Current Research Status and Future Perspective of Ni- and Ru-Based Catalysts for CO2 Methanation
Abstract
:1. Introduction
2. Research Status with Literature Measurement
2.1. Method
2.2. Findings
2.3. Publication Trends
2.4. Countries, Institutes, and Journals Analysis
2.5. Keyword Analysis
3. Fundamental Challenges in CO2 Methanation
3.1. Thermodynamic Limitations
ΔH298K = −165 kJ mol−1
ΔH298K = 41 kJ mol−1
ΔH298K = −206 kJ mol−1
ΔH298K = −247 kJ mol−1
3.2. Deactivation
ΔH298K = −172 kJ mol−1
ΔH298K = 75 kJ mol−1
ΔH298K = −131 kJ mol−1
ΔH298K = −90 kJ/mol−1
ΔG300K = 48.5 kJ mol−1
4. Ni- and Ru-Based Catalytic Systems
4.1. Supported Catalysts
4.1.1. Role of Supports in Ni-Based Catalysts
4.1.2. Role of Support in Ru-Based Catalysts
4.2. Bimetallic Ni- and Ru-Based Catalysts for CO2 Methanation
Catalyst | Temp (°C) | CO2 Conv (%) | CH4 Select (%) | Ref. |
---|---|---|---|---|
Cu/NMCN | 500 | <5 | 0 | [175] |
Ru-Cu/NMCN | 53 | 90 | ||
Ni/Pr-CeO2 | 300 | 61 | 97 | [172] |
Ni-Ru/Pr-CeO2 | 80 | 100 | ||
Ni/Al2O3 | 300 | 77 | 98 | [182] |
Ni-Fe/Al2O3 | 81 | 100 | ||
Ni/Al2O3 | 500 | 5 | <10 | [179] |
Ni-Pt/Al2O3 | 65 | 60 |
4.3. Ni- and Ru-Based Single Atom Catalysts
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, L.; Cui, Y.; Xing, Y.; Su, W. Research on Nickel-Based Catalysts for Carbon Dioxide Methanation Combined with Literature Measurement. J. CO2 Util. 2022, 63, 102117. [Google Scholar] [CrossRef]
- Bataille, C.; Nilsson, L.J.; Jotzo, F. Industry in a Net-Zero Emissions World: New Mitigation Pathways, New Supply Chains, Modelling Needs and Policy Implications. Energy Clim. Change 2021, 2, 100059. [Google Scholar] [CrossRef]
- Tommasi, M.; Degerli, S.N.; Ramis, G.; Rossetti, I. Advancements in CO2 Methanation: A Comprehensive Review of Catalysis, Reactor Design and Process Optimization. Chem. Eng. Res. Des. 2024, 201, 457–482. [Google Scholar] [CrossRef]
- Lach, D.; Polanski, J.; Kapkowski, M. CO2—A Crisis or Novel Functionalization Opportunity? Energies 2022, 15, 1617. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, S.; Peng, T.; Ou, X. A Review of CO2 Emissions Reduction Technologies and Low-Carbon Development in the Iron and Steel Industry Focusing on China. Renew. Sustain. Energy Rev. 2021, 143, 110846. [Google Scholar] [CrossRef]
- Hermesmann, M.; Müller, T.E. Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Li, W.; Nie, X.; Yang, H.; Wang, X.; Polo-Garzon, F.; Wu, Z.; Zhu, J.; Wang, J.; Liu, Y.; Shi, C.; et al. Crystallographic Dependence of CO2 Hydrogenation Pathways over HCP-Co and FCC-Co Catalysts. Appl. Catal. B Environ. 2022, 315, 121529. [Google Scholar] [CrossRef]
- Agarwal, A.S.; Rode, E.; Sridhar, N.; Hill, D. Conversion of CO2 to Value Added Chemicals: Opportunities and Challenges. In Handbook of Climate Change Mitigation and Adaptation, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 3, pp. 1585–1623. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Antzaras, A.N.; Lemonidou, A.A. CO2 as a Building Block: From Capture to Utilization. Curr. Opin. Chem. Eng. 2023, 39, 100902. [Google Scholar] [CrossRef]
- Zhao, T.T.; Feng, G.H.; Chen, W.; Song, Y.F.; Dong, X.; Li, G.H.; Zhang, H.J.; Wei, W. Artificial Bioconversion of Carbon Dioxide. Chin. J. Catal. 2019, 40, 1421–1437. [Google Scholar] [CrossRef]
- Pokorna, D.; Varga, Z.; Andreides, D.; Zabranska, J. Adaptation of Anaerobic Culture to Bioconversion of Carbon Dioxide with Hydrogen to Biomethane. Renew. Energy 2019, 142, 167–172. [Google Scholar] [CrossRef]
- Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.Z. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem. Rev. 2018, 118, 6337–6408. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Hsu, C.S.; Bai, L.; Chen, H.M.; Hu, X. Atomically Dispersed Fe3+ Sites Catalyze Efficient CO2 Electroreduction to CO. Science 2019, 364, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [CrossRef]
- Lee, W.J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent Trend in Thermal Catalytic Low Temperature CO2 Methanation: A Critical Review. Catal. Today 2021, 368, 2–19. [Google Scholar] [CrossRef]
- Jiang, Q.; Gao, Y.; Haribal, V.P.; Qi, H.; Liu, X.; Hong, H.; Jin, H.; Li, F. Mixed Conductive Composites for ‘Low-Temperature’ Thermo-Chemical CO2 Splitting and Syngas Generation. J. Mater. Chem. A Mater. 2020, 8, 13173–13182. [Google Scholar] [CrossRef]
- Yang, D.; Wang, G.; Wang, X. Photo- and Thermo-Coupled Electrocatalysis in Carbon Dioxide and Methane Conversion. Sci. China Mater. 2019, 62, 1369–1373. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, C. Mechanism Insights on Single-Atom Catalysts for CO2 Conversion. J. Mater. Chem. A Mater. 2023, 11, 4876–4906. [Google Scholar] [CrossRef]
- Li, Y.; Wen, M.; Wang, Y.; Tian, G.; Wang, C.; Zhao, J. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO2 Reduction on Bi2O3−x. Angew. Chem. 2021, 133, 923–929. [Google Scholar] [CrossRef]
- Chou, T.C.; Chang, C.C.; Yu, H.L.; Yu, W.Y.; Dong, C.L.; Velasco-Vélez, J.J.; Chuang, C.H.; Chen, L.C.; Lee, J.F.; Chen, J.M.; et al. Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene. J. Am. Chem. Soc. 2020, 142, 2857–2867. [Google Scholar] [CrossRef]
- Lee, S.H.; Lin, J.C.; Farmand, M.; Landers, A.T.; Feaster, J.T.; Avilés Acosta, J.E.; Beeman, J.W.; Ye, Y.; Yano, J.; Mehta, A.; et al. Oxidation State and Surface Reconstruction of Cu under CO2Reduction Conditions from in Situ X-Ray Characterization. J. Am. Chem. Soc. 2021, 143, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, X.; Xi, S.; Xu, H.; Wang, X. Axial Modification of Cobalt Complexes on Heterogeneous Surface with Enhanced Electron Transfer for Carbon Dioxide Reduction. Angew. Chem. Int. Ed. 2020, 59, 19162–19167. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.N.; Kumar, P.; Gupta, A.K.; Mathur, P.; Mobin, S.M. Catalytic CO2 Fixation over a Robust Lactam-Functionalized Cu(II) Metal Organic Framework. Inorg. Chem. 2019, 58, 9723–9732. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Liu, Y.; Lei, L.; Wang, J.; Wang, Z.; Zheng, Z.; Wang, P.; Cheng, H.; Dai, Y.; Huang, B. Light-Promoted CO2 conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal-Organic Framework. ACS Catal. 2021, 11, 1988–1994. [Google Scholar] [CrossRef]
