Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review
Abstract
:1. Introduction
2. Graphene Structures
2.1. Graphene Nanosheets
2.2. Graphene Oxide and Reduced Graphene Oxide
3. Carbon Nanotubes
Vertically Aligned CNTs
4. Functionalization and Doping of Structured Materials
5. Other Carbon Structures
5.1. Carbon Spheres
5.2. Aerogels
5.3. Other Structures
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mensharapov, R.M.; Ivanova, N.A.; Spasov, D.D.; Kukueva, E.V.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Carbon-Supported Pt-SnO2 Catalysts for Oxygen Reduction Reaction over a Wide Temperature Range: Rotating Disk Electrode Study. Catalysts 2021, 11, 1469. [Google Scholar] [CrossRef]
- Zhao, H.; Xing, T.; Li, L.; Geng, X.; Guo, K.; Sun, C.; Zhou, W.; Yang, H.; Song, R.; An, B. Synthesis of Cobalt and Nitrogen Co-Doped Carbon Nanotubes and Its ORR Activity as the Catalyst Used in Hydrogen Fuel Cells. Int. J. Hydrogen Energy 2019, 44, 25180–25187. [Google Scholar] [CrossRef]
- Stühmeier, B.M.; Pietsch, M.R.; Schwämmlein, J.N.; Gasteiger, H.A. Pressure and Temperature Dependence of the Hydrogen Oxidation and Evolution Reaction Kinetics on Pt Electrocatalysts via PEMFC-Based Hydrogen-Pump Measurements. J. Electrochem. Soc. 2021, 168, 064516. [Google Scholar] [CrossRef]
- Harzer, G.S.; Orfanidi, A.; El-Sayed, H.; Madkikar, P.; Gasteiger, H.A. Tailoring Catalyst Morphology towards High Performance for Low Pt Loaded PEMFC Cathodes. J. Electrochem. Soc. 2018, 165, F770–F779. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Spasov, D.D.; Ivanova, N.A.; Zasypkina, A.A.; Smirnov, S.A.; Grigoriev, S.A. Screening of Carbon-Supported Platinum Electrocatalysts Using Frumkin Adsorption Isotherms. Inorganics 2023, 11, 103. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Pushkarev, A.S.; Pushkareva, I.V.; Presnyakova, N.N.; Chumakov, R.G.; Presnyakov, M.Y.; Grigoriev, S.A.; Fateev, V.N. On the Influence of Composition and Structure of Carbon-Supported Pt-SnO2 Hetero-Clusters onto Their Electrocatalytic Activity and Durability in PEMFC. Catalysts 2019, 9, 803. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Zasypkina, A.A.; Seregina, E.A.; Grigoriev, S.A.; Fateev, V.N. Nanostructured Pt20/SiO2x/C Electrocatalysts for Water-Balance Stabilization in a Proton Exchange Membrane Fuel Cell. Nanotechnologies Russ. 2022, 17, 320–327. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Alekseeva, O.K.; Fateev, V.N.; Shapir, B.L.; Spasov, D.D.; Nikitin, S.M.; Presnyakov, M.Y.; Kolobylina, N.N.; Soloviev, M.A.; Mikhalev, A.I. Activity and Durability of Electrocatalytic Layers with Low Platinum Loading Prepared by Magnetron Sputtering onto Gas Diffusion Electrodes. Int. J. Hydrogen Energy 2019, 44, 29529–29536. [Google Scholar] [CrossRef]
- Fedotov, A.A.; Grigoriev, S.A.; Millet, P.; Fateev, V.N. Plasma-Assisted Pt and Pt–Pd Nano-Particles Deposition on Carbon Carriers for Application in PEM Electrochemical Cells. Int. J. Hydrogen Energy 2013, 38, 8568–8574. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, D.; Sun, J.; Chen, B. The Effect of Cathode Channel Blockages on the Enhanced Mass Transfer and Performance of PEMFC. Energy 2021, 222, 119951. [Google Scholar] [CrossRef]
- Jiao, D.; Jiao, K.; Zhong, S.; Du, Q. Investigations on Heat and Mass Transfer in Gas Diffusion Layers of PEMFC with a Gas–Liquid-Solid Coupled Model. Appl. Energy 2022, 316, 118996. [Google Scholar] [CrossRef]
- Jeng, K.T.; Lee, S.F.; Tsai, G.F.; Wang, C.H. Oxygen Mass Transfer in PEM Fuel Cell Gas Diffusion Layers. J. Power Sources 2004, 138, 41–50. [Google Scholar] [CrossRef]
- Mensharapov, R.; Ivanova, N.; Spasov, D.; Grigoriev, S.; Fateev, V. SAXS Investigation of the Effect of Freeze/Thaw Cycles on the Nanostructure of Nafion® Membranes. Polymers 2022, 14, 4395. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.A.; Spasov, D.D.; Grigoriev, S.A.; Kamyshinsky, R.A.; Peters, G.S.; Mensharapov, R.M.; Seregina, E.A.; Millet, P.; Fateev, V.N. On the Influence of Methanol Addition on the Performances of PEM Fuel Cells Operated at Subzero Temperatures. Int. J. Hydrogen Energy 2021, 46, 18116–18127. [Google Scholar] [CrossRef]
- Rodgers, M.P.; Bonville, L.J.; Kunz, H.R.; Slattery, D.K.; Fenton, J.M. Fuel Cell Perfluorinated Sulfonic Acid Membrane Degradation Correlating Accelerated Stress Testing and Lifetime. Chem. Rev. 2012, 112, 6075–6103. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Pei, P.; Li, Y.; Wu, Z.; Chen, D.; Huang, S. Degradation Mechanisms of Proton Exchange Membrane Fuel Cell under Typical Automotive Operating Conditions. Prog. Energy Combust. Sci. 2020, 80, 100859. [Google Scholar] [CrossRef]
- Jahnke, T.; Futter, G.; Latz, A.; Malkow, T.; Papakonstantinou, G.; Tsotridis, G.; Schott, P.; Gérard, M.; Quinaud, M.; Quiroga, M.; et al. Performance and Degradation of Proton Exchange Membrane Fuel Cells: State of the Art in Modeling from Atomistic to System Scale. J. Power Sources 2016, 304, 207–233. [Google Scholar] [CrossRef]
- Kregar, A.; Kravos, A.; Katrašnik, T. Methodology for Evaluation of Contributions of Ostwald Ripening and Particle Agglomeration to Growth of Catalyst Particles in PEM Fuel Cells. Fuel Cells 2020, 20, 487–498. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Luo, X.; Tu, Z. Comparison of the Performance and Degradation Mechanism of PEMFC with Pt/C and Pt Black Catalyst. Int. J. Hydrogen Energy 2022, 47, 5418–5428. [Google Scholar] [CrossRef]
