Electrochemical Properties of NiCo2O4/WO3/Activated Carbon Wheat Husk Nano-Electrocatalyst for Methanol and Ethanol Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Electrochemical Studies
2.2.1. Electrode Preparation
2.2.2. Investigation of MOR and EOR
3. Experimental Section
3.1. Materials and Apparatus
3.2. Synthesis of Catalysts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sachs, J.D.; Woo, W.T.; Yoshino, N.; Taghizadeh-Hesary, F. Importance of green finance for achieving sustainable development goals and energy security. Handb. Green Financ. Energy Secur. Sustain. Dev. 2019, 10, 1–10. [Google Scholar]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef]
- Fang, W.; Liu, Z.; Putra, A.R.S. Role of research and development in green economic growth through renewable energy development: Empirical evidence from South Asia. Renew. Energy 2022, 194, 1142–1152. [Google Scholar] [CrossRef]
- Halkos, G.E.; Gkampoura, E.-C. Reviewing usage, potentials, and limitations of renewable energy sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Cantarero, M.M.V. Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. Energy Res. Soc. Sci. 2020, 70, 101716. [Google Scholar] [CrossRef]
- Chien, F.; Kamran, H.W.; Albashar, G.; Iqbal, W. Dynamic planning, conversion, and management strategy of different renewable energy sources: A sustainable solution for severe energy crises in emerging economies. Int. J. Hydrogen Energy 2021, 46, 7745–7758. [Google Scholar] [CrossRef]
- Bonenkamp, T.B.; Middelburg, L.M.; Hosli, M.O.; Wolffenbuttel, R.F. From bioethanol containing fuels towards a fuel economy that includes methanol derived from renewable sources and the impact on European Union decision-making on transition pathways. Renew. Sustain. Energy Rev. 2020, 120, 109667. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Yin, Z.; Gao, Z.; Wang, Y.; Zhen, X. To achieve high methanol substitution ratio and clean combustion on a diesel/methanol dual fuel engine: A comparison of diesel methanol compound combustion (DMCC) and direct dual fuel stratification (DDFS) strategies. Fuel 2021, 304, 121466. [Google Scholar] [CrossRef]
- Dybiński, O.; Milewski, J.; Szabłowski, Ł.; Szczęśniak, A.; Martinchyk, A. Methanol, ethanol, propanol, butanol and glycerol as hydrogen carriers for direct utilization in molten carbonate fuel cells. Int. J. Hydrogen Energy 2023, 48, 37637–37653. [Google Scholar] [CrossRef]
- Mohammed, H.; Al-Othman, A.; Nancarrow, P.; Tawalbeh, M.; Assad, M.E.H. Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency. Energy 2019, 172, 207–219. [Google Scholar] [CrossRef]
- Rath, R.; Kumar, P.; Mohanty, S.; Nayak, S.K. Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. Int. J. Energy Res. 2019, 43, 8931–8955. [Google Scholar] [CrossRef]
- Hassan, A.; Ilyas, S.Z.; Jalil, A.; Ullah, Z. Monetization of the environmental damage caused by fossil fuels. Environ. Sci. Pollut. Res. 2021, 28, 21204–21211. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, X.; Huang, P.; Wang, J. Exploring the road toward environmental sustainability: Natural resources, renewable energy consumption, economic growth, and greenhouse gas emissions. Sustainability 2022, 14, 1579. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Şeker, A.A.; Tunçel, S.; Demirbaş, E.; Gözel, T.; Hocaoğlu, M.H.; Abapour, M.; Mohammadi-Ivatloo, B. A critical review on the impacts of energy storage systems and demand-side management strategies in the economic operation of renewable-based distribution network. Sustainability 2022, 14, 2110. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, T.; Zhou, Q.; Sun, Y.; Qu, M.; Zeng, Z.; Ju, Y.; Li, L.; Wang, K.; Chi, F. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 2021, 148, 111263. [Google Scholar] [CrossRef]