- Dong, B.X.; Qian, S.L.; Bu, F.Y.; Wu, Y.C.; Feng, L.G.; Teng, Y.L.; Liu, W.L.; Li, Z.W. Electrochemical Reduction of CO2 to CO by a Heterogeneous Catalyst of Fe-Porphyrin-Based Metal-Organic Framework. ACS Appl. Energy Mater. 2018, 1, 4662–4669. [Google Scholar] [CrossRef]
- Chi, L.P.; Niu, Z.Z.; Zhang, X.L.; Yang, P.P.; Liao, J.; Gao, F.Y.; Wu, Z.Z.; Tang, K.B.; Gao, M.R. Stabilizing Indium Sulfide for CO2 Electroreduction to Formate at High Rate by Zinc Incorporation. Nat. Commun. 2021, 12, 5835. [Google Scholar] [CrossRef]
- Zeng, R.; Lian, K.; Su, B.; Lu, L.; Lin, J.; Tang, D.; Lin, S.; Wang, X. Versatile Synthesis of Hollow Metal Sulfides via Reverse Cation Exchange Reactions for Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2021, 60, 25055–25062. [Google Scholar] [CrossRef]
- Wang, J.; Lin, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solar-Driven CO2 Reduction Application. Adv. Funct. Mater. 2021, 31, 2008008. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Z.; Zheng, L.; Zhao, C.; Wang, X.; Chong, S.Y.; McBride, F.; Raval, R.; Bilton, M.; Liu, L.; et al. Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. Chem. Mater. 2020, 32, 9107–9114. [Google Scholar] [CrossRef]
- Zhong, H.; Sa, R.; Lv, H.; Yang, S.; Yuan, D.; Wang, X.; Wang, R. Covalent Organic Framework Hosting Metalloporphyrin-Based Carbon Dots for Visible-Light-Driven Selective CO2 Reduction. Adv. Funct. Mater. 2020, 30, 2002654. [Google Scholar] [CrossRef]
- Zhang, T.; Han, X.; Yang, H.; Han, A.; Hu, E.; Li, Y.; Yang, X.; Wang, L.; Liu, J.; Liu, B. Atomically Dispersed Nickel(I) on an Alloy-Encapsulated Nitrogen-Doped Carbon Nanotube Array for High-Performance Electrochemical CO2 Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 12055–12061. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zan, W.Y.; Kang, H.; Dong, Z.; Zhang, X.; Lin, Y.; Mu, Y.W.; Zhang, F.; Zhang, X.M.; Gu, J. Graphitic-N Highly Doped Graphene-like Carbon: A Superior Metal-Free Catalyst for Efficient Reduction of CO2. Appl. Catal. B Environ. 2021, 298, 120510. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Yu, X.; Chen, Y.; Tang, X.; Hu, T.; Shi, L.; Pudukudy, M.; Shan, S.; Zhi, Y. Cellulose Nanofibers (CNF) Supported (Salen)Cr(III) Composite as an Efficient Heterogeneous Catalyst for CO2 Cycloaddition. Mol. Catal. 2023, 547, 113344. [Google Scholar] [CrossRef]
- Wu, J.; Sharifi, T.; Gao, Y.; Zhang, T.; Ajayan, P.M. Emerging Carbon-Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Value-Added Chemicals. Adv. Mater. 2019, 31, 1804257. [Google Scholar] [CrossRef]
- Tichler, R.; Bauer, S.; Böhm, H. Power-to-Gas. In Storing Energy: With Special Reference to Renewable Energy Sources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 595–612. [Google Scholar] [CrossRef]
- Refaat, Z.; El Saied, M.; El Naga, A.O.A.; Shaban, S.A.; Hassan, H.B.; Shehata, M.R.; Kady, F.Y.E. Efficient CO2 Methanation Using Nickel Nanoparticles Supported Mesoporous Carbon Nitride Catalysts. Sci. Rep. 2023, 13, 4855. [Google Scholar] [CrossRef]
- Amin, M.; Usman, M.; Kella, T.; Khan, W.U.; Khan, I.A.; Hoon Lee, K. Issues and Challenges of Fischer–Tropsch Synthesis Catalysts. Front. Chem. 2024, 12, 1462503. [Google Scholar] [CrossRef]
- Colelli, L.; Bassano, C.; Verdone, N.; Segneri, V.; Vilardi, G. Power-to-Gas: Process Analysis and Control Strategies for Dynamic Catalytic Methanation System. Energy Convers. Manag. 2024, 305, 118257. [Google Scholar] [CrossRef]
- Usman, M.; Fareed, A.G.; Amin, M. A Bibliometric Analysis of CO2 Methanation: Research Trends and Comprehension of Effective Catalysts. J. Iran. Chem. Soc. 2024, 21, 1185–1201. [Google Scholar] [CrossRef]
- Jalama, K. Carbon Dioxide Hydrogenation over Nickel-, Ruthenium-, and Copper-Based Catalysts: Review of Kinetics and Mechanism. Catal. Rev. 2017, 59, 95–164. [Google Scholar] [CrossRef]
- Memon, M.A.; Zhou, W.; Ajmal, M.; Afzal; Jiang, Y.; Zhang, C.; Zhang, J.; Liu, Y. Ni–CaZrO3 with Perovskite Phase Loaded on ZrO2 for CO2 Methanation. Int. J. Hydrogen Energy 2024, 92, 1202–1213. [Google Scholar] [CrossRef]
- Vieira, L.H.; Rasteiro, L.F.; Santana, C.S.; Catuzo, G.L.; da Silva, A.H.M.; Assaf, J.M.; Assaf, E.M. Noble Metals in Recent Developments of Heterogeneous Catalysts for CO2 Conversion Processes. ChemCatChem 2023, 15, e202300493. [Google Scholar] [CrossRef]
- Hussain, I.; Jalil, A.A.; Hassan, N.S.; Hamid, M.Y.S. Recent Advances in Catalytic Systems for CO2 Conversion to Substitute Natural Gas (SNG): Perspective and Challenges. J. Energy Chem. 2021, 62, 377–407. [Google Scholar] [CrossRef]
- Molinet-Chinaglia, C.; Shafiq, S.; Serp, P. Low Temperature Sabatier CO2 Methanation. ChemCatChem 2024, 16, e202401213. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Hydrogenation of CO2 over Supported Noble Metal Catalysts. Appl. Catal. A Gen. 2017, 542, 63–70. [Google Scholar] [CrossRef]
- Merkouri, L.P.; Martín-Espejo, J.L.; Bobadilla, L.F.; Odriozola, J.A.; Duyar, M.S.; Reina, T.R. Flexible NiRu Systems for CO2 Methanation: From Efficient Catalysts to Advanced Dual-Function Materials. Nanomaterials 2023, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Nabeela, K.; Mate, N.; Mobin, S.M. Recent Advances in CO2 Hydrogenation to Methane Using Single-Atom Catalysts. RSC Sustain. 2024, 2, 1179–1201. [Google Scholar] [CrossRef]
- Yergaziyeva, G.; Kuspanov, Z.; Mambetova, M.; Khudaibergenov, N.; Makayeva, N.; Daulbayev, C. Advancements in Catalytic, Photocatalytic, and Electrocatalytic CO2 Conversion Processes: Current Trends and Future Outlook. J. CO2 Util. 2024, 80, 102682. [Google Scholar] [CrossRef]