- Urchaga, P.; Kadyk, T.; Rinaldo, S.G.; Pistono, A.O.; Hu, J.; Lee, W.; Richards, C.; Eikerling, M.H.; Rice, C.A. Catalyst Degradation in Fuel Cell Electrodes: Accelerated Stress Tests and Model-Based Analysis. Electrochim. Acta 2015, 176, 1500–1510. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Song, L.; Zhu, G.; Zhang, Q.; Zhao, Y.; Gong, Q.; Sun, C.; Liu, Y.; Sasaki, K.; et al. Synergistic effect of polyaniline on stabilizing Pt nanoparticles in PEMFCs. J. Mater. Chem. A 2023, 11, 7756–7766. [Google Scholar] [CrossRef]
- Meier, J.C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H.J.; Topalov, A.A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K.J.J. Design Criteria for Stable Pt/C Fuel Cell Catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gao, Z.; Su, J.; Guo, L. An Experimental Investigation of the Effect of Platinum on the Corrosion of Cathode Carbon Support in a PEMFC. ChemSusChem 2022, 12, e202102726. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yang, D.; Li, B.; Qu, T.; Ming, P.; Zhang, C.; Pan, X. Agglomeration behavior of carbon-supported platinum nanoparticles in catalyst ink: Modeling and experimental investigation. J. Power Sources 2024, 602, 234309. [Google Scholar] [CrossRef]
- Ettingshausen, F.; Kleemann, J.; Marcu, A.; Toth, G.; Fuess, H.; Roth, C. Dissolution and Migration of Platinum in PEMFCs Investigated for Start/Stop Cycling and High Potential Degradation. Fuel Cells 2011, 11, 238–245. [Google Scholar] [CrossRef]
- Pushkarev, A.S.; Pushkareva, I.V.; Ivanova, N.A.; du Preez, S.P.; Bessarabov, D.; Chumakov, R.G.; Stankevich, V.G.; Fateev, V.N.; Evdokimov, A.A.; Grigoriev, S.A. Pt/C and Pt/SnOx/C Catalysts for Ethanol Electrooxidation: Rotating Disk Electrode Study. Catalysts 2019, 9, 271. [Google Scholar] [CrossRef]
- Das, B.; Das, S.; Tewary, S.; Bose, S.; Ghosh, S.; Ghosh, A. Graphene Nano Sheets for the Fuel Cell Applications. In Advances in Nanosheets [Working Title]; IntechOpen: London, UK, 2023. [Google Scholar]
- Voznyakovskii, A.; Vozniakovskii, A.; Kidalov, S. New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self Propagating High-Temperature Synthesis Method from Biopolymers. Nanomaterials 2022, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, M.; Butrim, S.; Solovyev, M.; Pushkarev, A.; Pushkareva, I.; Kalinichenko, V.; Akelkina, S.; Grigoriev, S. Structural and Electrochemical Characteristics of Platinum Nanoparticles Supported on Various Carbon Carriers. C 2022, 8, 14. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, T.; Cao, Z.; Yuan, Z.; He, H.; Fan, M.; Jiang, Z. Advanced 3D Ordered Electrodes for PEMFC Applications: From Structural Features and Fabrication Methods to the Controllable Design of Catalyst Layers. Green Energy Environ. 2023, in press. S2468025723001462. [Google Scholar] [CrossRef]
- Zasypkina, A.A.; Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Alekseeva, O.K.; Vorobyeva, E.A.; Kukueva, E.V.; Fateev, V.N. Electrode with a Carbon Nanotube Array for a Proton Exchange Membrane Fuel Cell. Inorganics 2023, 11, 219. [Google Scholar] [CrossRef]
- Verma, V.; Choudhury, S.R.; Rathour, V.; Choudhury, S.R.; Ganesan, V. Hollow Core Mesoporous Carbon Spheres as Catalyst Support for Improved Platinum Utilization in Phosphoric Acid Fuel Cells. Microporous Mesoporous Mater. 2024, 367, 113005. [Google Scholar] [CrossRef]
- Mamat, M.S.; Grigoriev, S.A.; Dzhus, K.A.; Grant, D.M.; Walker, G.S. The Performance and Degradation of Pt Electrocatalysts on Novel Carbon Carriers for PEMFC Applications. Int. J. Hydrogen Energy 2010, 35, 7580–7587. [Google Scholar] [CrossRef]
- Luo, C.; Xie, H.; Wang, Q.; Luo, G.; Liu, C. A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells. J. Nanomater. 2015, 2015, 560392. [Google Scholar] [CrossRef]
- Ortiz-Herrera, J.C.; Cruz-Martínez, H.; Solorza-Feria, O.; Medina, D.I. Recent Progress in Carbon Nanotubes Support Materials for Pt-Based Cathode Catalysts in PEM Fuel Cells. Int. J. Hydrogen Energy 2022, 47, 30213–30224. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Recent Advances in Graphene-based Materials for Fuel Cell Applications. Energy Sci. Eng. 2021, 9, 958–983. [Google Scholar] [CrossRef]
- Sharma, S.; Pollet, B.G. Support Materials for PEMFC and DMFC Electrocatalysts—A Review. J. Power Sources 2012, 208, 96–119. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S.K. Graphene in Electrocatalyst and Proton Conductiong Membrane in Fuel Cell Applications: An Overview. Renew. Sustain. Energy Rev. 2017, 69, 862–870. [Google Scholar] [CrossRef]
- Pushkareva, I.V.; Pushkarev, A.S.; Kalinichenko, V.N.; Chumakov, R.G.; Soloviev, M.A.; Liang, Y.; Millet, P.; Grigoriev, S.A. Reduced Graphene Oxide-Supported Pt-Based Catalysts for PEM Fuel Cells with Enhanced Activity and Stability. Catalysts 2021, 11, 256. [Google Scholar] [CrossRef]
- Öztürk, A.; Bayrakçeken Yurtcan, A. Raw and Pyrolyzed (with and without Melamine) Graphene Nanoplatelets with Different Surface Areas as PEM Fuel Cell Catalyst Supports. Carbon Lett. 2021, 31, 1191–1214. [Google Scholar] [CrossRef]
