Immobilization of Alcohol Dehydrogenases on Silica-Based Supports and Their Application in Enantioselective Ketone Reductions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Immobilization of ADHs
2.2. Enantioselective Reduction of Ketones 1a–1c: Soluble and Immobilized Biocatalysts
2.2.1. Enantioselective Reduction of Acetophenone 1a
2.2.2. Enantioselective Reduction of p-Methoxy-acetophenone 1b
2.2.3. Enantioselective Reduction of 3′,5′-Bis-(trifluoromethyl)acetophenone 1c
2.3. Optimization of the Enantioselective Reduction of 1c
3. Materials and Methods
3.1. Materials
3.2. HPLC Analysis
- The retention times for 2a and 1a were 3.7 min and 6.2 min, respectively.
- The retention times for 2b and 1b were 5.1 min and 6.9 min, respectively.
- The retention times for 2c and 1c were 6.2 min and 9.3 min, respectively.
- The retention times for (R)-2a and (S)-2a were 12 min and 13 min, respectively.
- The retention times for (S)-2b and (R)-2b were 10 min and 12 min, respectively.
- The retention times for (S)-2c and (R)-2c were 13 min and 14 min, respectively.
3.3. Biocatalyst Characterization
3.3.1. Protein Concentration
3.3.2. Activity Assay
3.4. General ADH Immobilization Procedure
3.4.1. Immobilization onto Silica Gels
3.4.2. Immobilization onto Amino-Functionalized Silica Gels
3.5. Asymmetric Ketone Reduction with Soluble ADHs
3.6. Enantioselective Ketone Reduction with Immobilized ADHs
3.6.1. Bioreduction under Batch Conditions
3.6.2. Bioreduction under Flow Conditions
3.7. Cross-Linking with Glutaraldehyde
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
@ | Immobilized on |
ADH | Alcohol dehydrogenase |
DMSO | Dimethyl sulfoxide |
ee | Enantiomeric excess |
Hex | Hexane |
IPA | 2-propanol |
MeCN | Acetonitrile |
PEEK | Polyether ether ketone |
TFA | Trifluoroacetic acid |
Tris | Tris(hydroxymethyl)aminomethane |
References
- Bell, E.L.; Finnigan, W.; France, S.P.; Green, A.P.; Hayes, M.A.; Hepworth, L.J.; Lovelock, S.L.; Niikura, H.; Osuna, S.; Romero, E.; et al. Biocatalysis. Nat. Rev. Methods Primers 2021, 1, 46. [Google Scholar] [CrossRef]
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- Carrea, G.; Riva, S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed. 2000, 39, 2226–2254. [Google Scholar] [CrossRef]
- Doukyu, N.; Ogino, H. Organic solvent-tolerant enzymes. Biochem. Eng. J. 2010, 48, 270–282. [Google Scholar] [CrossRef]
- Cao, L. Carrier-Bound Immobilized Enzymes: Principles, Application, and Design; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Sheldon, R.A.; Brady, D. Broadening the scope of biocatalysis in sustainable organic synthesis. ChemSusChem 2019, 12, 2859–2881. [Google Scholar]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Abdussalam-Mohammed, W.; Ali, A.Q.; Errayes, A.O. Green chemistry: Principles, applications, and disadvantages. Chem. Methodol. 2020, 4, 408–423. [Google Scholar]
- Faber, K. Biotransformations in Organic Chemistry, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Moore, J.C.; Pollard, D.J.; Kosjek, B.; Devine, P.N. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 2007, 40, 1412–1419. [Google Scholar] [CrossRef]
- de Miranda, A.S.; Milagre, C.D.; Hollmann, F. Alcohol dehydrogenases as catalysts in organic synthesis. Front. Catal. 2022, 2, 900554. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Yin, H.H.; Yu, D.F.; Chen, X.; Tang, X.L.; Zhang, X.J.; Xue, Y.P.; Wang, Y.J.; Liu, Z.Q. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl. Microbiol. Biotechnol. 2017, 101, 987–1001. [Google Scholar] [CrossRef]
