A New Mixed-Metal Phosphate as an Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction
Abstract
:1. Introduction
2. Results
Catalytic Activity of MALPO
3. Experimental
3.1. Characterizations
3.2. Chemicals
3.3. Synthesis of MALP
3.4. Catalytic Activity of MALPO
3.5. Catalyst Recyclability Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knoevenagel, E. Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Ber. Dtsch. Chem. Ges. 1898, 31, 2596–2619. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.Q.; Jiang, H.L.; Sun, L.B. Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117, 8129–8176. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Meng, J.; Liu, Y.; Wan, J.P. Direct Three-Component Synthesis of α-Cyano Acrylates Involving Cascade Knoevenagel Reaction and Esterification. Chin. J. Chem. 2015, 33, 1194–1198. [Google Scholar] [CrossRef]
- Jones, G. Organic Reactions; Wiley: New York, NY, USA, 1967; Volume 15, pp. 204–599. [Google Scholar]
- Tietze, L.F.; Beifuss, U.; Trost, B.M.; Fleming, I. An Efficient, Base-Catalyzed, Aqueous Knoevenagel Condensation for the Undergraduate Laboratory; Pergamon Press: Oxford, UK, 1991; Volume 2, pp. 341–394. [Google Scholar]
- Freeman, F. Properties and Reactions of Ylidene malononitriles. Chem. Rev. 1981, 80, 329–350. [Google Scholar] [CrossRef]
- Mondal, J.; Modak, A.; Bhaumik, A. Highly efficient mesoporous base catalyzed Knoevenagel condensation of different aromatic aldehydes with malononitrile and subsequent noncatalytic Diels-Alder reactions. J. Mol. Catal. A Chem. 2011, 335, 236–241. [Google Scholar] [CrossRef]
- Borah, H.N.; Deb, M.L.; Boruah, R.C.; Bhuyan, P.J. Stereoselective intramolecular hetero Diels–Alder reactions of 1-oxa-1, 3-butadienes: Synthesis of novel annelated pyrrolo [1, 2-a] indoles. Tetrahedron Lett. 2005, 46, 3391–3393. [Google Scholar] [CrossRef]
- Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev. 1996, 96, 115–136. [Google Scholar] [CrossRef]
- Wan, J.P.; Jing, Y.; Liu, Y.; Sheng, S. Metal-free synthesis of cyano acrylates via cyanuric chloride-mediated three-component reactions involving a cascade consists of Knoevenagel condensation/cyano hydration/esterification. RSC Adv. 2014, 4, 63997–64000. [Google Scholar] [CrossRef]
- Wang, H.J.; Liu, X.F.; Saliy, O.; Hu, W.; Wang, J.G. Robust Amino-Functionalized Mesoporous Silica Hollow Spheres Templated by CO2 Bubbles. Molecules 2022, 27, 53. [Google Scholar] [CrossRef]
- Ono, Y. Solid base catalysts for the synthesis of fine chemicals. J. Catal. 2003, 216, 406–415. [Google Scholar] [CrossRef]
- Li, T.F.; Miras, H.N.; Song, Y.F. Polyoxometalate (POM)-Layered Double Hydroxides (LDH) Composite Materials: Design and Catalytic Applications. Catalysts 2017, 7, 260. [Google Scholar] [CrossRef]
- Shanthan, R.P.; Venkataratnam, R.V. Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Lett. 1991, 32, 5821–5822. [Google Scholar] [CrossRef]
- Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Paletti, M. The CeCl3 7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Lett. 2006, 47, 6501–6504. [Google Scholar] [CrossRef]
- Kubota, Y.; Nishizaki, Y.; Sugi, Y. High catalytic activity of as-synthesized, ordered porous silicate–quaternary ammonium composite for Knoevenagel condensation. Chem. Lett. 2000, 29, 998–999. [Google Scholar] [CrossRef]
- Yokoi, T.; Yoshitake, H.; Tatsumi, T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. J. Mater. Chem. 2004, 14, 951–957. [Google Scholar] [CrossRef]
- Katkar, S.S.; Lande, M.K.; Arbad, B.R.; Rathod, S.B. Indium Modified Mesoporous Zeolite AlMCM-41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction. Bull. Kor. Chem. Soc. 2010, 31, 1301–1304. [Google Scholar] [CrossRef]
- Ansari, M.B.; Jin, H.; Parvin, M.N.; Park, S.-E. Mesoporous carbon nitride as a metal-free base catalyst in the microwave assisted Knoevenagel condensation of ethylcyanoacetate with aromatic aldehydes. Catal. Today 2012, 185, 211–216. [Google Scholar] [CrossRef]
- Reddy, T.I.; Verma, R.S. Rare-earth (RE) exchanged NaY zeolite promoted Knoevenagel condensation. Tetrahedron Lett. 1997, 38, 1721–1724. [Google Scholar] [CrossRef]