- Lagarteira, T.; Delgado, S.; Fernandes, C.; Azenha, C.; Mateos-Pedrero, C.; Mendes, A. The Role of Pt Loading on Reduced Graphene Oxide Support in the Polyol Synthesis of Catalysts for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2020, 45, 20594–20604. [Google Scholar] [CrossRef]
- Smirnov, S.A.; Mensharapov, R.M.; Spasov, D.D.; Ivanova, N.A.; Grigoriev, S.A. Adsorption and Recombination of H+ and H3O+ on Graphene-Supported Pt1, Pt13, and Pt14 Nanoclusters: A First Principles Study. Catalysts 2024, 14, 108. [Google Scholar] [CrossRef]
- Choi, S.M.; Seo, M.H.; Kim, H.J.; Kim, W.B. Synthesis of Surface-Functionalized Graphene Nanosheets with High Pt-Loadings and Their Applications to Methanol Electrooxidation. Carbon 2011, 49, 904–909. [Google Scholar] [CrossRef]
- Tran, T.; Song, M.Y.; Kang, T.; Samdani, J.; Park, H.; Kim, H.; Jhung, S.H.; Yu, J. Iron Phosphide Incorporated into Iron-Treated Heteroatoms-Doped Porous Bio-Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem 2018, 5, 1944–1953. [Google Scholar] [CrossRef]
- Lee, F.C.; Ismail, M.S.; Zhang, K.; Ingham, D.B.; Aldakheel, F.; Hughes, K.J.; Ma, L.; El-Kharouf, A.; Pourkashanian, M. Optimisation and Characterisation of Graphene-Based Microporous Layers for Polymer Electrolyte Membrane Fuel Cells. Int. J. Hydrogen Energy 2024, 51, 1311–1325. [Google Scholar] [CrossRef]
- Chen, J.; Bailey, J.J.; Britnell, L.; Perez-Page, M.; Sahoo, M.; Zhang, Z.; Strudwick, A.; Hack, J.; Guo, Z.; Ji, Z.; et al. The Performance and Durability of High-Temperature Proton Exchange Membrane Fuel Cells Enhanced by Single-Layer Graphene. Nano Energy 2022, 93, 106829. [Google Scholar] [CrossRef]
- Tanuma, T.; Kawamoto, M.; Kinoshita, S. Effect of Properties of Hydrophilic Microporous Layer (MPL) on PEFC Performance. J. Electrochem. Soc. 2017, 164, F499–F503. [Google Scholar] [CrossRef]
- Ozden, A.; Shahgaldi, S.; Zhao, J.; Li, X.; Hamdullahpur, F. Assessment of Graphene as an Alternative Microporous Layer Material for Proton Exchange Membrane Fuel Cells. Fuel 2018, 215, 726–734. [Google Scholar] [CrossRef]
- Fang, X.-Y.; Yu, X.-X.; Zheng, H.-M.; Jin, H.-B.; Wang, L.; Cao, M.-S. Temperature- and Thickness-Dependent Electrical Conductivity of Few-Layer Graphene and Graphene Nanosheets. Phys. Lett. A 2015, 379, 2245–2251. [Google Scholar] [CrossRef]
- Lagarteira, T.; Delgado, S.; Garcia, G.P.; Ortiz, A.; Mendes, A. Oxygen Reduction Stability of Graphene-Supported Electrocatalyst: Electrochemical and Morphological Evidences. Int. J. Hydrogen Energy 2023, 48, 20901–20913. [Google Scholar] [CrossRef]
- Daş, E.; Alkan Gürsel, S.; Bayrakçeken Yurtcan, A. Pt-Alloy Decorated Graphene as an Efficient Electrocatalyst for PEM Fuel Cell Reactions. J. Supercrit. Fluids 2020, 165, 104962. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Xu, S.; Xie, Y.; Ye, Y.; Zou, X.; Lin, S. Synthesis of Pt-Ni (Trace)/GNs Composite and Its Bi-Functional Electrocatalytic Properties for MOR and ORR. J. Colloid Interface Sci. 2019, 554, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Liu, B.; Zhang, G.; Si, R.; Liu, J.; Zhang, J. 2D Layered Non-Precious Metal Mesoporous Electrocatalysts for Enhanced Oxygen Reduction Reaction. J. Mater. Chem. A 2017, 5, 4868–4878. [Google Scholar] [CrossRef]
- Daş, E.; Gürsel, S.A.; Yurtcan, A.B. Simultaneously Deposited Pt-Alloy Nanoparticles over Graphene Nanoplatelets via Supercritical Carbon Dioxide Deposition for PEM Fuel Cells. J. Alloys Compd. 2021, 874, 159919. [Google Scholar] [CrossRef]
- Boyaci San, F.G.; Dursun, S.; Yazici, M.S. PtCo on Continuous-phase Graphene as PEM Fuel Cell Catalyst. Int. J. Energy Res. 2021, 45, 1673–1684. [Google Scholar] [CrossRef]
- Dursun, S.; Akay, R.G.; Yazici, M.S. CVD Graphene Supported Cobalt (II) Phthalocyanine as Cathode Electrocatalyst for PEM Fuel Cells. Int. J. Hydrogen Energy 2020, 45, 34837–34844. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, S.A.; Fateev, V.N.; Pushkarev, A.S.; Pushkareva, I.V.; Ivanova, N.A.; Kalinichenko, V.N.; Yu Presnyakov, M.; Wei, X. Reduced Graphene Oxide and Its Modifications as Catalyst Supports and Catalyst Layer Modifiers for PEMFC. Materials 2018, 11, 1405. [Google Scholar] [CrossRef]
- Oubraham, A.; Ion-Ebrasu, D.; Vasut, F.; Soare, A.; Sorlei, I.-S.; Marinoiu, A. Platinum-Functionalized Graphene Oxide: One-Pot Synthesis and Application as an Electrocatalyst. Materials 2023, 16, 1897. [Google Scholar] [CrossRef]
- Marinoiu, A.; Carcadea, E.; Sacca, A.; Carbone, A.; Sisu, C.; Dogaru, A.; Raceanu, M.; Varlam, M. One-Step Synthesis of Graphene Supported Platinum Nanoparticles as Electrocatalyst for PEM Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 12242–12253. [Google Scholar] [CrossRef]
- Lazar, O.-A.; Marinoiu, A.; Raceanu, M.; Pantazi, A.; Mihai, G.; Varlam, M.; Enachescu, M. Reduced Graphene Oxide Decorated with Dispersed Gold Nanoparticles: Preparation, Characterization and Electrochemical Evaluation for Oxygen Reduction Reaction. Energies 2020, 13, 4307. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Peng, F.; Wang, Y.; Hu, S.; Zhang, R.; Liu, Q. A Hybrid PEMFC/Supercapacitor Device with High Energy and Power Densities Based on Reduced Graphene Oxide/Nafion/Pt Electrode. Int. J. Hydrogen Energy 2023, 48, 16072–16082. [Google Scholar] [CrossRef]
- Moradizadeh, L.; Yazdanpanah, P.; Karimi, G.; Paydar, M.H. Investigating the Role of Graphite and Reduced Graphene Oxide in the Fabrication of Microporous Layers for Proton Exchange Membrane Fuel Cells. J. Mater. Sci. 2023, 58, 12706–12723. [Google Scholar] [CrossRef]