- Sholeha, N.A.; Holilah, H.; Bahruji, H.; Ayub, A.; Widiastuti, N.; Ediati, R.; Jalil, A.A.; Ulfa, M.; Masruchin, N.; Nugraha, R.E.; et al. Recent Trend of Metal Promoter Role for CO2 Hydrogenation to C1 and C2+ Products. S. Afr. J. Chem. Eng. 2023, 44, 14–30. [Google Scholar] [CrossRef]
- Ridzuan, N.D.M.; Shaharun, M.S.; Anawar, M.A.; Ud-Din, I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review on Performance and Progress. Catalysts 2022, 12, 469. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, J.; Li, Z.; Chen, J.; Zhang, Q.; Ning, P.; Chen, Y.; Hao, J. Progress in Reaction Mechanisms and Catalyst Development of Ceria-Based Catalysts for Low-Temperature CO2 Methanation. Green Chem. 2022, 25, 130–152. [Google Scholar] [CrossRef]
- Hu, F.; Ye, R.; Lu, Z.H.; Zhang, R.; Feng, G. Structure-Activity Relationship of Ni-Based Catalysts toward CO2Methanation: Recent Advances and Future Perspectives. Energy Fuels 2022, 36, 156–169. [Google Scholar] [CrossRef]
- Albeladi, N.; Alsulami, Q.A.; Narasimharao, K. Recent Progress in Nickel and Silica Containing Catalysts for CO2 Hydrogenation to CH4. Catalysts 2023, 13, 1104. [Google Scholar] [CrossRef]
- Wang, L.X.; Wang, L.; Xiao, F.S. Tuning Product Selectivity in CO2hydrogenation over Metal-Based Catalysts. Chem. Sci. 2021, 12, 14660–14673. [Google Scholar] [CrossRef] [PubMed]
- Busca, G.; Spennati, E.; Riani, P.; Garbarino, G. Looking for an Optimal Composition of Nickel-Based Catalysts for CO2 Methanation. Energies 2023, 16, 5304. [Google Scholar] [CrossRef]
- Lee, Y.H.; Ahn, J.Y.; Nguyen, D.D.; Chang, S.W.; Kim, S.S.; Lee, S.M. Role of Oxide Support in Ni Based Catalysts for CO2methanation. RSC Adv. 2021, 11, 17648–17657. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, J.; Li, Z.; Chen, J.; Zhang, Q.; Ning, P.; Hao, J. Double-Edged Sword Effect of Classical Strong Metal-Support Interaction in Catalysts for CO2 Hydrogenation to CO, Methane, and Methanol. ACS Mater. Lett. 2023, 5, 2629–2647. [Google Scholar] [CrossRef]
- Fan, W.K.; Tahir, M. Recent Trends in Developments of Active Metals and Heterogenous Materials for Catalytic CO2 hydrogenation to Renewable Methane: A Review. J. Environ. Chem. Eng. 2021, 9, 105460. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, Y.; Wei, M. Recent Advances on Heterogeneous Non-Noble Metal Catalysts toward Selective Hydrogenation Reactions. ACS Catal. 2023, 13, 8902–8924. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, D.; Wang, X.; Qin, Y.; Hu, L.; Zhang, Y.; Zou, R.; Gao, S. Sustainable CO2 Management through Integrated CO2 Capture and Conversion. J. CO2 Util. 2023, 72, 102493. [Google Scholar] [CrossRef]
- Wu, J.; Ye, R.; Xu, D.J.; Wan, L.; Reina, T.R.; Sun, H.; Ni, Y.; Zhou, Z.F.; Deng, X. Emerging Natural and Tailored Perovskite-Type Mixed Oxides–Based Catalysts for CO2 Conversions. Front. Chem. 2022, 10, 961355. [Google Scholar] [CrossRef]
- Olivier, A.; Desgagnés, A.; Mercier, E.; Iliuta, M.C. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind. Eng. Chem. Res. 2023, 62, 5714–5749. [Google Scholar] [CrossRef]
- Li, L.; Zeng, W.; Song, M.; Wu, X.; Li, G.; Hu, C. Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022, 12, 244. [Google Scholar] [CrossRef]
- Medina, O.E.; Amell, A.A.; López, D.; Santamaría, A. Comprehensive Review of Nickel-Based Catalysts Advancements for CO2 Methanation. Renew. Sustain. Energy Rev. 2025, 207, 114926. [Google Scholar] [CrossRef]
- Alhassan, M.; Jalil, A.A.; Nabgan, W.; Hamid, M.Y.S.; Bahari, M.B.; Ikram, M. Bibliometric Studies and Impediments to Valorization of Dry Reforming of Methane for Hydrogen Production. Fuel 2022, 328, 125240. [Google Scholar] [CrossRef]
- Judijanto, L.; Muni, K.S.; Amir, F.L. Bibliometric Analysis to Understand Research Trends in Data-Driven Economics. West Sci. J. Econ. Entrep. 2024, 2, 372–382. [Google Scholar] [CrossRef]
- Matorevhu, A.; Matorevhu, A. Bibliometrics: Application Opportunities and Limitations. In Bibliometrics—An Essential Methodological Tool for Research Projects; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Oberthür, S.; Groen, L. The European Union and the Paris Agreement: Leader, Mediator, or Bystander? Wiley Interdiscip. Rev. Clim. Change 2017, 8, e445. [Google Scholar] [CrossRef]
- Musab Ahmed, S.; Ren, J.; Ullah, I.; Lou, H.; Xu, N.; Abbasi, Z.; Wang, Z. Ni-Based Catalysts for CO2 Methanation: Exploring the Support Role in Structure-Activity Relationships. ChemSusChem 2024, 17, e202400310. [Google Scholar] [CrossRef]
- Moioli, E.; Züttel, A. A Model-Based Comparison of Ru and Ni Catalysts for the Sabatier Reaction. Sustain. Energy Fuels 2020, 4, 1396–1408. [Google Scholar] [CrossRef]
- Ye, Q.; Li, S.; Liao, Y.; Wang, Y.; He, Y.; Chen, J.; Xu, J.; Su, Q.; Cui, X. Ce Enhanced RuNi Alloy Multi-Metal Synergic Hydrotalcite Oxide Derived Catalyst for High Performance CO2 Methanation. Chem. Eng. J. 2024, 486, 150426. [Google Scholar] [CrossRef]
- Han, P.; Zhang, J.; Zhang, W.; Niu, Z.; Wang, G.; Li, X.; Li, J.; Wang, N.; Wang, X.; Wei, H.; et al. Promotional Role of Ni Photodepositing on Ru Confined TiO2 Nanotubes Catalyzed CO2 Methanation. Chem. Eng. J. 2024, 488, 151081. [Google Scholar] [CrossRef]
- Kuang, Y.; Yang, F.; Feng, L. Advancements in Ruthenium (Ru)-Based Heterostructure Catalysts: Overcoming Bottlenecks in Catalysis for Hydrogen Evolution Reaction. Adv. Energy Mater. 2024, 14, 2402043. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, Z.; Su, W.; Wang, Q.; Wang, X.; Zhang, H. Analysis of Research Status of CO2 Conversion Technology Based on Bibliometrics. Catalysts 2020, 10, 370. [Google Scholar] [CrossRef]
- Singh, R.; Wang, L.; Huang, J. In–Situ Characterization Techniques for Mechanism Studies of CO2 Hydrogenation. ChemPlusChem 2024, 89, e202300511. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, D.S.; Lee, C.W.; Knowles, G.P.; Vogt, C.; Marshall, M.; Gengenbach, T.R.; Chaffee, A.L. Ru-Zirconia Catalyst Derived from MIL140C for Carbon Dioxide Conversion to Methane. Catal. Today 2021, 371, 120–133. [Google Scholar] [CrossRef]