- Younus, H. Oxidoreductases: Overview and Practical Applications. In Biocatalysis: Enzymatic Basics and Applications; Husain, Q., Ullah, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 39–55. [Google Scholar]
- Koesoema, A.A.; Standley, D.M.; Senda, T.; Matsuda, T. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Appl. Microbiol. Biotechnol. 2020, 104, 2897–2909. [Google Scholar] [CrossRef] [PubMed]
- Raynbird, M.Y.; Sampson, J.B.; Smith, D.A.; Forsyth, S.M.; Moseley, J.D.; Wells, A.S. Ketone reductase biocatalysis in the synthesis of chiral intermediates toward generic active pharmaceutical ingredients. Org. Process. Res. Dev. 2020, 24, 1131–1140. [Google Scholar] [CrossRef]
- Sardauna, A.E.; Abdulrasheed, M.; Nzila, A.; Musa, M.M. Biocatalytic asymmetric reduction of prochiral bulky-bulky ketones. Mol. Catal. 2023, 541, 113099. [Google Scholar] [CrossRef]
- Kulig, J.; Simon, R.C.; Rose, C.A.; Husain, S.M.; Häckh, M.; Lüdeke, S.; Zeitler, K.; Kroutil, W.; Pohl, M.; Rother, D. Stereoselective synthesis of bulky 1, 2-diols with alcohol dehydrogenases. Catal. Sci. Technol. 2012, 2, 1580–1589. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Basso, A.; Brady, D. New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy. Chem. Soc. Rev. 2021, 50, 5850–5862. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Cat. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Wilson, L.; Ferrarotti, S.A.; Guisan, J.M.; Fernandez-Lafuente, R.; Mateo, C. Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. J. Biotechnol. 2006, 125, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Li, Y.J. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate–chitosan beads. Int. J. Biol. Macromol. 2010, 47, 21–26. [Google Scholar]
- Bolivar, J.M.; Rocha-Martín, J.; Mateo, C.; Guisan, J.M. Stabilization of a highly active but unstable alcohol dehydrogenase from yeast using immobilization and post-immobilization techniques. Process. Biochem. 2012, 47, 679–686. [Google Scholar] [CrossRef]
- Alsafadi, D.; Parisi, F. Covalent immobilization of alcohol dehydrogenase (ADH2) from Haloferax volcanii: How to maximize activity and optimize performance of halophilic enzymes. Mol. Biotechnol. 2014, 55, 240–247. [Google Scholar] [CrossRef]
- Shinde, P.; Musameh, M.; Gao, Y.; Robinson, A.J.; Kyratzis, I.L. Immobilization and stabilization of alcohol dehydrogenase on polyvinyl alcohol fibre. Biotechnol. Rep. 2018, 19, e00260. [Google Scholar] [CrossRef] [PubMed]
- Solé, J.; Brummund, J.; Caminal, G.; Schürman, M.; Álvaro, G.; Guillén, M. Ketoisophorone synthesis with an immobilized alcohol dehydrogenase. ChemCatChem 2019, 11, 4862–4870. [Google Scholar] [CrossRef]
- Musa, M.M.; Phillips, R.S. Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols. Catal. Sci. Technol. 2011, 1, 1311–1323. [Google Scholar] [CrossRef]
- Adebar, N.; Gröger, H. Flow process for ketone reduction using a superabsorber-immobilized alcohol dehydrogenase from Lactobacillus brevis in a packed-bed reactor. Bioengineering 2019, 6, 99. [Google Scholar] [CrossRef]
- Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas—Benefits and challenges. Chem. Soc. Rev. 2013, 42, 6277–6289. [Google Scholar] [CrossRef] [PubMed]
- Magner, E. Immobilisation of enzymes on mesoporous silicate materials. Chem. Soc. Rev. 2013, 42, 6213–6222. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Jung, D. Biocatalysis with enzymes immobilized on mesoporous hosts: The status quo and future trends. J. Mater. Chem. 2010, 20, 844–857. [Google Scholar] [CrossRef]
- Pietricola, G.; Dosa, M.; Ottone, C.; Fino, D.; Piumetti, M.; Tommasi, T. Covalent Immobilization of Aldehyde and Alcohol Dehydrogenases on Ordered Mesoporous Silicas. Waste Biomass Valorization 2022, 13, 4043–4055. [Google Scholar] [CrossRef]