- Samancı, M.; Bayrakçeken Yurtcan, A. Chemically and Thermally Reduced Graphene Oxide Supported Pt Catalysts Prepared by Supercritical Deposition. Int. J. Hydrogen Energy 2022, 47, 19669–19689. [Google Scholar] [CrossRef]
- Romero, A.; Lavin-Lopez, M.P.; Sanchez-Silva, L.; Valverde, J.L.; Paton-Carrero, A. Comparative Study of Different Scalable Routes to Synthesize Graphene Oxide and Reduced Graphene Oxide. Mater. Chem. Phys. 2018, 203, 284–292. [Google Scholar] [CrossRef]
- Gomes, W.D.S.; Noce, R.D.; De Matos, T.D.S.; Andrade, F.V.; De Molfetta, F.A.; Iúdice De Souza, J.P. Cu@PtRu Core-Shell Nanostructured Electrocatalysts Anchored on Reduced Graphene Oxide Towards Methanol Oxidation. Chem. Mater. Sci. 2023, 16, 6508. [Google Scholar] [CrossRef]
- Işıkel Şanlı, L.; Bayram, V.; Ghobadi, S.; Düzen, N.; Alkan Gürsel, S. Engineered Catalyst Layer Design with Graphene-Carbon Black Hybrid Supports for Enhanced Platinum Utilization in PEM Fuel Cell. Int. J. Hydrogen Energy 2017, 42, 1085–1092. [Google Scholar] [CrossRef]
- Danafar, F.; Fakhru’l-Razi, A.; Salleh, M.A.M.; Biak, D.R.A. Fluidized Bed Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes—A Review. Chem. Eng. J. 2009, 155, 37–48. [Google Scholar] [CrossRef]
- Esteves, L.M.; Oliveira, H.A.; Passos, F.B. Carbon Nanotubes as Catalyst Support in Chemical Vapor Deposition Reaction: A Review. J. Ind. Eng. Chem. 2018, 65, 1–12. [Google Scholar] [CrossRef]
- Nezhad, E.Z.; Qu, X.; Musharavati, F.; Jaber, F.; Appleford, M.R.; Bae, S.; Uzun, K.; Struthers, M.; Chowdhury, M.E.H.; Khandakar, A. Effects of titanium and carbon nanotubes on nano/micromechanical properties of HA/TNT/CNT nanocomposites. Appl. Surf. Sci. 2021, 538, 148123. [Google Scholar] [CrossRef]
- Devrim, Y.; Arıca, E.D. Multi-Walled Carbon Nanotubes Decorated by Platinum Catalyst for High Temperature PEM Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 18951–18966. [Google Scholar] [CrossRef]
- Pajootan, E.; Omanovic, S.; Coulombe, S. Controllable Dry Synthesis of Binder-Free Nanostructured Platinum Electrocatalysts Supported on Multi-Walled Carbon Nanotubes and Their Performance in the Oxygen Reduction Reaction. Chem. Eng. J. 2021, 426, 131706. [Google Scholar] [CrossRef]
- Kim, T.; Kwon, Y.; Kwon, S.; Seo, J.G. Substrate Effect of Platinum-Decorated Carbon on Enhanced Hydrogen Oxidation in PEMFC. ACS Omega 2020, 5, 26902–26907. [Google Scholar] [CrossRef] [PubMed]
- Aruna, I.; Mehta, B.R.; Malhotra, L.K.; Shivaprasad, S.M. Size Dependence of Core and Valence Binding Energies in Pd Nanoparticles: Interplay of Quantum Confinement and Coordination Reduction. J. Appl. Phys. 2008, 104, 064308. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Yaqoob, U.; Hassan, K.; Chung, G.-S. Effects of Pt Shell Thickness on Self-Assembly Monolayer Pd@Pt Core-Shell Nanocrystals Based Hydrogen Sensing. Int. J. Hydrogen Energy 2016, 41, 15399–15410. [Google Scholar] [CrossRef]
- Marbaniang, P.; Ingavale, S.; Karuppanan, P.; Swami, A.; Kakade, B. Rationale Approach of Nitrogen Doping at Defect Sites of Multiwalled Carbon Nanotubes: A Strategy for Oxygen Reduction Electrocatalysis. Int. J. Hydrogen Energy 2021, 46, 10268–10280. [Google Scholar] [CrossRef]
- Devrim, Y.; Arıca, E.D. Investigation of the Effect of Graphitized Carbon Nanotube Catalyst Support for High Temperature PEM Fuel Cells. Int. J. Hydrogen Energy 2020, 45, 3609–3617. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Yuan, Y.; Ariga, H.; Takakusagi, S.; Asakura, K. Carbon Nanotube-Supported RuFe Bimetallic Nanoparticles as Efficient and Robust Catalysts for Aqueous-Phase Selective Hydrogenolysis of Glycerol to Glycols. ACS Catal. 2011, 1, 1521–1528. [Google Scholar] [CrossRef]
- Haque, M.A.; Sulong, A.B.; Majlan, E.H.; Loh, K.S.; Husaini, T.; Rosli, R. Oxygen reduction reaction behaviours of carbon nanotubes supporting pt catalyst for proton exchange membrane fuel cell. MJAS 2019, 23, 147–154. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Spasov, D.D.; Zasypkina, A.A.; Alekseeva, O.K.; Kukueva, E.V.; Vorobyeva, E.A.; Kudinova, E.S.; Chumakov, R.G.; Millet, P.; Grigoriev, S.A. Comparison of the Performance and Durability of PEM Fuel Cells with Different Pt-Activated Microporous Layers. Int. J. Hydrogen Energy 2021, 46, 18093–18106. [Google Scholar] [CrossRef]
- Gribov, E.N.; Kuznetsov, A.N.; Golovin, V.A.; Krasnikov, D.V.; Kuznetsov, V.L. Effect of Modification of Multi-Walled Carbon Nanotubes with Nitrogen-Containing Polymers on the Electrochemical Performance of Pt/CNT Catalysts in PEMFC. Mater. Renew. Sustain. Energy 2019, 8, 7. [Google Scholar] [CrossRef]
- Huda, M.; Kawahara, T.; Park, J.-H.; Kawasumi, M.; Matsuo, Y. Single-Walled Carbon Nanotubes Supported Pt Electrocatalyst as a Cathode Catalyst of a Single Fuel Cell with High Durability against Start-up/Shut-down Potential Cycling. ACS Appl. Energy Mater. 2023, 6, 12226–12236. [Google Scholar] [CrossRef]
- Pandia, R.M.; Berchmans, S. Electrochemically Activated Platinum Nanoparticles Trapped by Carbon Nanotubes for Methanol Oxidation Reaction. J. Electroanal. Chem. 2023, 940, 117492. [Google Scholar] [CrossRef]