- Grass, J.P.; Kluehspies, K.; Reiprich, B.; Schwieger, W.; Inayat, A. Layer-Like Zeolite X as Catalyst in a Knoevenagel Condensation: The Effect of Different Preparation Pathways and Cation Exchange. Catalysts 2021, 11, 474. [Google Scholar] [CrossRef]
- Modak, A.; Mondal, J.; Bhaumik, A. Porphyrin based porous organic polymer as bi-functional catalyst for selective oxidation and Knoevenagel condensation reactions. Appl. Catal. A Gen. 2013, 459, 41–51. [Google Scholar] [CrossRef]
- Bennazha, J.; Zahouilly, M.; Boukhari, A.; Hol, E.A. Investigation of the basis of catalytic activity of solid state phosphate complexes in the Knoevenagel condensation. J. Mol. Catal. A Chem. 2003, 202, 247–252. [Google Scholar] [CrossRef]
- Karmakar, A.; Soliman, M.M.A.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Polyaromatic Carboxylate Ligands Based Zn(II) Coordination Polymers for Ultrasound-Assisted One-Pot Tandem Deacetalization–Knoevenagel Reactions. Catalysts 2022, 12, 294. [Google Scholar] [CrossRef]
- Gascon, J.; Aktay, U.; Hernandez-Alonso, M.D.; Klink, G.P.M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87. [Google Scholar] [CrossRef]
- Hartmann, M.; Fischer, M. Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 2012, 164, 38–43. [Google Scholar] [CrossRef]
- Lin, R.; Ding, Y. A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates. Materials 2013, 6, 217–243. [Google Scholar] [CrossRef]
- Loiseau, T.; Ferey, G. Crystalline oxyfluorinated open-framework compounds: Silicates, metal phosphates, metal fluorides and metal-organic frameworks (MOF). J. Fluor. Chem. 2007, 128, 413–422. [Google Scholar] [CrossRef]
- Wilson, S.T.; Lok, B.M.; Messina, C.A.; Cannan, T.R.; Flanigen, E.M. Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids. J. Am. Chem. Soc. 1982, 104, 1146–1147. [Google Scholar] [CrossRef]
- Pyke, D.R.; Whitney, P.; Houghton, H. Chemical modification of crystalline microporous aluminium phosphates. Appl. Catal. 1985, 18, 173–190. [Google Scholar] [CrossRef]
- Ramesha, B.M.; Meynen, V. Advances and Challenges in the Creation of Porous Metal Phosphonates. Materials 2020, 13, 5366. [Google Scholar] [CrossRef]
- Clearfield, A. Recent advances in metal phosphonate chemistry. Curr. Opin. Solid State Mater. Sci. 1996, 1, 268–278. [Google Scholar] [CrossRef]
- Fischer, M. Porous aluminophosphates as adsorbents for the separation of CO2/CH4 and CH4/N2 mixtures—A Monte Carlo simulation study. Sustain. Energy Fuels 2018, 2, 1749–1763. [Google Scholar] [CrossRef]
- Nan, C.; Lu, J.; Chen, C.; Peng, Q.; Li, Y. Solvothermal synthesis of lithium iron phosphate nanoplates. J. Mater. Chem. 2011, 21, 9994–9996. [Google Scholar] [CrossRef]
- Wang, H.Y.; Cheng, H.J.; Lai, F.; Xiong, D.Y. CuAPO-5 as a Multiphase Catalyst for Synthesis of Verbenone from alpha-Pinene. Materials 2022, 15, 8097. [Google Scholar]
- Xu, D.; Ren, J.; Yue, S.; Zou, X.; Shang, X.; Wang, X. One-Pot Synthesis of Al-P-O Catalysts and Their Catalytic Properties for O-Methylation of Catechol and Methanol. Materials 2021, 14, 5942. [Google Scholar] [CrossRef]
- Cheng, S.; Tzeng, J.N.; Hsu, B.Y. Synthesis and Characterization of a Novel Layered Aluminophosphate of Kanemite-like Structure. Chem. Mater. 1997, 9, 1788–1796. [Google Scholar]
- Lok, B.M.; Messina, C.R.; Patton, R.L.; Gajek, R.T.; Cannan, T.R.; Flanigan, E.M. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1984, 106, 6092–6093. [Google Scholar] [CrossRef]
- Zubowa, H.L.; Richter, M.; Roost, U.; Parlitz, B.; Fricke, R. Synthesis and catalytic properties of substituted A1PO4-31 molecular sieves. Catal. Lett. 1993, 19, 67–79. [Google Scholar]
- Sayari, A.; Moudrakovski, I.; Reddy, J.S.; Ratcliffe, C.I.; Ripmeester, J.A.; Preston, K.F. Synthesis of mesostructured lamellar aluminophosphates using supramolecular templates. Chem. Mater. 1996, 8, 2080–2088. [Google Scholar] [CrossRef]
- Lin, X.X.; Su, M.X.; Fang, F.X.; Hong, J.F.; Zhang, Y.M.; Zhou, S.F. Hierarchically Annular Mesoporous Carbon Derived from Phenolic Resin for Efficient Removal of Antibiotics in Wastewater. Molecules 2022, 27, 6735. [Google Scholar] [CrossRef]