- Xu, H.; Shen, M. The control of lithium-ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: A review. Int. J. Energy Res. 2021, 45, 20524–20544. [Google Scholar] [CrossRef]
- Obileke, K.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Fadzillah, D.M.; Kamarudin, S.K.; Zainoodin, M.A.; Masdar, M.S. Critical challenges in the system development of direct alcohol fuel cells as portable power supplies: An overview. Int. J. Hydrogen Energy 2019, 44, 3031–3054. [Google Scholar] [CrossRef]
- Yun, Y. Alcohol fuels: Current status and future direction. In Alcohol Fuels-Current Technologies and Future Prospect; InTech Open: London, UK, 2020. [Google Scholar]
- Hren, M.; Božič, M.; Fakin, D.; Kleinschek, K.S.; Gorgieva, S. Alkaline membrane fuel cells: Anion exchange membranes and fuels. Sustain. Energy Fuels 2021, 5, 604–637. [Google Scholar] [CrossRef]
- Wang, P.; Cui, H.; Wang, C. Ultrathin PtMo-CeOx hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction and hydrogen oxidation. Chem. Eng. J. 2022, 429, 132435. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Y.; Liu, A.; Zhang, Z.; Lv, Q.; Liu, B. Current progress and performance improvement of Pt/C catalysts for fuel cells. J. Mater. Chem. A 2020, 8, 24284–24306. [Google Scholar] [CrossRef]
- Alsolami, E.S.; Mkhalid, I.A.; Shawky, A.; Hussein, M.A. Sol–gel assisted growth of nanostructured NiS/CeO2 pn heterojunctions for fast photooxidation of ciprofloxacin antibiotic under visible light. Appl. Nanosci. 2023, 13, 6445–6455. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Wang, Y.; Jin, Z. Co3O4/CeO2 pn heterojunction construction and application for efficient photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 33809–33822. [Google Scholar] [CrossRef]
- Salarizadeh, P.; Askari, M.B.; Di Bartolomeo, A. MoS2/Ni3S2/Reduced graphene oxide nanostructure as an electrocatalyst for alcohol fuel cells. ACS Appl. Nano Mater. 2022, 5, 3361–3373. [Google Scholar] [CrossRef]
- Askari, M.B.; Azizi, S.; Moghadam, M.T.T.; Seifi, M.; Rozati, S.M.; Di Bartolomeo, A. MnCo2O4/NiCo2O4/rGO as a catalyst based on binary transition metal oxide for the methanol oxidation reaction. Nanomaterials 2022, 12, 4072. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.; Bernaurdshaw, N. Reduced graphene oxide supported NiCo2O4 nano-rods: An efficient, stable and cost-effective electrocatalyst for methanol oxidation reaction. ChemCatChem 2020, 12, 771–780. [Google Scholar] [CrossRef]
- Gajraj, V.; Azmi, R.; Indris, S.; Mariappan, C.R. Boosting the Multifunctional Properties of MnCo2O4-MnCo2S4 Heterostructure for Portable All-Solid-State Symmetric Supercapacitor, Methanol Oxidation and Hydrogen Evolution Reaction. ChemistrySelect 2021, 6, 11466–11481. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.M.; Kazemzad, M.; Ebadzadeh, T. Bimetallic Au–Pd nanoparticles decorated electrospun spinel CoFe2O4 nanostructures as efficient electrocatalysts for ethanol fuel oxidation in alkaline media. Int. J. Hydrogen Energy 2023, 51, 517–528. [Google Scholar] [CrossRef]