- Yao, Y.; Izumi, R.; Tsuda, T.; Oshima, Y.; Imanishi, A.; Oda, N.; Kuwabata, S. Platinum and PtNi Nanoparticle-Supported Multiwalled Carbon Nanotube Electrocatalysts Prepared by One-Pot Pyrolytic Synthesis with an Ionic Liquid. ACS Appl. Energy Mater. 2019, 2, 4865–4872. [Google Scholar] [CrossRef]
- Mensharapov, R.M.; Ivanova, N.A.; Zasypkina, A.A.; Spasov, D.D.; Sinyakov, M.V.; Grigoriev, S.A.; Fateev, V.N. Model Study of CNT-Based PEMFCs’ Electrocatalytic Layers. Catalysts 2022, 12, 1227. [Google Scholar] [CrossRef]
- Kanninen, P.; Eriksson, B.; Davodi, F.; Buan, M.E.M.; Sorsa, O.; Kallio, T.; Lindström, R.W. Carbon Corrosion Properties and Performance of Multi-Walled Carbon Nanotube Support with and without Nitrogen-Functionalization in Fuel Cell Electrodes. Electrochim. Acta 2020, 332, 135384. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Song, H.; Kim, D.; Kim, G.H.; Im, D.; Jeong, Y.; Park, T. Carbon Nanotube Sheet as a Microporous Layer for Proton Exchange Membrane Fuel Cells. Energy 2021, 227, 120459. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Y.-T.; Song, H.; Yao, T.-T.; Liu, Q.; Wu, G.-P. Single-Walled Carbon Nanotube Interlayer Modified Gas Diffusion Layers to Boost the Cell Performance of Self-Humidifying Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2023, 48, 30899–30908. [Google Scholar] [CrossRef]
- Xi, J.; Meng, K.; Li, Y.; Wang, M.; Liao, Q.; Wei, Z.; Shao, M.; Wang, J. Performance Improvement of Ultra-Low Pt Proton Exchange Membrane Fuel Cell by Catalyst Layer Structure Optimization. Chin. J. Chem. Eng. 2022, 41, 473–479. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.-S.; Yun, E.-T.; Ham, S.-Y.; Park, J.-H.; Ahn, C.H.; Lee, S.H.; Park, H.-D. Vertically Aligned Carbon Nanotube Membranes: Water Purification and Beyond. Membranes 2020, 10, 273. [Google Scholar] [CrossRef]
- Zanin, H.; May, P.W.; Harniman, R.L.; Risbridger, T.; Corat, E.J.; Fermin, D.J. High Surface Area Diamond-like Carbon Electrodes Grown on Vertically Aligned Carbon Nanotubes. Carbon 2015, 82, 288–296. [Google Scholar] [CrossRef]
- Cho, W.; Schulz, M.; Shanov, V. Growth and Characterization of Vertically Aligned Centimeter Long CNT Arrays. Carbon 2014, 72, 264–273. [Google Scholar] [CrossRef]
- Kudinova, E.S.; Vorobyeva, E.A.; Ivanova, N.A.; Tishkin, V.V.; Alekseeva, O.K. A Magnetron Sputtering Method for the Application of the Ni Catalyst for the Synthesis Process of Carbon Nanotube Arrays. Nanotechnologies Russ. 2020, 15, 715–722. [Google Scholar] [CrossRef]
- Ageev, O.A.; Blinov, Y.F.; Il’ina, M.V.; Il’in, O.I.; Smirnov, V.A.; Tsukanova, O.G. Study of Adhesion of Vertically Aligned Carbon Nanotubes to a Substrate by Atomic-Force Microscopy. Phys. Solid State 2016, 58, 309–314. [Google Scholar] [CrossRef]
- Meng, Q.H.; Hao, C.; Yan, B.; Yang, B.; Liu, J.; Shen, P.K.; Tian, Z.Q. High-Performance Proton Exchange Membrane Fuel Cell with Ultra-Low Loading Pt on Vertically Aligned Carbon Nanotubes as Integrated Catalyst Layer. J. Energy Chem. 2022, 71, 497–506. [Google Scholar] [CrossRef]
- Meng, X.; Deng, X.; Zhou, L.; Hu, B.; Tan, W.; Zhou, W.; Liu, M.; Shao, Z. A Highly Ordered Hydrophilic–Hydrophobic Janus Bi-Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. Energy Env. Mater. 2021, 4, 126–133. [Google Scholar] [CrossRef]
- Lu, C.; Shi, F.; Jin, J.; Peng, X. Study on the Properties of Vertical Carbon Nanotube Films Grown on Stainless Steel Bipolar Plates. Materials 2019, 12, 899. [Google Scholar] [CrossRef]
- Murata, S.; Imanishi, M.; Hasegawa, S.; Namba, R. Vertically Aligned Carbon Nanotube Electrodes for High Current Density Operating Proton Exchange Membrane Fuel Cells. J. Power Sources 2014, 253, 104–113. [Google Scholar] [CrossRef]
- Fontana, M.; Ramos, R.; Morin, A.; Dijon, J. Direct Growth of Carbon Nanotubes Forests on Carbon Fibers to Replace Microporous Layers in Proton Exchange Membrane Fuel Cells. Carbon 2021, 172, 762–771. [Google Scholar] [CrossRef]
- Valdés-Madrigal, M.A.; Montejo-Alvaro, F.; Cernas-Ruiz, A.S.; Rojas-Chávez, H.; Román-Doval, R.; Cruz-Martinez, H.; Medina, D.I. Role of Defect Engineering and Surface Functionalization in the Design of Carbon Nanotube-Based Nitrogen Oxide Sensors. IJMS 2021, 22, 12968. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-S.; Zhang, X.-S.; Li, P.; Zhu, J.; Zhou, X.-G.; Yuan, W.-K. Effect of Carbon Nanofiber Microstructure on Oxygen Reduction Activity of Supported Palladium Electrocatalyst. Electrochem. Commun. 2007, 9, 895–900. [Google Scholar] [CrossRef]
- Lavagna, L.; Nisticò, R.; Musso, S.; Pavese, M. Functionalization as a Way to Enhance Dispersion of Carbon Nanotubes in Matrices: A Review. Mater. Today Chem. 2021, 20, 100477. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kahn, M.G.C.; Wong, S.S. Rational Chemical Strategies for Carbon Nanotube Functionalization. Chem. A Eur. J 2003, 9, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Samad, S.; Loh, K.S.; Wong, W.Y.; Lee, T.K.; Sunarso, J.; Chong, S.T.; Wan Daud, W.R. Carbon and Non-Carbon Support Materials for Platinum-Based Catalysts in Fuel Cells. Int. J. Hydrogen Energy 2018, 43, 7823–7854. [Google Scholar] [CrossRef]
- Meng, L.; Fu, C.; Lu, Q. Advanced Technology for Functionalization of Carbon Nanotubes. Prog. Nat. Sci. 2009, 19, 801–810. [Google Scholar] [CrossRef]