- Misol, A.; Giarnieri, I.; Ospitali, F.; Ballarini, A.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E.; Labajos, F.M.; Fornasari, G.; Benito, P. CO2 Hydrogenation over Ru Hydrotalcite-Derived Catalysts. Catal. Today 2024, 425, 114362. [Google Scholar] [CrossRef]
- Navarro-Jaén, S.; Navarro, J.C.; Bobadilla, L.F.; Centeno, M.A.; Laguna, O.H.; Odriozola, J.A. Size-Tailored Ru Nanoparticles Deposited over γ-Al2O3 for the CO2 Methanation Reaction. Appl. Surf. Sci. 2019, 483, 750–761. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, J.; Hong, U.G.; Baik, J.H.; Koh, D.J.; Lim, H.; Song, I.K. Methanation of Carbon Dioxide over Mesoporous Ni–Fe–Ru–Al2O3 Xerogel Catalysts: Effect of Ruthenium Content. J. Ind. Eng. Chem. 2013, 19, 698–703. [Google Scholar] [CrossRef]
- Tang, Y.; Men, Y.; Liu, S.; Wang, J.; Wang, K.; Li, Y.; An, W. Morphology-Dependent Support Effect of Ru/MnOx Catalysts on CO2 Methanation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127636. [Google Scholar] [CrossRef]
- Hatzisymeon, M.; Petala, A.; Panagiotopoulou, P. Carbon Dioxide Hydrogenation over Supported Ni and Ru Catalysts. Catal. Lett. 2021, 151, 888–900. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, C.; Chu, W.; Zhou, Y.; Köhler, K. CO2 Methanation over Supported Ru/Al2O3 Catalysts: Mechanistic Studies by In Situ Infrared Spectroscopy. ChemistrySelect 2016, 1, 3197–3203. [Google Scholar] [CrossRef]
- Chen, R.; Shen, L.; Zhang, W.; Han, Y.F.; Yang, Z.; Zhu, M. Promoted Ru/Al2O3 Catalysts with Improved Low-Temperature Activity for CO2 Methanation Reaction. Greenh. Gases Sci. Technol. 2023, 13, 396–408. [Google Scholar] [CrossRef]
- Chein, R.Y.; Wang, C.C. Experimental Study on CO2 Methanation over Ni/Al2O3, Ru/Al2O3, and Ru-Ni/Al2O3 Catalysts. Catalysts 2020, 10, 1112. [Google Scholar] [CrossRef]
- Chai, S.; Men, Y.; Wang, J.; Liu, S.; Song, Q.; An, W.; Kolb, G. Boosting CO2 Methanation Activity on Ru/TiO2 Catalysts by Exposing (001) Facets of Anatase TiO2. J. CO2 Util. 2019, 33, 242–252. [Google Scholar] [CrossRef]
- Uysal, D. Equilibrium Analyses and Kinetics of Carbon Dioxide Methanation Using an Alumina-Supported Ruthenium Catalyst. Chem. Eng. Technol. 2021, 44, 1939–1946. [Google Scholar] [CrossRef]
- Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R. Modeling the CO2 Capture and in Situ Conversion to CH4 on Dual Function Ru-Na2CO3/Al2O3 Catalyst. J. CO2 Util. 2020, 42, 101351. [Google Scholar] [CrossRef]
- Mohan, O.; Shambhawi, S.; Xu, R.; Lapkin, A.A.; Mushrif, S.H. Investigating CO2 Methanation on Ni and Ru: DFT Assisted Microkinetic Analysis. ChemCatChem 2021, 13, 2420–2433. [Google Scholar] [CrossRef]
- Chatzilias, C.; Martino, E.; Tsatsos, S.; Kyriakou, G.; Katsaounis, A.; Vayenas, C.G. Kinetic Study of CO2 Hydrogenation on Ru/YSZ Catalyst Using a Monolithic Electropromoted Reactor (MEPR). Chem. Eng. J. 2022, 430, 132967. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Rahman Farooqi, Z.U.; Lee, C. Hydrogen Production through Renewable and Non-Renewable Energy Processes and Their Impact on Climate Change. Int. J. Hydrogen Energy 2022, 47, 33112–33134. [Google Scholar] [CrossRef]
- Ali, R.M.; Elhewatty, M.; Zahran, A.; Elfadaly, E. A Perspective on Hydrogen Production from Renewable Energy and Biomass. Int. J. Environ. Stud. Res. 2023, 2, 105–119. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green Hydrogen-Based E-Fuels (E-Methane, E-Methanol, E-Ammonia) to Support Clean Energy Transition: A Literature Review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, X.; Wang, K.; Liang, J.; Jiang, Y.; Ma, Q.; Zhao, T.S.; Zhang, J. A Short Overview of Power-to-Methane: Coupling Preparation of Feed Gas with CO2 Methanation. Chem. Eng. Sci. 2023, 274, 118692. [Google Scholar] [CrossRef]
- Usman, M.; Podila, S.; Al-Zahrani, A.A. Role of Perovskites Phase in Ni-Based Catalysts for Low Temperature CO2 Methanation. Int. J. Hydrogen Energy 2024, 95, 173–184. [Google Scholar] [CrossRef]
- Cui, Y.; He, S.; Yang, J.; Gao, R.; Hu, K.; Chen, X.; Xu, L.; Deng, C.; Lin, C.; Peng, S.; et al. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024, 29, 374. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Da Costa, P. Transition Metal-Based Catalysts for CO2 Methanation and Hydrogenation. Heterog. Catal. Mater. Appl. 2022, 59–93. [Google Scholar] [CrossRef]
- Mar, K.A.; Unger, C.; Walderdorff, L.; Butler, T. Beyond CO2 Equivalence: The Impacts of Methane on Climate, Ecosystems, and Health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO2. Energy Environ. Sci. 2012, 5, 7281–7305. [Google Scholar] [CrossRef]
- Liu, A.H.; Gao, J.; He, L.N. Catalytic Activation and Conversion of Carbon Dioxide into Fuels/Value-Added Chemicals Through CC Bond Formation. New Future Dev. Catal. 2013, 81–147. [Google Scholar] [CrossRef]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar] [CrossRef]
- Kang, W.R.; Lee, K.B. Effect of Operating Parameters on Methanation Reaction for the Production of Synthetic Natural Gas. Korean J. Chem. Eng. 2013, 30, 1386–1394. [Google Scholar] [CrossRef]
- Massa, F.; Coppola, A.; Scala, F. A Thermodynamic Study of Sorption-Enhanced CO2 Methanation at Low Pressure. J. CO2 Util. 2020, 35, 176–184. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F. A Thermodynamic Analysis of Methanation Reactions of Carbon Oxides for the Production of Synthetic Natural Gas. RSC Adv. 2012, 2, 2358–2368. [Google Scholar] [CrossRef]
- Younas, M.; Loong Kong, L.; Bashir, M.J.K.; Nadeem, H.; Shehzad, A.; Sethupathi, S. Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy Fuels 2016, 30, 8815–8831. [Google Scholar] [CrossRef]
- Lim, J.Y.; McGregor, J.; Sederman, A.J.; Dennis, J.S. Kinetic Studies of the Methanation of CO over a Ni/γ-Al2O3 Catalyst Using a Batch Reactor. Chem. Eng. Sci. 2016, 146, 316–336. [Google Scholar] [CrossRef]
- Dias, Y.R.; Perez-Lopez, O.W. Carbon Dioxide Methanation over Ni-Cu/SiO2 Catalysts. Energy Convers. Manag. 2020, 203, 112214. [Google Scholar] [CrossRef]