- Chen, L. β-Ni (OH)2/NiFe2O4 heterostructure composite derived from layered double hydroxides precursor for ethanol oxidation electrocatalysis. Int. J. Hydrogen Energy 2023, 48, 26148–26161. [Google Scholar] [CrossRef]
- Mary, B.C.J.; Vijaya, J.J.; Saravanakumar, B.; Bououdina, M.; Kennedy, L.J. NiFe2O4 and 2D-rGO decorated with NiFe2O4 nanoparticles as highly efficient electrodes for supercapacitors. Synth. Met. 2022, 291, 117201. [Google Scholar] [CrossRef]
- Ye, J.; Cheng, B.; Yu, J.; Ho, W.; Wageh, S.; Al-Ghamdi, A.A. Hierarchical Co3O4-NiO hollow dodecahedron-supported Pt for room-temperature catalytic formaldehyde decomposition. Chem. Eng. J. 2022, 430, 132715. [Google Scholar] [CrossRef]
- Noor, T.; Mohtashim, M.; Iqbal, N.; Naqvi, S.R.; Zaman, N.; Rasheed, L.; Yousuf, M. Graphene based FeO/NiO MOF composites for methanol oxidation reaction. J. Electroanal. Chem. 2021, 890, 115249. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Kang, X.; Li, Y. The preparation of NiO/Ni–N/C nanocomposites and its electrocatalytic performance for methanol oxidation reaction. New J. Chem. 2020, 44, 14970–14978. [Google Scholar] [CrossRef]
- Askari, M.B.; Moghadam, M.T.T.; Azizi, S.; Hashemi, S.R.S.; Shojaeifar, M.; Di Bartolomeo, A. CeO2-NiO-rGO as a nano-electrocatalyst for methanol electro-oxidation. J. Phys. D Appl. Phys. 2022, 55, 505501. [Google Scholar] [CrossRef]
- Li, W.; Wen, X.; Wang, X.; Li, J.; Ren, E.; Shi, Z.; Liu, C.; Mo, D.; Mo, S. Oriented growth of δ-MnO2 nanosheets over core-shell Mn2O3@ δ-MnO2 catalysts: An interface-engineered effects for enhanced low-temperature methanol oxidation. Mol. Catal. 2021, 514, 111847. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, G.; Yuan, R.; Chen, W.; Wang, Z.; Zhang, L.; Zhan, K.; Zhu, M.; Yang, J.; Zhao, B. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime. J. Mater. Sci. Technol. 2022, 99, 260–269. [Google Scholar] [CrossRef]
- Yuan, R.; Chen, W.; Zhang, J.; Zhang, L.; Ren, H.; Miao, T.; Wang, Z.; Zhan, K.; Zhu, M.; Zhao, B. Crumpled graphene microspheres anchored on NiCo2O4 nanoparticles as an advanced composite electrode for asymmetric supercapacitors with ultralong cycling life. Dalton Trans. 2022, 51, 4491–4501. [Google Scholar] [CrossRef]
- Prathap, M.A.; Srivastava, R. Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2013, 2, 1046–1053. [Google Scholar] [CrossRef]
- Ko, T.H.; Devarayan, K.; Seo, M.K.; Kim, H.Y.; Kim, B.S. Facile synthesis of core/shell-like NiCo2O4-decorated MWCNTs and its excellent electrocatalytic activity for methanol oxidation. Sci. Rep. 2016, 6, 20313. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, L.; Liu, X.; Huang, Q.; Wang, Y.; Hou, C.; Hou, Y.; Wang, J.; Dang, F.; Zhang, J. Metal-organic-framework derived core-shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188. [Google Scholar] [CrossRef]
- Mersal, M.; Mohamed, G.G.; Zedan, A.F. Promoted visible-light-assisted oxidation of methanol over N-doped TiO2/WO3 nanostructures. Opt. Mater. 2021, 122, 111810. [Google Scholar] [CrossRef]