- Hernández-Fernández, P.; Montiel, M.; Ocón, P.; De La Fuente, J.L.G.; García-Rodríguez, S.; Rojas, S.; Fierro, J.L.G. Functionalization of Multi-Walled Carbon Nanotubes and Application as Supports for Electrocatalysts in Proton-Exchange Membrane Fuel Cell. Appl. Catal. B Environ. 2010, 99, 343–352. [Google Scholar] [CrossRef]
- Chen, S.; Wei, Z.; Guo, L.; Ding, W.; Dong, L.; Shen, P.; Qi, X.; Li, L. Enhanced Dispersion and Durability of Pt Nanoparticles on a Thiolated CNT Support. Chem. Commun. 2011, 47, 10984. [Google Scholar] [CrossRef]
- Shaheen Shah, S.; Abu Nayem, S.M.; Sultana, N.; Saleh Ahammad, A.J.; Aziz, M.A. Preparation of Sulfur-doped Carbon for Supercapacitor Applications: A Review. ChemSusChem 2022, 15, e202101282. [Google Scholar] [CrossRef]
- Shirzadi Jahromi, H.; Saxena, S.; Sridhar, S.; Ghantasala, M.K.; Guda, R.; Rozhkova, E.A. Development of Nickel-ZIF-8 Doped Nitrogen Reduced Graphene Oxide Catalytic Materials for PEM Fuel Cell. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 29 October 2023; Energy. American Society of Mechanical Engineers: New York, NY, USA, 2023; Volume 7, p. V007T08A045. [Google Scholar]
- Bhaskaran, R.; Chetty, R. One-Pot Room Temperature Synthesis of Nitrogen-Doped Graphene and Its Application as Catalyst Support for ORR in PEMFCs. ACS Appl. Energy Mater. 2024, 7, 390–402. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Tsai, J.-E.; Huang, C.-C.; Chen, Y.-S.; Li, Y.-Y. Highly Porous Iron-Doped Nitrogen–Carbon Framework on Reduced Graphene Oxide as an Excellent Oxygen Reduction Catalyst for Proton-Exchange Membrane Fuel Cells. ACS Appl. Energy Mater. 2022, 5, 1822–1832. [Google Scholar] [CrossRef]
- Nair, A.S.; Jafri, R.I. A Facile One-Step Microwave Synthesis of Pt Deposited on N & P Co-Doped Graphene Intercalated Carbon Black—An Efficient Cathode Electrocatalyst for PEM Fuel Cell. Int. J. Hydrogen Energy 2023, 48, 3653–3664. [Google Scholar] [CrossRef]
- Han, C.; Chen, Z. Study on the Synergism of Thermal Transport and Electrochemical of PEMFC Based on N, P Co-Doped Graphene Substrate Electrode. Energy 2021, 214, 118808. [Google Scholar] [CrossRef]
- Peera, S.G.; Menon, R.S.; Das, S.K.; Alfantazi, A.; Karuppasamy, K.; Liu, C.; Sahu, A.K. Oxygen Reduction Electrochemistry at F Doped Carbons: A Review on the Effect of Highly Polarized C-F Bonding in Catalysis and Stability of Fuel Cell Catalysts. Coord. Chem. Rev. 2024, 500, 215491. [Google Scholar] [CrossRef]
- Spasov, D.D.; Ivanova, N.A.; Mensharapov, R.M.; Sinyakov, M.V.; Zasypkina, A.A.; Kukueva, E.V.; Trigub, A.L.; Kulikova, E.S.; Fateev, V.N. Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters. Inorganics 2023, 11, 325. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Kukueva, E.V.; Zasypkina, A.A.; Fateev, V.N.; Grigoriev, S.A. Efficient and Stable Subzero Operation of a PEM Fuel Cell with a Composite Anode Using Hydrogen-Methanol Composition during Freeze/Thaw Cycles. Int. J. Hydrogen Energy 2023, 48, 11410–11420. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Li, H.; Wang, Q.; Wang, H.; Wang, W.; Kang, J.; Chang, Y.; Lei, Z. Highly Stable and Effective Pt/Carbon Nitride (CNx) Modified SiO2 Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2011, 36, 5775–5781. [Google Scholar] [CrossRef]
- Ramírez-Palma, M.T.; Hernández-Padrón, G.; Gómez, J.M.; Rojas-González, F.; Castaño, V.M. NANOSTRUCTURED EPOXY-BASED ANTICORROSIVE COATINGS. Surf. Rev. Lett. 2020, 27, 1950202. [Google Scholar] [CrossRef]
- Chowdury, M.S.K.; Cho, Y.J.; Park, S.B.; Lee, M.H.; Park, Y. Pt-Free Graphene Oxide-Hydrogen Membrane Fuel Cells (GOHMFCs). Mater. Today Chem. 2023, 34, 101770. [Google Scholar] [CrossRef]
- Marinoiu, A.; Raceanu, M.; Carcadea, E.; Varlam, M. Nitrogen-Doped Graphene Oxide as Efficient Metal-Free Electrocatalyst in PEM Fuel Cells. Nanomaterials 2023, 13, 1233. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Choi, J.-H.; Kang, H.E.; Kim, D.-J.; Yoon, Y.S. Enhanced Durability and Catalytic Performance of Pt–SnO2 /Multi-Walled Carbon Nanotube with Shifted d-Band Center for Proton-Exchange Membrane Fuel Cells. Small Struct. 2024, 5, 2300407. [Google Scholar] [CrossRef]
- Hoque, M.A.; Hassan, F.M.; Jauhar, A.M.; Jiang, G.; Pritzker, M.; Choi, J.-Y.; Knights, S.; Ye, S.; Chen, Z. Web-like 3D Architecture of Pt Nanowires and Sulfur-Doped Carbon Nanotube with Superior Electrocatalytic Performance. ACS Sustain. Chem. Eng. 2018, 6, 93–98. [Google Scholar] [CrossRef]
- Lu, L.; Deng, H.; Zhao, Z.; Xu, B.; Sun, X. N-Doped Carbon Nanotubes Supported Pt Nanowire Catalysts for Proton Exchange Membrane Fuel Cells. J. Power Sources 2022, 529, 231229. [Google Scholar] [CrossRef]
- Mardle, P.; Ji, X.; Wu, J.; Guan, S.; Dong, H.; Du, S. Thin Film Electrodes from Pt Nanorods Supported on Aligned N-CNTs for Proton Exchange Membrane Fuel Cells. Appl. Catal. B Environ. 2020, 260, 118031. [Google Scholar] [CrossRef]
- Roudbari, M.N.; Ojani, R.; Raoof, J.B. Nitrogen Functionalized Carbon Nanotubes as a Support of Platinum Electrocatalysts for Performance Improvement of ORR Using Fuel Cell Cathodic Half-Cell. Renew. Energy 2020, 159, 1015–1028. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, Z.; Li, B.; Wang, G.; Leu, P.W. Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction. J. Phys. Chem. C. 2020, 124, 8689–8696. [Google Scholar] [CrossRef]
- Dogan, D.C.; Cho, S.; Hwang, S.-M.; Kim, Y.-M.; Guim, H.; Yang, T.-H.; Park, S.-H.; Park, G.-G.; Yim, S.-D. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 27730–27739. [Google Scholar] [CrossRef]