- Dutta, A.; Patra, A.K.; Bhaumik, A. Porous organic–inorganic hybrid nickel phosphonate: Adsorption and catalytic applications. Microporous Mesoporous Mater. 2012, 155, 208–214. [Google Scholar] [CrossRef]
- Thakkar, R.; Chudasama, U. Preparation and application of zirconium phosphate and its derivatives. J. Hazard. Mater. 2009, 172, 129–133. [Google Scholar] [CrossRef]
- Ge, T.D.; Yu, L.Q.; Ni, N.R.; Dong, T.A.; Xing, T.L.; Long, H.K.; Yang, J.X. Synthesis of LiCo1/3Ni1/3Mn1/3O2 as a cathode material for lithium ion battery by water-in-oil emulsion method. Mater. Chem. Phys. 2005, 94, 423–428. [Google Scholar]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013, 46, 1231–1235. [Google Scholar] [CrossRef]
- Chakroborty, D.; Chowdhury, A.; Chandra, M.; Jana, R.; Shyamal, S.; Bhunia, M.K.; Chandra, D.; Hara, M.; Pradhan, D.; Datta, A.; et al. Novel Tetradentate Phosphonate Ligand Based Bioinspired Co-Metal–Organic Frameworks: Robust Electrocatalyst for the Hydrogen Evolution Reaction in Different Mediums. Cryst. Growth Des. 2021, 21, 2614–2623. [Google Scholar] [CrossRef]
- Kundu, S.K.; Bhaumik, A. Pyrene-Based Porous Organic Polymers as Efficient Catalytic Support for the Synthesis of Biodiesels at Room Temperature. ACS Sustain. Chem. Eng. 2015, 3, 1715–1723. [Google Scholar] [CrossRef]
- Zhang, W.; Oulego, P.; Sharma, S.K.; Yang, X.-L.; Li, L.-J.; Rothenberg, G.; Shiju, N.R. Self-Exfoliated Synthesis of Transition Metal Phosphate Nanolayers for Selective Aerobic Oxidation of Ethyl Lactate to Ethyl Pyruvate. ACS Catal. 2020, 10, 3958–3967. [Google Scholar] [CrossRef]
- Sharma, N.; Parhizkar, M.; Cong, W.; Mateti, S.; Kirkaland, M.A.; Puri, M.; Sutti, A. Metal ion type significantly affects the morphology but not the activity of lipase–metal–phosphate nanoflowers. RSC Adv. 2017, 7, 25437–25443. [Google Scholar] [CrossRef]
- Li, Z.; Tang, M.; Dai, J.; Wang, T.; Wang, Z.; Bai, W.; Bai, R. Preparation of Covalent Pseudo-Two-Dimensional Polymers in Water by Free Radical Polymerization. Macromolecules 2017, 50, 4292–4299. [Google Scholar] [CrossRef]
- Mazzotta, M.G.; Gupta, D.; Saha, B.; Patra, A.K.; Bhaumik, A.; Abu-Omar, M.M. Efficient Solid Acid Catalyst Containing Lewis and Bronsted Acid Sites for the Production of Furfurals. ChemSusChem 2014, 7, 2342–2350. [Google Scholar] [CrossRef]
- Farhi, J.; Lykakis, I.N.; Kostakis, G.E. Metal-Catalysed A(3) Coupling Methodologies: Classification and Visualisation. Catalysts 2022, 12, 660. [Google Scholar] [CrossRef]
- Tan, Y.; Fu, Z.; Zhang, J. A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation. Inorg. Chem. Commun. 2011, 14, 1966–1970. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S.H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 2008, 47, 4144–4148. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Anbu, N.; Dhakshinamoorthy, A.; Biswas, S. A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous Mesoporous Mater. 2019, 284, 459–467. [Google Scholar] [CrossRef]
- Basavaraja, D.; Athira, C.S.; Siddalingeshwar, V.D.; Ashitha, K.T.; Somappa, S.B. Multicomponent Synthesis of Spiro-dihydropyridine Oxindoles via Cascade Spiro-cyclization of Knoevenagel/Aza-Michael Adducts. J. Org. Chem. 2022, 87, 13556–13563. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, A.; Bhattacharjee, S.; Chongdar, S.; Malakar, B.; Maity, A.; Bhaumik, A. A New Mixed-Metal Phosphate as an Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction. Catalysts 2023, 13, 1053. https://doi.org/10.3390/catal13071053
Chowdhury A, Bhattacharjee S, Chongdar S, Malakar B, Maity A, Bhaumik A. A New Mixed-Metal Phosphate as an Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction. Catalysts. 2023; 13(7):1053. https://doi.org/10.3390/catal13071053
Chicago/Turabian StyleChowdhury, Avik, Sudip Bhattacharjee, Sayantan Chongdar, Bhabani Malakar, Anindita Maity, and Asim Bhaumik. 2023. "A New Mixed-Metal Phosphate as an Efficient Heterogeneous Catalyst for Knoevenagel Condensation Reaction" Catalysts 13, no. 7: 1053. https://doi.org/10.3390/catal13071053