- Asiri, A.M.; Nawaz, T.; Tahir, M.B.; Fatima, N.; Khan, S.B.; Alamry, K.A.; Alfifi, S.Y.; Marwani, H.M.; Al-Otaibi, M.M.; Chakraborty, S. Fabrication of WO3 based nanocomposites for the excellent photocatalytic energy production under visible light irradiation. Int. J. Hydrogen Energy 2021, 46, 39058–39066. [Google Scholar] [CrossRef]
- Khan, H.; Rigamonti, M.G.; Boffito, D.C. Enhanced photocatalytic activity of Pt-TiO2/WO3 hybrid material with energy storage ability. Appl. Catal. B Environ. 2019, 252, 77–85. [Google Scholar] [CrossRef]
- Malode, S.J.; Prabhu, K.; Pollet, B.G.; Kalanur, S.S.; Shetti, N.P. Preparation and performance of WO3/rGO modified carbon sensor for enhanced electrochemical detection of triclosan. Electrochim. Acta 2022, 429, 141010. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Hierarchical architectured dahlia flower-like NiCo2O4/NiCoSe2 as a bifunctional electrode for high-energy supercapacitor and methanol fuel cell application. Energy Fuels 2021, 35, 9646–9659. [Google Scholar] [CrossRef]
- Kakarla, A.K.; Narsimulu, D.; Yu, J.S. Two-dimensional porous NiCo2O4 nanostructures for use as advanced high-performance anode material in lithium-ion batteries. J. Alloys Compd. 2021, 886, 161224. [Google Scholar] [CrossRef]
- Li, Y.; Han, X.; Yi, T.; He, Y.; Li, X. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J. Energy Chem. 2019, 31, 54–78. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Fu, K.; Zhou, N.; Xiong, J.; Su, Z. Fabrication of Co3O4/NiCo2O4 nanocomposite for detection of H2O2 and dopamine. Biosensors 2021, 11, 452. [Google Scholar] [CrossRef]
- Wang, P.; Wu, C.; Zhen, C.; Li, G.; Pan, C.; Ma, L.; Hou, D. Modulation of the structure and magnetic properties of the Ni1-xCo2-yO4 powders by hydrothermal temperature. Phys. B Condens. Matter 2019, 561, 147–154. [Google Scholar] [CrossRef]
- Abdullin, K.A.; Kalkozova, Z.K.; Markhabayeva, A.A.; Dupre, R.; Moniruddin, M.; Nuraje, N. Core–shell (W@ WO3) nanostructure to improve electrochemical performance. ACS Appl. Energy Mater. 2018, 2, 797–803. [Google Scholar] [CrossRef]
- Ran, J.; Liu, Y.; Feng, H.; Zhan, H.; Yang, S. Rapid hydrothermal green synthesis of core-shell-shaped NiCo2O4@ MoS2/RGO ternary composites for high-performance electrode materials. J. Ind. Eng. Chem. 2023, 133, 273–283. [Google Scholar] [CrossRef]
- Oke, J.A.; Idisi, D.O.; Sarma, S.; Moloi, S.J.; Ray, S.C.; Chen, K.H.; Ghosh, A.; Shelke, A.; Pong, W.F. Electronic, electrical, and magnetic behavioral change of SiO2-NP-decorated MWCNTs. ACS Omega 2019, 4, 14589–14598. [Google Scholar] [CrossRef]
- Yu, M.; Wang, S.; Hu, J.; Chen, Z.; Bai, Y.; Wu, L.; Chen, J.; Weng, X. Additive-free macroscopic-scale synthesis of coral-like nickel cobalt oxides with hierarchical pores and their electrocatalytic properties for methanol oxidation. Electrochim. Acta 2014, 145, 300–306. [Google Scholar] [CrossRef]
- Askari, M.B.; Beitollahi, H.; Di Bartolomeo, A. Methanol and Ethanol Electrooxidation on ZrO2/NiO/rGO. Nanomaterials 2023, 13, 679. [Google Scholar] [CrossRef]
- Yu, X.Y.; Yao, X.Z.; Luo, T.; Jia, Y.; Liu, J.H.; Huang, X.J. Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl. Mater. Interfaces 2014, 6, 3689–3695. [Google Scholar] [CrossRef]