- Shu, C.; Tan, Q.; Deng, C.; Du, W.; Gan, Z.; Liu, Y.; Fan, C.; Jin, H.; Tang, W.; Yang, X.; et al. Hierarchically Mesoporous Carbon Spheres Coated with a Single Atomic Fe–N–C Layer for Balancing Activity and Mass Transfer in Fuel Cells. Carbon Energy 2022, 4, 1–11. [Google Scholar] [CrossRef]
- Mashindi, V.; Mente, P.; Mpofu, N.; Phaahlamohlaka, T.N.; Makgae, O.; Kirkland, A.I.; Forbes, R.; Ozoemena, K.I.; Levecque, P.B.; Coville, N.J. Platinum Supported on Pristine and Nitrogen-Doped Bowl-like Broken Hollow Carbon Spheres as Oxygen Reduction Reaction Catalysts. J. Appl. Electrochem. 2021, 51, 991–1008. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, G.; Yi, Q.; Fang, C.; Yi, R. N-Doped Hollow Carbon Sphere and Polyhedral Carbon Composite Supported Pt/Fe Nanoparticles as Highly Efficient Cathodic Catalysts of Proton-Exchange Membrane Fuel Cells. ACS Appl. Energy Mater. 2023, 6, 1228–1238. [Google Scholar] [CrossRef]
- Panickar, R.; Sobhan, C.B.; Chakravorti, S. Chemical Vapor Deposition Synthesis of Carbon Spheres: Effects of Temperature and Hydrogen. Vacuum 2020, 172, 109108. [Google Scholar] [CrossRef]
- Kızılduman, B.K.; Turhan, Y.; Doğan, M. Mesoporous Carbon Spheres Produced by Hydrothermal Carbonization from Rice Husk: Optimization, Characterization and Hydrogen Storage. Adv. Powder Technol. 2021, 32, 4222–4234. [Google Scholar] [CrossRef]
- Xu, M.; Yu, Q.; Liu, Z.; Lv, J.; Lian, S.; Hu, B.; Mai, L.; Zhou, L. Tailoring Porous Carbon Spheres for Supercapacitors. Nanoscale 2018, 10, 21604–21616. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Dong, X.; Zhao, P.; Luo, Z.; Sun, Z.; Yang, X.; Li, Q.; Wang, L.; Zhang, Y.; Zhou, H. Decoupled Temperature and Pressure Hydrothermal Synthesis of Carbon Sub-Micron Spheres from Cellulose. Nat. Commun. 2022, 13, 3616. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Chen, X.; Huang, R.; Chen, M.; Yang, R.; Lan, P.; Zhou, M.; Zhang, F.; Yang, Y.; Zhou, X. Fast Preparation of Carbon Spheres from Enzymatic Hydrolysis Lignin: Effects of Hydrothermal Carbonization Conditions. Sci. Rep. 2018, 8, 9501. [Google Scholar] [CrossRef]
- Yu, Q.; Xu, J.; Wu, C.; Zhang, J.; Guan, L. MnO 2 Nanofilms on Nitrogen-Doped Hollow Graphene Spheres as a High-Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 35264–35269. [Google Scholar] [CrossRef] [PubMed]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef]
- Karimi Estahbanati, M.R.; Feilizadeh, M.; Shokrollahi Yancheshmeh, M.; Iliuta, M.C. Effects of Carbon Nanotube and Carbon Sphere Templates in TiO 2 Composites for Photocatalytic Hydrogen Production. Ind. Eng. Chem. Res. 2019, 58, 2770–2783. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Ebisike, K.; Okoronkwo, A.E.; Alaneme, K.K. Synthesis and Characterization of Chitosan–Silica Hybrid Aerogel Using Sol-Gel Method. J. King Saud Univ. -Sci. 2020, 32, 550–554. [Google Scholar] [CrossRef]
- Ozouf, G.; Cognard, G.; Maillard, F.; Chatenet, M.; Guétaz, L.; Heitzmann, M.; Jacques, P.-A.; Beauger, C. Sb-Doped SnO2 Aerogels Based Catalysts for Proton Exchange Membrane Fuel Cells: Pt Deposition Routes, Electrocatalytic Activity and Durability. J. Electrochem. Soc. 2018, 165, F3036. [Google Scholar] [CrossRef]
- Shen, M.; Qi, J.; Gao, K.; Duan, C.; Liu, J.; Liu, Q.; Yang, H.; Ni, Y. Chemical Vapor Deposition Strategy for Inserting Atomic FeN4 Sites into 3D Porous Honeycomb Carbon Aerogels as Oxygen Reduction Reaction Catalysts in High-Performance Zn-Air Batteries. Chem. Eng. J. 2023, 464, 142719. [Google Scholar] [CrossRef]
- Shaari, N.; Kamarudin, S.K. Current Status, Opportunities, and Challenges in Fuel Cell Catalytic Application of Aerogels. Int. J. Energy Res. 2019, 43, 2447–2467. [Google Scholar] [CrossRef]
- Wang, Y.; Larsen, M.J.; Rojas, S.; Sougrati, M.-T.; Jaouen, F.; Ferrer, P.; Gianolio, D.; Berthon-Fabry, S. Influence of the Synthesis Parameters on the Proton Exchange Membrane Fuel Cells Performance of Fe–N–C Aerogel Catalysts. J. Power Sources 2021, 514, 230561. [Google Scholar] [CrossRef]
- Alwin, S.; Sahaya Shajan, X. Aerogels: Promising Nanostructured Materials for Energy Conversion and Storage Applications. Mater Renew Sustain. Energy 2020, 9, 7. [Google Scholar] [CrossRef]
- Öner, E.; Öztürk, A.; Yurtcan, A.B. Utilization of the Graphene Aerogel as PEM Fuel Cell Catalyst Support: Effect of Polypyrrole (PPy) and Polydimethylsiloxane (PDMS) Addition. Int. J. Hydrog. Energy 2020, 45, 34818–34836. [Google Scholar] [CrossRef]
- Gu, K.; Kim, E.J.; Sharma, S.K.; Sharma, P.R.; Bliznakov, S.; Hsiao, B.S.; Rafailovich, M.H. Mesoporous Carbon Aerogel with Tunable Porosity as the Catalyst Support for Enhanced Proton-Exchange Membrane Fuel Cell Performance. Mater. Today Energy 2021, 19, 100560. [Google Scholar] [CrossRef]
- Pasatoa, C.D.; Lawa, A.; Parka, J.; Kima, M.; Jina, P. The Synthesis of High Surface Area Carbon Aerogels. J. Undergrad. Chem. Eng. Res 2020, 9, 27–30. [Google Scholar]
- Liu, X.; Tian, J.; Zhou, C.; Jiang, J.; Cheng, X.; Yang, L.; Wu, Q.; Wang, X.; Hu, Z. Constructing Membrane Electrodes of Low Pt Areal Loading with the New Support of N-Doped Carbon Nanocages for PEMFC. FlatChem 2023, 40, 100515. [Google Scholar] [CrossRef]