- Engelmann, C.; Ekambaram, N.; Johannsen, J.; Fellechner, O.; Waluga, T.; Fieg, G.; Liese, A.; Bubenheim, P. Enzyme immobilization on synthesized nanoporous silica particles and their application in a bi-enzymatic reaction. ChemCatChem 2020, 12, 2245–2252. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, D.; Zhao, W.; Ji, Q.; Ariga, K. Enhanced activity of alcohol dehydrogenase in porous silica nanosheets with wide size distributed mesopores. Bull. Chem. Soc. Jpn. 2019, 92, 275–282. [Google Scholar] [CrossRef]
- Liu, X.; Du, X.; Feng, J.; Wu, M.; Lin, J.; Guan, J.; Wang, T.; Zhang, Z. Co-immobilization of short-chain dehydrogenase/Reductase and glucose dehydrogenase for the efficient production of (±)-ethyl Mandelate. Catal. Lett. 2019, 149, 1710–1720. [Google Scholar] [CrossRef]
- Dreifke, M.; Brieler, F.J.; Fröba, M. Immobilization of alcohol dehydrogenase from E. coli onto mesoporous silica for application as a cofactor recycling system. ChemCatChem 2017, 9, 1197–1210. [Google Scholar] [CrossRef]
- Petkova, G.A.; Záruba, K.; Král, V. Synthesis of silica particles and their application as supports for alcohol dehydrogenases and cofactor immobilizations: Conformational changes that lead to switch in enzyme stereoselectivity. Biochim. Biophys. Acta BBA-Proteins Proteom. 2012, 1824, 792–801. [Google Scholar] [CrossRef]
- Trivedi, A.; Heinemann, M.; Spiess, A.C.; Daussmann, T.; Büchs, J. Optimization of adsorptive immobilization of alcohol dehydrogenases. J. Biosci. Bioeng. 2005, 99, 340–347. [Google Scholar] [CrossRef]
- Yang, G.; Wu, J.; Xu, G.; Yang, L. Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids Surf. B Biointerfaces 2010, 78, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Politano, V.T.; Diener, R.M.; Christian, M.S.; Hawkins, D.R.; Ritacco, G.; Api, A.M. The pharmacokinetics of phenylethyl alcohol (PEA) safety evaluation comparisons in rats, rabbits, and humans. Int. J. Toxicol. 2013, 32, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, J.; Jones, L.; Letizia, C.S.; Api, A.M. Fragrance material review on phenylethyl alcohol. Food Chem. Toxicol. 2012, 50, S224–S239. [Google Scholar] [CrossRef] [PubMed]
- Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Dagli, M.L.; Fryer, A.D.; Greim, H.; Miyachi, Y.; Saurat, J.H.; Sipes, I.G. A toxicological and dermatological assessment of aryl alkyl alcohols when used as fragrance ingredients. Food Chem. Toxicol. 2012, 50, 5. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dong, L.; Gu, X.; Wang, Y.; Liao, Y.; Luque, R.; Chen, Z. Sustainable production of active pharmaceutical ingredients from lignin-based benzoic acid derivatives via “demand orientation”. Green Chem. 2023, 25, 3791–3815. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Q.; Hankey, W.; Fang, X.; Yuan, F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis. 2022, 13, 632. [Google Scholar] [CrossRef] [PubMed]
- Dorokhov, V.S.; Nelyubina, Y.V.; Ioffe, S.L.; Sukhorukov, A.Y. Asymmetric Synthesis of Merck’s Potent hNK1 Antagonist and Its Stereoisomers via Tandem Acylation/[3, 3]-Rearrangement of 1, 2-Oxazine N-Oxides. J. Org. Chem. 2020, 85, 11060–11071. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, X.; Guan, Y.; Gu, D.; Shen, Y.; Xu, Z.; Wei, X.; Chen, J. Efficacy and safety of aprepitant in the prevention of chemotherapy-induced nausea and vomiting: A pooled analysis. Support Care Cancer 2012, 20, 1815–1822. [Google Scholar] [CrossRef]