- Tong, Y.Y.; Gu, C.D.; Zhang, J.L.; Tang, H.; Wang, X.L.; Tu, J.P. Thermal growth of NiO on interconnected Ni–P tube network for electrochemical oxidation of methanol in alkaline medium. Int. J. Hydrogen Energy 2016, 41, 6342–6352. [Google Scholar] [CrossRef]
- Gao, N.; Gao, L.; Zhang, X.; Zhang, Y.; Hu, T. NiO nanocrystal anchored on pitaya peel-derived carbon laminated mesoporous composites for the electrocatalytic oxidation of ethanol. J. Alloys Compd. 2023, 947, 169485. [Google Scholar] [CrossRef]
- Niu, M.; Xu, W.; Zhu, S.; Liang, Y.; Cui, Z.; Yang, X.; Inoue, A. Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation. J. Power Sources 2017, 362, 10–19. [Google Scholar] [CrossRef]
- López-Rico, C.A.; Galindo-De-La-Rosa, J.; Ortiz-Ortega, E.; Álvarez-Contreras, L.; Ledesma-García, J.; Guerra-Balcázar, M.; Arriaga, L.G.; Arjona, N. High performance of ethanol co-laminar flow fuel cells based on acrylic, paper and Pd-NiO as anodic catalyst. Electrochim. Acta 2016, 207, 164–176. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Rao, G.R. NiCo2O4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation. Electrochim. Acta 2016, 213, 717–729. [Google Scholar] [CrossRef]
Electrocatalyst | Electrolyte Composition | Peak Potential (V) | Current Density (mA cm–2) | Reference |
---|---|---|---|---|
NWA | 0.5 M Methanol/0.5 M KOH | 0.58 vs. Ag/AgCl 1.59 vs. RHE | 63.39 | This work |
NWA | 0.5 M Ethanol/0.5 M KOH | 0.67 vs. Ag/AgCl 1.68 vs. RHE | 27.98 | This work |
ZnO(40%)/CeO2 (60%)dots@CNFs | 3 M Methanol/1 M KOH | 0.4 | 16.3 | [51] |
NiCo2O4 coral | 0.5 M Methanol/1 M KOH | 0.35 | 21 | [54] |
ZrO2/NiO/rGO | 0.5 M Ethanol/0.5 M KOH | 0.52 | 17.3 | [55] |
Urchin-like NiCo2O4 Hollow Microspheres | 0.5 M Methanol/1 M KOH | 1.6 | 33.8 | [56] |
NiO/Ni-P Tube | 1 M Methanol/0.5 M KOH | 1.55 | 28.56 | [57] |
NiO@PPC-600 | 1 M Ethanol/1 M KOH | 1.6 | 231.8 | [58] |
np-CuO/TiO2/Pd-NiO-3 | 0.5 M Ethanol/0.5 M NaOH | −0.3 | 2.614 | [59] |
Pd-NiO/C | 3 M Ethanol/0.3 M KOH | −0.37 | 24.98 | [60] |
NiCo2O4-rGO | 0.5 M Methanol/1 M KOH | 1.66 | 16.6 | [61] |
MnCo2O4/NiCo2O4/rGO | 2 M Methanol/2 M KOH | 0.58 | 24.76 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askari, M.B.; Salarizadeh, P.; Samareh Hashemi, S.R.; Shojaeifar, M.; Azizi, S. Electrochemical Properties of NiCo2O4/WO3/Activated Carbon Wheat Husk Nano-Electrocatalyst for Methanol and Ethanol Oxidation. Catalysts 2024, 14, 302. https://doi.org/10.3390/catal14050302
Askari MB, Salarizadeh P, Samareh Hashemi SR, Shojaeifar M, Azizi S. Electrochemical Properties of NiCo2O4/WO3/Activated Carbon Wheat Husk Nano-Electrocatalyst for Methanol and Ethanol Oxidation. Catalysts. 2024; 14(5):302. https://doi.org/10.3390/catal14050302
Chicago/Turabian StyleAskari, Mohammad Bagher, Parisa Salarizadeh, Seyed Rouhollah Samareh Hashemi, Mohsen Shojaeifar, and Sadegh Azizi. 2024. "Electrochemical Properties of NiCo2O4/WO3/Activated Carbon Wheat Husk Nano-Electrocatalyst for Methanol and Ethanol Oxidation" Catalysts 14, no. 5: 302. https://doi.org/10.3390/catal14050302
APA StyleAskari, M. B., Salarizadeh, P., Samareh Hashemi, S. R., Shojaeifar, M., & Azizi, S. (2024). Electrochemical Properties of NiCo2O4/WO3/Activated Carbon Wheat Husk Nano-Electrocatalyst for Methanol and Ethanol Oxidation. Catalysts, 14(5), 302. https://doi.org/10.3390/catal14050302