- Kagkoura, A.; Tagmatarchis, N. Carbon Nanohorn-Based Electrocatalysts for Energy Conversion. Nanomaterials 2020, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A. Polymer/Carbon Nanocoil Nanocomposite: Status and Future Directions. Polym. -Plast. Technol. Mater. 2021, 60, 816–829. [Google Scholar] [CrossRef]
- Yeon, J.H.; Park, S.J.; Choi, I.; Choi, M. Generation of Carbon Nano-Onions by Laser Irradiation of Gaseous Hydrocarbons for High Durability Catalyst Support in Proton Exchange Membrane Fuel Cells. J. Ind. Eng. Chem. 2019, 80, 65–73. [Google Scholar] [CrossRef]
- Yeon, J.H.; Choi, J.; Jang, S.; Choi, M. Hydrophilicity Control of Laser-Induced Amorphous Carbon-Encapsulated Carbon Nano-Onions and Their Application to Proton Exchange Membrane Fuel Cells under Low Humidity. Carbon 2021, 184, 910–922. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.-M.; Wu, Z.; Li, X.; Wang, N.; Tao, K.; Wang, G.P. Carbon Nanocoil-Based Fast-Response and Flexible Humidity Sensor for Multifunctional Applications. ACS Appl. Mater. Interfaces 2019, 11, 4242–4251. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, Y.; Zhang, H.; Huang, H.; Zhou, C.; Cong, T.; Muhammad, J.; Yang, X.; Zhang, Y.; Fan, Z. Surface Modification of Helical Carbon Nanocoil (CNC) with N-Doped and Co-Anchored Carbon Layer for Efficient Microwave Absorption. J. Colloid Interface Sci. 2022, 608, 1894–1906. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Bi, Z.; Zhang, W.; Zhang, Z.; Xiao, Y.; Niu, H.; Huang, Y. Synthesis of a Three-Dimensional Interconnected Oxygen-, Boron-, Nitrogen-, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor. ACS Appl. Mater. Interfaces 2020, 12, 46170–46180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, S.; Chen, M.; Wu, L. Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for High-Performance Li-ion Battery. Adv. Funct. Mater. 2020, 30, 2000373. [Google Scholar] [CrossRef]
- Sam, D.K.; Li, H.; Xu, Y.T.; Cao, Y. Porous Carbon Fabrication Techniques: A Review. J. Ind. Eng. Chem. 2024, in press. [Google Scholar] [CrossRef]
Graphene Structures | Carbon Nanotubes | Other Structures | ||||
---|---|---|---|---|---|---|
Advantages | High dispersion of deposited platinum, ESA value, stability, and durability of catalysts Increasing FC output power when used as an additive | High catalyst stability and durability Ultra-low platinum loading High power output (both as a catalyst and as an electrode additive) | High dispersion of deposited platinum, ESA value, stability, and durability of catalysts Ultra-low platinum loading | |||
Disadvantages | Low values of mass transfer and diffusion of reagents in the layer Not applicable as a catalytic layer | Low dispersion of deposited platinum and ESA value of the catalysts | Complex fabrication technology Low FC output power No data | |||
Issue | Formation of the catalytic layer architecture | Functionalization to increase the dispersion of the active metal | Expanding research | |||
Parameters | Graphene nanosheets | Graphene oxides and reduced graphene oxides | Carbon nanotubes | Vertically aligned CNTs | Other structures | |
Electrocatalyst | ESA, m2/g | 80–100 [48,50] | 20–50 [41,64,66] | 10–40 [75,85,88] | ~30 [98] | ~200 [132,150] |
Degradation (ESA losses), % | ~5 | 10–30 | ~30 | ~5 | ~35 | |
Composition | 40 wt. % Pt/G | 16.9 wt. % Pt/T-RGO | 10 wt. % Pt/CNT | Pt-Co/VACNTs | 40 wt. % Pt/broken hollow C spheres, 30 wt. % Pt/aerogels | |
Catalytic layer | CL architecture | - | 40 wt. % Pt/rGO | Nafion ionomer, isopropanol, and 0.125 mg/cm2 mMWCNT | Pt/VACNTs on cathode, VACNTs were used as MPL with a thickness of 4.6 µm | 30 wt. % Pt/aerogels |
Pt loading on anode/cathode, mg/cm2 | - | 0.2/0.2 Pt/rGO on cathode Pt/C on anode | 0.06/0.06 Pt/C (cathode) and PtRu/C (anode) | 0.2/0.2 | 0.1/0.1 | |
Maximum power density, W/cm2 | - | ~0.62 [62] | ~1.2 [91] | ~1.4 [97] | ~0.33 [150] | |
Electrode | Electrode architecture | Double-layer GDL with graphene MPL; MPL thickness 13–17 μm; mean pore size 162.41 nm | rGO was a capacitive material; pore diameter between 0.7 and 9 μm; a 60 wt. % Pt/C catalyst was applied to the GDL on top | Normal carbon black GDL without MPL and with 15 μm thick CNT sheet MPLs | VACNTs were used as MPLs with a thickness of ~40 μm; total porosity 56.3% | - |
Maximum power density, W/cm2 | ~0.95 [48] | ~0.75 [64] | ~0.74 [89] | ~1.41 [98] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zasypkina, A.A.; Ivanova, N.A.; Spasov, D.D.; Mensharapov, R.M.; Sinyakov, M.V.; Grigoriev, S.A. Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts 2024, 14, 303. https://doi.org/10.3390/catal14050303
Zasypkina AA, Ivanova NA, Spasov DD, Mensharapov RM, Sinyakov MV, Grigoriev SA. Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts. 2024; 14(5):303. https://doi.org/10.3390/catal14050303
Chicago/Turabian StyleZasypkina, Adelina A., Nataliya A. Ivanova, Dmitry D. Spasov, Ruslan M. Mensharapov, Matvey V. Sinyakov, and Sergey A. Grigoriev. 2024. "Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review" Catalysts 14, no. 5: 303. https://doi.org/10.3390/catal14050303
APA StyleZasypkina, A. A., Ivanova, N. A., Spasov, D. D., Mensharapov, R. M., Sinyakov, M. V., & Grigoriev, S. A. (2024). Recent Advances in the Development of Nanocarbon-Based Electrocatalytic/Electrode Materials for Proton Exchange Membrane Fuel Cells: A Review. Catalysts, 14(5), 303. https://doi.org/10.3390/catal14050303