. Chem. Eng. Technol. 2007, 30, 985–994. [Google Scholar] [CrossRef]
- Umpierre, A.P.; Machado, G.; Fecher, G.H.; Morais, J.; Dupont, J. Selective Hydrogenation of 1,3-Butadiene to 1-Butene by Pd(0) Nanoparticles Embedded in Imidazolium Ionic Liquids. Adv. Synth. Catal. 2005, 347, 1404–1412. [Google Scholar] [CrossRef]
- Antonels, N.C.; Benjamin Williams, M.; Meijboom, R.; Haumann, M. Well-defined dendrimer encapsulated ruthenium SCILL catalysts for partial hydrogenation of toluene in liquid-phase. J. Mol. Catal. A Chem. 2016, 421, 156–160. [Google Scholar] [CrossRef]
- Arras, J.; Paki, E.; Roth, C.; Radnik, J.; Lucas, M.; Claus, P. How a Supported Metal Is Influenced by an Ionic Liquid: In-Depth Characterization of SCILL-Type Palladium Catalysts and Their Hydrogen Adsorption. J. Phys. Chem. C 2010, 114, 10520–10526. [Google Scholar] [CrossRef]
- Bauer, T.; Mehl, S.; Brummel, O.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J. Ligand Effects at Ionic Liquid-Modified Interfaces: Coadsorption of [C2C1Im][OTf] and CO on Pd(111). J. Phys. Chem. C 2016, 120, 4453–4465. [Google Scholar] [CrossRef]
- Babucci, M.; Hoffman, A.S.; Debefve, L.M.; Kurtoglu, S.F.; Bare, S.R.; Gates, B.C.; Uzun, A. Unraveling the individual influences of supports and ionic liquid coatings on the catalytic properties of supported iridium complexes and iridium clusters. J. Catal. 2020, 387, 186–195. [Google Scholar] [CrossRef]
- Chanerika, R.; Shozi, M.L.; Prato, M.; Friedrich, H.B. The Effect of Coating Pd/Al2O3 and PdAg/Al2O3 Catalysts with [BMIM][DCA] for the Selective Hydrogenation of 1-Octyne in 1-Octene. ChemCatChem 2023, 15, e202201043. [Google Scholar] [CrossRef]
- Williams, D.B.; Stoll, M.E.; Scott, B.L.; Costa, D.A.; Oldham, J.W.J. Coordination chemistry of the bis(trifluoromethylsulfonyl)imide anion: Molecular interactions in room temperature ionic liquids. Chem. Commun. 2005, 1438–1440. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen. 2010, 373, 1–56. [Google Scholar] [CrossRef]
- Nikolaev, S.A.; Smirnov, V.V. Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites. Catal. Today 2009, 147, S336–S341. [Google Scholar] [CrossRef]
- Velasco-Vélez, J.J.; Teschner, D.; Girgsdies, F.; Hävecker, M.; Streibel, V.; Willinger, M.G.; Cao, J.; Lamoth, M.; Frei, E.; Wang, R.; et al. The Role of Adsorbed and Subsurface Carbon Species for the Selective Alkyne Hydrogenation Over a Pd-Black Catalyst: An Operando Study of Bulk and Surface. Top. Catal. 2018, 61, 2052–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanerika, R.; Shozi, M.L.; Prato, M.; Friedrich, H.B. The effect of organic modifiers on Ag/Al2O3 catalysts for the sequential hydrogenation of 1-octyne vs 1-octene. Mol. Catal. 2022, 525, 112344. [Google Scholar] [CrossRef]
- Miller, S.F.; Friedrich, H.B.; Holzapfel, C.W. The Effects of SCILL Catalyst Modification on the Competitive Hydrogenation of 1-Octyne and 1,7-Octadiene versus 1-Octene. ChemCatChem 2012, 4, 1337–1344. [Google Scholar] [CrossRef]
- Sobota, M.; Happel, M.; Amende, M.; Paape, N.; Wasserscheid, P.; Laurin, M.; Libuda, J. Ligand Effects in SCILL Model Systems: Site-Specific Interactions with Pt and Pd Nanoparticles. Adv. Mater. 2011, 23, 2617–2621. [Google Scholar] [CrossRef]