- Alam, M.I.; Cheula, R.; Moroni, G.; Nardi, L.; Maestri, M. Mechanistic and Multiscale Aspects of Thermo-Catalytic CO2 Conversion to C1 Products. Catal. Sci. Technol. 2021, 11, 6601–6629. [Google Scholar] [CrossRef]
- Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. CO and CO2 Methanation over Ni Catalysts Supported on CeO2, Al2O3 and Y2O3 Oxides. Appl. Catal. B Environ. 2020, 264, 118494. [Google Scholar] [CrossRef]
- Witte, J.; Calbry-Muzyka, A.; Wieseler, T.; Hottinger, P.; Biollaz, S.M.A.; Schildhauer, T.J. Demonstrating Direct Methanation of Real Biogas in a Fluidised Bed Reactor. Appl. Energy 2019, 240, 359–371. [Google Scholar] [CrossRef]
- Gaikwad, R.; Villadsen, S.N.B.; Rasmussen, J.P.; Grumsen, F.B.; Nielsen, L.P.; Gildert, G.; Møller, P.; Fosbøl, P.L. Container-Sized CO2 to Methane: Design, Construction and Catalytic Tests Using Raw Biogas to Biomethane. Catalysts 2020, 10, 1428. [Google Scholar] [CrossRef]
- Rabou, L.P.L.M.; Bos, L. High Efficiency Production of Substitute Natural Gas from Biomass. Appl. Catal. B Environ. 2012, 111–112, 456–460. [Google Scholar] [CrossRef]
- Miguel, C.V.; Soria, M.A.; Mendes, A.; Madeira, L.M. Direct CO2 Hydrogenation to Methane or Methanol from Post-Combustion Exhaust Streams—A Thermodynamic Study. J. Nat. Gas Sci. Eng. 2015, 22, 1–8. [Google Scholar] [CrossRef]
- Ghaib, K.; Nitz, K.; Ben-Fares, F.Z. Chemical Methanation of CO2: A Review. ChemBioEng Rev. 2016, 3, 266–275. [Google Scholar] [CrossRef]
- Yusak, Y.A.; Sapawe, N. A Short Review on Carbon Dioxide (CO2) Methanation Process. Mater. Today Proc. 2020, 31, 394–397. [Google Scholar]
- Li, L.; Jiang, L.; Li, D.; Yuan, J.; Bao, G.; Li, K. Enhanced Low-Temperature Activity of CO2 Methanation over Ni/CeO2 Catalyst: Influence of Preparation Methods. Appl. Catal. O Open 2024, 192, 206956. [Google Scholar] [CrossRef]
- Ahmad, K.N.; Samidin, S.; Rosli, M.I.; Yusop, M.R.; Kassim, M.B.; Ayodele, B.V.; Yarmo, M.A.; Wan Isahak, W.N.R. Alkaline Earth Metal Modified Nickel Nanoparticles Supported on Exfoliated G-C3N4 for Atmospheric CO2 Methanation. J. Environ. Chem. Eng. 2023, 11, 111109. [Google Scholar] [CrossRef]
- Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Ni/CeO2 Catalysts with High CO2 Methanation Activity and High CH4 Selectivity at Low Temperatures. Int. J. Hydrogen Energy 2012, 37, 5527–5531. [Google Scholar] [CrossRef]
- Liu, H.; Zou, X.; Wang, X.; Lu, X.; Ding, W. Effect of CeO2 Addition on Ni/Al2O3 Catalysts for Methanation of Carbon Dioxide with Hydrogen. J. Nat. Gas Chem. 2012, 21, 703–707. [Google Scholar] [CrossRef]
- Lin, J.; Ma, C.; Wang, Q.; Xu, Y.; Ma, G.; Wang, J.; Wang, H.; Dong, C.; Zhang, C.; Ding, M. Enhanced Low-Temperature Performance of CO2 Methanation over Mesoporous Ni/Al2O3-ZrO2 Catalysts. Appl. Catal. B Environ. 2019, 243, 262–272. [Google Scholar] [CrossRef]
- Yan, P.; Peng, H.; Wu, X.; Rabiee, H.; Weng, Y.; Konarova, M.; Vogrin, J.; Rozhkovskaya, A.; Zhu, Z. Impact of Varied Zeolite Materials on Nickel Catalysts in CO2 Methanation. J. Catal. 2024, 432, 115439. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, H. In Situ Immobilizing Ni Nanoparticles to FDU-12 via Trehalose with Fine Size and Location Control for CO2 Methanation. ACS Sustain. Chem. Eng. 2020, 8, 2093–2105. [Google Scholar] [CrossRef]
- Gamal, A.; Jlassi, K.; Ahmad, Y.H.; Tang, M.; Al-Qaradawi, S.Y.; Chehimi, M.M.; Ozoemena, K.I.; Abdullah, A.M. Carbon-Supported Catalysts for Carbon Dioxide Methanation: A Review. J. CO2 Util. 2024, 85, 102881. [Google Scholar] [CrossRef]
- Wang, W.; Chu, W.; Wang, N.; Yang, W.; Jiang, C. Mesoporous Nickel Catalyst Supported on Multi-Walled Carbon Nanotubes for Carbon Dioxide Methanation. Int. J. Hydrogen Energy 2016, 41, 967–975. [Google Scholar] [CrossRef]
- Romero-Sáez, M.; Dongil, A.B.; Benito, N.; Espinoza-González, R.; Escalona, N.; Gracia, F. CO2 Methanation over Nickel-ZrO2 Catalyst Supported on Carbon Nanotubes: A Comparison between Two Impregnation Strategies. Appl. Catal. B Environ. 2018, 237, 817–825. [Google Scholar] [CrossRef]
- Wang, W.; Duong-Viet, C.; Truong-Phuoc, L.; Nhut, J.M.; Vidal, L.; Pham-Huu, C. Activated Carbon Supported Nickel Catalyst for Selective CO2 Hydrogenation to Synthetic Methane under Contactless Induction Heating. Catal. Today 2023, 418, 114073. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, C.; Sun, K.; Jia, X.; Ye, J.; Liu, C.J. Advances in Studies of the Structural Effects of Supported Ni Catalysts for CO2 Hydrogenation: From Nanoparticle to Single Atom Catalyst. J. Mater. Chem. A Mater. 2022, 10, 5792–5812. [Google Scholar] [CrossRef]
- Shen, C.; Liu, M.; He, S.; Zhao, H.; Liu, C. Advances in the Studies of the Supported Ruthenium Catalysts for CO2 Methanation. Chin. J. Catal. 2024, 63, 1–15. [Google Scholar] [CrossRef]
- Wang, F.; He, S.; Chen, H.; Wang, B.; Zheng, L.; Wei, M.; Evans, D.G.; Duan, X. Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation. J. Am. Chem. Soc. 2016, 138, 6298–6305. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Tong, Y.; Fang, X.; Xu, J.; Jiang, D.E.; Wang, X. Facile Cr3+-Doping Strategy Dramatically Promoting Ru/CeO2 for Low-Temperature CO2 Methanation: Unraveling the Roles of Surface Oxygen Vacancies and Hydroxyl Groups. ACS Catal. 2021, 11, 5762–5775. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Zhang, X.; Wei, M.; Evans, D.G.; Duan, X. Catalytic Behavior of Supported Ru Nanoparticles on the {1 0 0}, {1 1 0}, and {1 1 1} Facet of CeO2. J. Catal. 2015, 329, 177–186. [Google Scholar] [CrossRef]
- Chen, S.; Abdel-Mageed, A.M.; Li, M.; Cisneros, S.; Bansmann, J.; Rabeah, J.; Brückner, A.; Groß, A.; Behm, R.J. Electronic Metal-Support Interactions and Their Promotional Effect on CO2 Methanation on Ru/ZrO2 Catalysts. J. Catal. 2021, 400, 407–420. [Google Scholar] [CrossRef]