- Armani, D.; Piccolo, O.; Petri, A. Biocatalytic Asymmetric Synthesis of (S)-1-[3, 5-bis (trifluoromethyl) phenyl] ethanol by an Immobilized KRED in Batch and Flow Conditions. ChemCatChem 2023, 15, e202300809. [Google Scholar] [CrossRef]
- Govardhan, C.P. Crosslinking of enzymes for improved stability and performance. Curr. Opin. Biotechnol. 1999, 10, 331–335. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 2014, 4, 1583–1600. [Google Scholar] [CrossRef]
- Kim, M.I.; Kim, J.; Lee, J.; Shin, S.; Na, H.B.; Hyeon, T.; Park, H.G.; Chang, H.N. One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization. Microporous Mesoporous Mater. 2008, 111, 18–23. [Google Scholar] [CrossRef]
- López-Gallego, F.; Betancor, L.; Mateo, C.; Hidalgo, A.; Alonso-Morales, N.; Dellamora-Ortiz, G.; Guisán, J.M.; Fernández-Lafuente, R. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J. Biotechnol. 2005, 119, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
ADHs | Support | Specific Activity of Immobilized Enzyme a (U/g Support) | Binding Efficiency b (%) | Activity Recovery c (%) |
---|---|---|---|---|
EMIN001 | SiO2 | 3.1 ± 0.3 | 98 | 36 |
SiO2-NH2 | 0.3 ± 0.1 | 45 | 3 | |
EMIN028 | SiO2 | 0.7 ± 0.5 | 81 | 29 |
SiO2-NH2 | 1.9 ± 0.2 | 20 | 8 | |
ADH105 | SiO2 | 3.6 ± 0.4 | 86 | 12 |
SiO2-NH2 | 0.6 ± 0.1 | 60 | 2 |
ADH | Support | Conversion (%) a | Absolute Configuration b | ee (%) c | ||
---|---|---|---|---|---|---|
1 h | 4 h | 24 h | ||||
EMIN001 | None | 86 | 88 | 89 | (R) | >99 |
SiO2 | 74 | 82 | 92 | >99 | ||
SiO2-NH2 | 12 | 28 | 76 | >99 | ||
EMIN028 | None | 15 | 32 | 78 | (S) | >99 |
SiO2 | 10 | 30 | 67 | >99 | ||
SiO2-NH2 | 9 | 22 | 50 | >99 | ||
ADH105 | None | 64 | 83 | 86 | (S) | >99 |
SiO2 | 0 | 1 | 2 | - | ||
SiO2-NH2 | 0 | 3 | 4 | - |
ADH | Carrier | Conversion (%) a | Absolute Configuration b | ee (%) c | ||
---|---|---|---|---|---|---|
1 h | 4 h | 24 h | ||||
EMIN001 | None | 40 | 73 | 100 | (R) | >99 |
SiO2 | 30 | 60 | 90 | >99 | ||
SiO2-NH2 | 5 | 7 | 11 | >99 | ||
EMIN028 | None | 10 | 30 | 90 | (S) | >99 |
SiO2 | 5 | 12 | 45 | >99 | ||
SiO2-NH2 | 0 | 2 | 5 | >99 | ||
ADH105 | None | 90 | 100 | 100 | (S) | >99 |
SiO2 | 3 | 5 | 7 | >99 | ||
SiO2-NH2 | 1 | 2 | 4 | - |
ADH | Support | Conversion (%) a | Absolute Configuration b | ee (%) c | ||
---|---|---|---|---|---|---|
1 h | 4 h | 24 h | ||||
EMIN001 | None | 11 | 23 | 40 | (R) | >99 |
SiO2 | 10 | 21 | 34 | >99 | ||
SiO2-NH2 | 0 | 1 | 1 | >99 | ||
EMIN028 | None | 25 | 45 | 70 | (S) | >99 |
SiO2 | 54 | 93 | 100 | >99 | ||
SiO2-NH2 | 35 | 63 | 100 | >99 | ||
ADH105 | None | 40 | 86 | 100 | (S) | >99 |
SiO2 | - | - | - | - | ||
SiO2-NH2 | 1 | 1 | 2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armani, D.; Piccolo, O.; Petri, A. Immobilization of Alcohol Dehydrogenases on Silica-Based Supports and Their Application in Enantioselective Ketone Reductions. Catalysts 2024, 14, 148. https://doi.org/10.3390/catal14020148
Armani D, Piccolo O, Petri A. Immobilization of Alcohol Dehydrogenases on Silica-Based Supports and Their Application in Enantioselective Ketone Reductions. Catalysts. 2024; 14(2):148. https://doi.org/10.3390/catal14020148
Chicago/Turabian StyleArmani, Daria, Oreste Piccolo, and Antonella Petri. 2024. "Immobilization of Alcohol Dehydrogenases on Silica-Based Supports and Their Application in Enantioselective Ketone Reductions" Catalysts 14, no. 2: 148. https://doi.org/10.3390/catal14020148
APA StyleArmani, D., Piccolo, O., & Petri, A. (2024). Immobilization of Alcohol Dehydrogenases on Silica-Based Supports and Their Application in Enantioselective Ketone Reductions. Catalysts, 14(2), 148. https://doi.org/10.3390/catal14020148