- Garba, M.D.; Jackson, S.D. Catalytic upgrading of refinery cracked products by trans-hydrogenation: A review. Appl. Petrochem. Res. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cremer, T.; Kolbeck, C.; Lovelock, K.R.J.; Paape, N.; Wölfel, R.; Schulz, P.S.; Wasserscheid, P.; Weber, H.; Thar, J.; Kirchner, B.; et al. Towards a Molecular Understanding of Cation–Anion Interactions—Probing the Electronic Structure of Imidazolium Ionic Liquids by NMR Spectroscopy, X-ray Photoelectron Spectroscopy and Theoretical Calculations. Chem. Eur. J. 2010, 16, 9018–9033. [Google Scholar] [CrossRef]
- Zahn, S.; Bruns, G.; Thar, J.; Kirchner, B. What keeps ionic liquids in flow? Phys. Chem. Chem. Phys. 2008, 10, 6921–6924. [Google Scholar] [CrossRef]
- Rietzler, F.; May, B.; Steinrück, H.P.; Maier, F. Switching adsorption and growth behavior of ultrathin [C2C1Im][OTf] films on Au(111) by Pd deposition. Phys. Chem. Chem. Phys. 2016, 18, 25143–25150. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.J.; Kang, J.H.; Ahn, I.Y.; Moon, S.H. Deactivation behavior of a TiO2-added Pd catalyst in acetylene hydrogenation. J. Catal. 2004, 226, 226–229. [Google Scholar] [CrossRef]
- Kang, J.H.; Shin, E.W.; Kim, W.J.; Park, J.D.; Moon, S.H. Selective Hydrogenation of Acetylene on TiO2-Added Pd Catalysts. J. Catal. 2002, 208, 310–320. [Google Scholar] [CrossRef]
- Sárkány, A.; Révay, Z. Some features of acetylene and 1,3-butadiene hydrogenation on Ag/SiO2 and Ag/TiO2 catalysts. Appl. Catal. A Gen. 2003, 243, 347–355. [Google Scholar] [CrossRef]
- Tomas, J.; Tomas, W. Introduction to the Principles of Heterogeneous Catalysis; Academic Press: London, UK, 1967. [Google Scholar]
- Ibhadon, A.; Kansal, S. The Reduction of Alkynes Over Pd-Based Catalyst Materials—A Pathway to Chemical Synthesis. Chem. Eng. Technol. 2017, 9, 1000376. [Google Scholar]
- Akçay, A.; Balci, V.; Uzun, A. Structural factors controlling thermal stability of imidazolium ionic liquids with 1-n-butyl-3-methylimidazolium cation on γ-Al2O3. Thermochim. Acta 2014, 589, 131–136. [Google Scholar] [CrossRef]
- Akçay, A.; Babucci, M.; Balci, V.; Uzun, A. A model to predict maximum tolerable temperatures of metal-oxide-supported 1-n-butyl-3-methylimidazolium based ionic liquids. Chem. Eng. Sci. 2015, 123, 588–595. [Google Scholar] [CrossRef]
- Babucci, M.; Akçay, A.; Balci, V.; Uzun, A. Thermal Stability Limits of Imidazolium Ionic Liquids Immobilized on Metal-Oxides. Langmuir 2015, 31, 9163–9176. [Google Scholar] [CrossRef]
- Babucci, M.; Balci, V.; Akçay, A.; Uzun, A. Interactions of [BMIM][BF4] with Metal Oxides and Their Consequences on Stability Limits. J. Phys. Chem. C 2016, 120, 20089–20102. [Google Scholar] [CrossRef]
- Zhao, Z.; Flores Espinosa, M.M.; Zhou, J.; Xue, W.; Duan, X.; Miao, J.; Huang, Y. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation. Nano Res. 2019, 12, 1467–1472. [Google Scholar] [CrossRef]
- Jablonska, M.; Nocun, M.; Bidzińska, E. Silver–Alumina Catalysts for Low-Temperature Methanol Incineration. Catal. Lett. 2016, 146, 937–944. [Google Scholar] [CrossRef] [Green Version]