- Tada, S.; Jinushizono, T.; Ishikawa, K.; Miyazaki, S.; Toyao, T.; Shimizu, K.I.; Nishijima, M.; Yamauchi, N.; Kobayashi, Y.; Kikuchi, R. Low-Temperature CO2 Methanation over Ru Nanoparticles Supported on Monoclinic Zirconia. Energy Fuels 2023, 38, 2296–2304. [Google Scholar] [CrossRef]
- Liao, W.; Tang, C.; Zheng, H.; Ding, J.; Zhang, K.; Wang, H.; Lu, J.; Huang, W.; Zhang, Z. Tuning Activity and Selectivity of CO2 Hydrogenation via Metal-Oxide Interfaces over ZnO-Supported Metal Catalysts. J. Catal. 2022, 407, 126–140. [Google Scholar] [CrossRef]
- Nagase, H.; Naito, R.; Tada, S.; Kikuchi, R.; Fujiwara, K.; Nishijima, M.; Honma, T. Ru Nanoparticles Supported on Amorphous ZrO2 for CO2 Methanation. Catal. Sci. Technol. 2020, 10, 4522–4531. [Google Scholar] [CrossRef]
- Jabotra, G.; Yadav, P.K.; Kumar, S.; Sharma, S. CO2/CO Methanation over Ru and Ni Supported γ-Al2O3: A Study on the Effect of the Stoichiometry of Reactant Gases. Mol. Catal. 2023, 547, 113365. [Google Scholar] [CrossRef]
- Abe, T.; Tanizawa, M.; Watanabe, K.; Taguchi, A. CO2 Methanation Property of Ru Nanoparticle-Loaded TiO2 Prepared by a Polygonal Barrel-Sputtering Method. Energy Environ. Sci. 2009, 2, 315–321. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, H.; Wei, Y.; Zhou, X.; An, Y.; Dai, Y.; Niu, Q.; Lin, T.; Zhong, L. Overturning CO2 Hydrogenation Selectivity via Strong Metal-Support Interaction. ACS Catal. 2024, 14, 2409–2417. [Google Scholar] [CrossRef]
- Guo, Y.; Mei, S.; Yuan, K.; Wang, D.J.; Liu, H.C.; Yan, C.H.; Zhang, Y.W. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal-Support Interactions and H-Spillover Effect. ACS Catal. 2018, 8, 6203–6215. [Google Scholar] [CrossRef]
- Petala, A.; Panagiotopoulou, P. Methanation of CO2 over Alkali-Promoted Ru/TiO2 Catalysts: I. Effect of Alkali Additives on Catalytic Activity and Selectivity. Appl. Catal. B Environ. 2018, 224, 919–927. [Google Scholar] [CrossRef]
- Guo, X.; He, H.; Traitangwong, A.; Gong, M.; Meeyoo, V.; Li, P.; Li, C.; Peng, Z.; Zhang, S. Ceria Imparts Superior Low Temperature Activity to Nickel Catalysts for CO2 Methanation. Catal. Sci. Technol. 2019, 9, 5636–5650. [Google Scholar] [CrossRef]
- Liu, J.; Bing, W.; Xue, X.; Wang, F.; Wang, B.; He, S.; Zhang, Y.; Wei, M. Alkaline-Assisted Ni Nanocatalysts with Largely Enhanced Low-Temperature Activity toward CO2 Methanation. Catal. Sci. Technol. 2016, 6, 3976–3983. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, Y.H.; Moon, D.H.; Ahn, J.Y.; Nguyen, D.D.; Chang, S.W.; Kim, S.S. Reaction Mechanism and Catalytic Impact of Ni/CeO2−X Catalyst for Low-Temperature CO2Methanation. Ind. Eng. Chem. Res. 2019, 58, 8656–8662. [Google Scholar] [CrossRef]
- Song, F.; Zhong, Q.; Yu, Y.; Shi, M.; Wu, Y.; Hu, J.; Song, Y. Obtaining Well-Dispersed Ni/Al2O3 Catalyst for CO2 Methanation with a Microwave-Assisted Method. Int. J. Hydrogen Energy 2017, 42, 4174–4183. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, L.; Zhu, Z.; Li, Z. La-Promoted Ni/Mg-Al Catalysts with Highly Enhanced Low-Temperature CO2 Methanation Performance. Int. J. Hydrogen Energy 2018, 43, 2197–2206. [Google Scholar] [CrossRef]
- Ye, R.P.; Li, Q.; Gong, W.; Wang, T.; Razink, J.J.; Lin, L.; Qin, Y.Y.; Zhou, Z.; Adidharma, H.; Tang, J.; et al. High-Performance of Nanostructured Ni/CeO2 Catalyst on CO2 Methanation. Appl. Catal. B Environ. 2020, 268, 118474. [Google Scholar] [CrossRef]
- Bian, Z.; Chan, Y.M.; Yu, Y.; Kawi, S. Morphology Dependence of Catalytic Properties of Ni/CeO2 for CO2 Methanation: A Kinetic and Mechanism Study. Catal. Today 2020, 347, 31–38. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Gu, F.; Xu, W.; Zhang, J.; Li, Z.; Zhu, T.; Xu, G.; Zhong, Z.; Su, F. Enhancing the Low-Temperature CO2 Methanation over Ni/La-CeO2 Catalyst: The Effects of Surface Oxygen Vacancy and Basic Site on the Catalytic Performance. Appl. Catal. B Environ. 2022, 312, 121385. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Zhuo, Y.; Zhu, Y.; Wang, S. Enhancement of CO2 Methanation over La-Modified Ni/SBA-15 Catalysts Prepared by Different Doping Methods. ACS Sustain. Chem. Eng. 2019, 7, 14647–14660. [Google Scholar] [CrossRef]
- Le Saché, E.; Pastor-Pérez, L.; Haycock, B.J.; Villora-Picó, J.J.; Sepúlveda-Escribano, A.; Reina, T.R. Switchable Catalysts for Chemical CO2 Recycling: A Step Forward in the Methanation and Reverse Water-Gas Shift Reactions. ACS Sustain. Chem. Eng. 2020, 8, 4614–4622. [Google Scholar] [CrossRef]
- Guo, M.; Lu, G. The Effect of Impregnation Strategy on Structural Characters and CO2 Methanation Properties over MgO Modified Ni/SiO2 Catalysts. Catal. Commun. 2014, 54, 55–60. [Google Scholar] [CrossRef]
- Siakavelas, G.I.; Charisiou, N.D.; AlKhoori, S.; AlKhoori, A.A.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Yentekakis, I.V.; Polychronopoulou, K.; Goula, M.A. Highly Selective and Stable Nickel Catalysts Supported on Ceria Promoted with Sm2O3, Pr2O3 and MgO for the CO2 Methanation Reaction. Appl. Catal. B Environ. 2021, 282, 119562. [Google Scholar] [CrossRef]
- Ye, R.P.; Gong, W.; Sun, Z.; Sheng, Q.; Shi, X.; Wang, T.; Yao, Y.; Razink, J.J.; Lin, L.; Zhou, Z.; et al. Enhanced Stability of Ni/SiO2 Catalyst for CO2 Methanation: Derived from Nickel Phyllosilicate with Strong Metal-Support Interactions. Energy 2019, 188, 116059. [Google Scholar] [CrossRef]
- De Piano, G.; Andrade Gamboa, J.J.; Condó, A.M.; Gennari, F.C. CO2 Methanation over Nickel-CeO2 Catalyst Supported on Al2O3: Different Impregnation Strategies and Ni-Ce Ratios. Int. J. Hydrogen Energy 2024, 56, 1007–1019. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Liu, Y.; Wang, S. CO2 Methanation on the Catalyst of Ni/MCM-41 Promoted with CeO2. Sci. Total Environ. 2018, 625, 686–695. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, Q.; Yoneyama, Y.; Tsubaki, N. Nanoparticle Modified Ni-Based Bimodal Pore Catalysts for Enhanced CO2 Methanation. RSC Adv. 2014, 4, 64617–64624. [Google Scholar] [CrossRef]
- Paviotti, M.A.; Faroldi, B.M.; Cornaglia, L.M. Ni-Based Catalyst over Rice Husk-Derived Silica for the CO2 Methanation Reaction: Effect of Ru Addition. J. Environ. Chem. Eng. 2021, 9, 105173. [Google Scholar] [CrossRef]