- Dolatkhah, A.; Jani, P.; Wilson, L. Redox-Responsive Polymer Template as an Advanced Multifunctional Catalyst Support for Silver Nanoparticles. Langmuir 2018, 34, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Dziembaj, R.; Piwowarska, Z. X-ray photoelectron spectroscopy (XPS) as a useful tool to characterize polyaniline doped by 12-tungstosilicic, 12-tungstophosphoric and 12-molybdophosphoric acids. Synth. Met. 1994, 63, 225–232. [Google Scholar] [CrossRef]
- Chen, S.; Artiglia, L.; Orlando, F.; Edebeli, J.; Kong, X.; Yang, H.; Boucly, A.; Corral Arroyo, P.; Prisle, N.; Ammann, M. Impact of Tetrabutylammonium on the Oxidation of Bromide by Ozone. ACS Earth Space Chem. 2021, 5, 3008–3021. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, C.; Chen, B.; Wieliczka, D.; Kruger, M. XPS comparison between nanocrystalline γ-alumina and a new high pressure polymorph. Solid State Commun. 2000, 116, 631–636. [Google Scholar] [CrossRef]
- Sobota, M.; Schmid, M.; Happel, M.; Amende, M.; Maier, F.; Steinrück, H.P.; Paape, N.; Wasserscheid, P.; Laurin, M.; Gottfried, J.M.; et al. Ionic liquid based model catalysis: Interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Phys. Chem. Chem. Phys. 2010, 12, 10610–10621. [Google Scholar] [CrossRef]
IL/Organic Modifier | H2 Uptake (cm3/g) | Dispersion (%) |
---|---|---|
1Pd9Ag/Al2O3 | 0.79 | 7.40 |
1Pd9Ag-14%[N4444][NO3] | 0.14 | 1.31 |
1Pd9Ag-24%[N4444][NO3] | 0.11 | 1.00 |
Catalyst | TOF (s−1) | 1-Octene STY (g·kg−1·h−1) |
---|---|---|
1Pd9Ag/Al2O3 | 1.79 × 10−3 | 21.36 |
1Pd9Ag-10%[EIM] | 0.50 × 10−3 | 26.85 |
1Pd9Ag-14%[N4444][NO3] | 0.19 × 10−3 | 56.65 |
Catalyst | Moisture (%) | IL wt Loss (%) | Total Weight Loss (%) |
---|---|---|---|
1Pd9Ag-14%[N4444][NO3] (fresh) | 5 | 15 | 20 |
1Pd9Ag-14%[N4444][NO3] (used) | 3 | 12 | 15 |
1Pd9Ag-24%[N4444][NO3] (fresh) | 5 | 23 | 28 |
1Pd9Ag-24%[N4444][NO3] (used) | 4 | 13 | 17 |
1Pd9Ag-33%[N4444][NO3] (fresh) | 2 | 34 | 36 |
1Pd9Ag-33%[N4444][NO3] (used) | 4 | 20 | 24 |
IL/Organic Modifier | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
1Pd9Ag/Al2O3 (fresh) | 209 ± 0.8 | 0.58 | 7.9 |
1Pd9Ag/Al2O3 (used) | 187 ± 0.5 | 0.48 | 7.2 |
1Pd9Ag-14%[N4444][NO3] (fresh) | 172 ± 1.3 | 0.43 | 6.5 |
1Pd9Ag-14%[N4444][NO3] (used) | 194 ± 1.6 | 0.45 | 7.2 |
1Pd9Ag-24%[N4444][NO3] (fresh) | 103 ± 1.4 | 0.23 | 6.7 |
1Pd9Ag-24%[N4444][NO3] (used) | 147 ± 0.5 | 0.37 | 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanerika, R.; Shozi, M.L.; Prato, M.; Friedrich, H.B. The Effect of a Nitrogen-Based Ionic Liquid as a Coating over 1Pd9Ag/Al2O3 for the Selective Hydrogenation of 1,7-Octadiene vs 1-Octene. Catalysts 2023, 13, 746. https://doi.org/10.3390/catal13040746
Chanerika R, Shozi ML, Prato M, Friedrich HB. The Effect of a Nitrogen-Based Ionic Liquid as a Coating over 1Pd9Ag/Al2O3 for the Selective Hydrogenation of 1,7-Octadiene vs 1-Octene. Catalysts. 2023; 13(4):746. https://doi.org/10.3390/catal13040746
Chicago/Turabian StyleChanerika, Revana, Mzamo L. Shozi, Mirko Prato, and Holger B. Friedrich. 2023. "The Effect of a Nitrogen-Based Ionic Liquid as a Coating over 1Pd9Ag/Al2O3 for the Selective Hydrogenation of 1,7-Octadiene vs 1-Octene" Catalysts 13, no. 4: 746. https://doi.org/10.3390/catal13040746
APA StyleChanerika, R., Shozi, M. L., Prato, M., & Friedrich, H. B. (2023). The Effect of a Nitrogen-Based Ionic Liquid as a Coating over 1Pd9Ag/Al2O3 for the Selective Hydrogenation of 1,7-Octadiene vs 1-Octene. Catalysts, 13(4), 746. https://doi.org/10.3390/catal13040746