- Guo, M.; Lu, G. The Difference of Roles of Alkaline-Earth Metal Oxides on Silica-Supported Nickel Catalysts for CO2 Methanation. RSC Adv. 2014, 4, 58171–58177. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Y.; Zhang, Y.; Fu, H.; Sun, S.; Li, F.; Duan, Z.; Liu, Z.; Wu, C.; Wang, Y.; et al. Ru-Based Catalysts for Efficient CO2 Methanation: Synergistic Catalysis between Oxygen Vacancies and Basic Sites. Nano Res. 2023, 16, 12153–12164. [Google Scholar] [CrossRef]
- El-Salamony, R.A.; Al-Fatesh, A.S.; Acharya, K.; Abahussain, A.A.M.; Bagabas, A.; Kumar, N.S.; Ibrahim, A.A.; Khan, W.U.; Kumar, R. Carbon Dioxide Valorization into Methane Using Samarium Oxide-Supported Monometallic and Bimetallic Catalysts. Catalysts 2023, 13, 113. [Google Scholar] [CrossRef]
- Cimino, S.; Russo, R.; Lisi, L. Insights into the Cyclic CO2 Capture and Catalytic Methanation over Highly Performing Li-Ru/Al2O3 Dual Function Materials. Chem. Eng. J. 2022, 428, 131275. [Google Scholar] [CrossRef]
- Merkouri, L.P.; le Saché, E.; Pastor-Pérez, L.; Duyar, M.S.; Ramirez Reina, T. Versatile Ni-Ru Catalysts for Gas Phase CO2 Conversion: Bringing Closer Dry Reforming, Reverse Water Gas Shift and Methanation to Enable End-Products Flexibility. Fuel 2022, 315, 123097. [Google Scholar] [CrossRef]
- Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; González-Marcos, J.A.; Bueno-López, A.; González-Velasco, J.R. Effect of Metal Loading on the CO2 Methanation: A Comparison between Alumina Supported Ni and Ru Catalysts. Catal. Today 2020, 356, 419–432. [Google Scholar] [CrossRef]
- Bueno-Lopez, A.; Rodríguez, S.L.; Davo-Quinonero, A.; Juan-Juan, J.; Bailon-García, E.; Lozano-Castello, D. Effect of Pr in CO2 Methanation Ru/CeO2 Catalysts. J. Phys. Chem. C 2021, 125, 12038–12049. [Google Scholar] [CrossRef]
- Sakpal, T.; Lefferts, L. Structure-Dependent Activity of CeO2 Supported Ru Catalysts for CO2 Methanation. J. Catal. 2018, 367, 171–180. [Google Scholar] [CrossRef]
- Garbarino, G.; Bellotti, D.; Riani, P.; Magistri, L.; Busca, G. Methanation of Carbon Dioxide on Ru/Al2O3 and Ni/Al2O3 Catalysts at Atmospheric Pressure: Catalysts Activation, Behaviour and Stability. Int. J. Hydrogen Energy 2015, 40, 9171–9182. [Google Scholar] [CrossRef]
- Dreyer, J.A.H.; Li, P.; Zhang, L.; Beh, G.K.; Zhang, R.; Sit, P.H.L.; Teoh, W.Y. Influence of the Oxide Support Reducibility on the CO2 Methanation over Ru-Based Catalysts. Appl. Catal. B Environ. 2017, 219, 715–726. [Google Scholar] [CrossRef]
- Wei, C.; Ding, H.; Zhang, Z.; Lin, F.; Xu, Y.; Pan, W. Research Progress of Bimetallic Catalysts for CO2 Hydrogenation to Methane. Int. J. Hydrogen Energy 2024, 58, 872–891. [Google Scholar] [CrossRef]
- Mihet, M.; Lazar, M.D. Methanation of CO2 on Ni/γ-Al2O3: Influence of Pt, Pd or Rh Promotion. Catal. Today 2018, 306, 294–299. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials 2021, 11, 28. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; Lu, W.; Lin, W.; Gao, J.; Li, Q. Frontiers in Metal-Organic Framework Derived Bimetallic Catalyst for CO2 Hydrogenation. Inorganica Chim. Acta 2024, 570, 122177. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Italiano, C.; Ferrante, G.D.; Pino, L.; Vita, A.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Sharan, A.; et al. Ni-Noble Metal Bimetallic Catalysts for Improved Low Temperature CO2 Methanation. Appl. Surf. Sci. 2024, 646, 158945. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-Based Bimetallic Heterogeneous Catalysts for Energy and Environmental Applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef]
- Renda, S.; Ricca, A.; Palma, V. Study of the Effect of Noble Metal Promotion in Ni-Based Catalyst for the Sabatier Reaction. Int. J. Hydrogen Energy 2021, 46, 12117–12127. [Google Scholar] [CrossRef]
- Elliott, D.J.; Lunsford, J.H. Kinetics of the Methanation Reaction over Ru, Ru Ni, Ru Cu, and Ni Clusters in Zeolite Y. J. Catal. 1979, 57, 11–26. [Google Scholar] [CrossRef]
- Sun, H.; Tang, R.; Zhang, X.; Zou, S.; Shi, Y.; Chen, K.; Sarina, S.; Huang, J. RuCu Bimetallic Catalyst on N-Doped Mesoporous Carbon for High-Performance CO2 Methanation. Carbon Capture Sci. Technol. 2023, 6, 100100. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Zhao, G.; Yang, H.; Yuan, M.; An, X.; Zhou, H.; Qiao, Y.; Tian, Y. CO2 Methanation over Ordered Mesoporous NiRu-Doped CaO-Al2O3 Nanocomposites with Enhanced Catalytic Performance. Int. J. Hydrogen Energy 2018, 43, 239–250. [Google Scholar] [CrossRef]
- Quindimil, A.; Bacariza, M.C.; González-Marcos, J.A.; Henriques, C.; González-Velasco, J.R. Enhancing the CO2 Methanation Activity of γ-Al2O3 Supported Mono- and Bi-Metallic Catalysts Prepared by Glycerol Assisted Impregnation. Appl. Catal. B Environ. 2021, 296, 120322. [Google Scholar] [CrossRef]
- Teramura, K.; Tanaka, T.; Kikkawa, S.; Asakura, H.; Hosokawa, S. Ni−Pt Alloy Nanoparticles with Isolated Pt Atoms and Their Cooperative Neighboring Ni Atoms for Selective Hydrogenation of CO2 toward CH4 Evolution: In Situ and Transient Fourier Transform Infrared Studies. ACS Appl. Nano Mater. 2020, 3, 9633–9644. [Google Scholar] [CrossRef]
- Chen, M.; Li, B.; Wang, F.; Fang, J.; Li, K.; Zhang, C. Enhanced CH4 Selectivity in CO2 Hydrogenation on Bimetallic Pt-Ni Catalysts with Pt Nanoparticles Modified by Isolated Ni Atoms. ACS Appl. Nano Mater. 2023, 6, 5826–5834. [Google Scholar] [CrossRef]
- Méndez-Mateos, D.; Barrio, V.L.; Requies, J.M.; Cambra, J.F. A Study of Deactivation by H2S and Regeneration of a Ni Catalyst Supported on Al2O3, during Methanation of CO2. Effect of the Promoters Co, Cr, Fe and Mo. RSC Adv. 2020, 10, 16551–16564. [Google Scholar] [CrossRef]
- Ren, J.; Qin, X.; Yang, J.Z.; Qin, Z.F.; Guo, H.L.; Lin, J.Y.; Li, Z. Methanation of Carbon Dioxide over Ni–M/ZrO2 (M = Fe, Co, Cu) Catalysts: Effect of Addition of a Second Metal. Fuel Process. Technol. 2015, 137, 204–211. [Google Scholar] [CrossRef]
- Wang, X.; Jin, R.; Yan, W.; Li, H.; Wang, Z. An Al2O3-Supported NiFe Bimetallic Catalyst Derived from Hydrotalcite Precursors for Efficient CO2 Methanation. Catal. Today 2022, 402, 38–44. [Google Scholar] [CrossRef]
- Latsiou, A.I.; Charisiou, N.D.; Frontistis, Z.; Goula, M.A. From CO2 to Value Added Chemicals: The Promise of Single Atom Catalysts. Int. J. Hydrogen Energy 2024, 92, 465–481. [Google Scholar] [CrossRef]
- Hung, S.F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.H.; Li, Y.; Wicks, J.; Cervantes, E.G.; Rasouli, A.S.; Li, Y.C.; et al. A Metal-Supported Single-Atom Catalytic Site Enables Carbon Dioxide Hydrogenation. Nat. Commun. 2022, 13, 819. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Grénman, H.; Haije, W.; Kumar, N.; Aho, A.; Eränen, K.; Wei, L.; de Jong, W. Sub-Nanometer Ceria-Promoted Ni 13X Zeolite Catalyst for CO2 Methanation. Appl. Catal. A Gen. 2021, 612, 118012. [Google Scholar] [CrossRef]
- Zhou, K.L.; Wang, Z.; Han, C.B.; Ke, X.; Wang, C.; Jin, Y.; Zhang, Q.; Liu, J.; Wang, H.; Yan, H. Platinum Single-Atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2021, 12, 3783. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, L.; Doyle-Davis, K.; Sun, X. Single-Atom Catalysts: From Design to Application. Electrochem. Energy Rev. 2019, 2, 539–573. [Google Scholar] [CrossRef]
- Fan, M.; Jimenez, J.D.; Shirodkar, S.N.; Wu, J.; Chen, S.; Song, L.; Royko, M.M.; Zhang, J.; Guo, H.; Cui, J.; et al. Atomic Ru Immobilized on Porous H-BN through Simple Vacuum Filtration for Highly Active and Selective CO2 Methanation. ACS Catal. 2019, 9, 10077–10086. [Google Scholar] [CrossRef]
- Rivera-Cárcamo, C.; Scarfiello, C.; García, A.B.; Tison, Y.; Martinez, H.; Baaziz, W.; Ersen, O.; Le Berre, C.; Serp, P. Stabilization of Metal Single Atoms on Carbon and TiO2 Supports for CO2 Hydrogenation: The Importance of Regulating Charge Transfer. Adv. Mater. Interfaces 2021, 8, 2001777. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, P.; Gu, F.; Xu, W.; Chen, W.; Zhu, T.; Han, Y.F.; Xu, G.; Zhong, Z.; Su, F. The Dual-Active-Site Tandem Catalyst Containing Ru Single Atoms and Ni Nanoparticles Boosts CO2 Methanation. Appl. Catal. B Environ. 2023, 323, 122190. [Google Scholar] [CrossRef]
- Graça, I.; González, L.V.; Bacariza, M.C.; Fernandes, A.; Henriques, C.; Lopes, J.M.; Ribeiro, M.F. CO2 Hydrogenation into CH4 on NiHNaUSY Zeolites. Appl. Catal. B Environ. 2014, 147, 101–110. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule 2018, 2, 1242–1264. [Google Scholar] [CrossRef]
- Jomjaree, T.; Sintuya, P.; Srifa, A.; Koo-amornpattana, W.; Kiatphuengporn, S.; Assabumrungrat, S.; Sudoh, M.; Watanabe, R.; Fukuhara, C.; Ratchahat, S. Catalytic Performance of Ni Catalysts Supported on CeO2 with Different Morphologies for Low-Temperature CO2 Methanation. Catal. Today 2021, 375, 234–244. [Google Scholar] [CrossRef]
- Chen, M.; Liu, L.; Chen, X.; Qin, X.; Li, K.; Zhang, J.; Bao, X.; Ma, L.; Zhang, C. Effects of Ru Particle Size over TiO2 on the Catalytic Performance of CO2 Hydrogenation. Appl. Surf. Sci. 2024, 654, 159460. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; Zhu, M.; Han, Y.F. Essential Role of the Support for Nickel-Based CO2 Methanation Catalysts. ACS Catal. 2020, 10, 14581–14591. [Google Scholar] [CrossRef]
- Gac, W.; Zawadzki, W.; Rotko, M.; Greluk, M.; Słowik, G.; Kolb, G. Effects of Support Composition on the Performance of Nickel Catalysts in CO2 Methanation Reaction. Catal. Today 2020, 357, 468–482. [Google Scholar] [CrossRef]
- Visser, N.L.; Verschoor, J.C.; Smulders, L.C.J.; Mattarozzi, F.; Morgan, D.J.; Meeldijk, J.D.; van der Hoeven, J.E.S.; Stewart, J.A.; Vandegehuchte, B.D.; de Jongh, P.E. Influence of Carbon Support Surface Modification on the Performance of Nickel Catalysts in Carbon Dioxide Hydrogenation. Catal. Today 2023, 418, 114071. [Google Scholar] [CrossRef]
- Kaiser, S.K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120, 11703–11809. [Google Scholar] [CrossRef]
Position | Authors’ Keyword | Count | |
---|---|---|---|
Ni | 1 | Nickel | 401 |
2 | CO2 Methanation | 393 | |
3 | Hydrogen | 364 | |
4 | Methane | 261 | |
5 | Carbon Dioxide | 198 | |
6 | CO2 Hydrogenation | 155 | |
7 | Catalyst | 134 | |
8 | Biogas | 133 | |
9 | Ni catalyst | 123 | |
10 | Carbon Deposition | 97 | |
Ru | 1 | CO2 Methanation | 93 |
2 | Ruthenium | 70 | |
3 | CO2 Hydrogenation | 53 | |
4 | Carbon Dioxide | 40 | |
5 | Sabatier Reaction | 22 | |
6 | CO2 Reduction | 21 | |
7 | Power to Gas | 19 | |
8 | Density Functional Theory | 17 | |
9 | Ceria | 12 | |
10 | Kinetics | 11 |
Catalyst | T (°C) | P (bar) | WHSV (mL min−1 g−1) | Activity (μmolCH4 gcat−1·s−1) | CH4 Select (%) | Ref. |
---|---|---|---|---|---|---|
Ru/TiO2 | 160 | 1 | 70 | 0.7 | >99 | [137] |
Ru/TiO2 | 180 | 10 | 50 | 1.2 | >95 | [138] |
Ru/CeO2 | 190 | 0.3 | 800 | 0.4 | 98 | [139] |
Ru/Ce0.9Cr0.1Ox | 190 | 1 | 600 | 3.6 | >99 | [130] |
Ru/ZrO2 | 190 | 1 | 208 | 3.1 | >99 | [132] |
Ru-Na/TiO2 | 200 | 1 | 1500 | 5 | >99 | [140] |
NiAl-MO/CeO2 | 170 | 0.5 | 70 | 1 | 99 | [141] |
Ni/MgAl-MMO | 170 | 0.75 | 80 | 1.4 | >95 | [142] |
Ni/CeO2 | 180 | 0.05 | 240 | 18.8 | - | [143] |
Ni/Al2O3 | 200 | 0.5 | 70 | 1.5 | 99 | [144] |
Ni-La/Mg-Al | 200 | 0.8 | 750 | 18.2 | 94 | [145] |
Catalyst | Preparation | T (°C) | WHSV (mL h−1 g−1) | X.CO2 (%) | S.CH4 (%) | Stability (h) | Ref. |
---|---|---|---|---|---|---|---|
Ni/CeO2 | sol-gel method | 250 | 40,000 | 82.5 | 94.8 | 106 | [146] |
Ni/CeO2-NR | hydrothermal | 250 | 24,000 | 23 | 98 | - | [147] |
20Ni/CeO2-La2O3 | wet impregnation | 300 | 30,000 | 89 | 100 | 100 | [148] |
Ni/La2O3 | wet impregnation | 300 | 6000 | 25 | 90 | - | [95] |
Ni-La2O3/SBA-15 | citrate complex method | 320 | 6000 | 90.7 | 99.5 | 160 | [149] |
Ni-Ru/Ce-Zr | sequential wet impregnation | 350 | 24,000 | 53 | 93 | 80 | [150] |
Ni-Fe/Ce-Zr | sequential wet impregnation | 350 | 24,000 | 13 | 60 | - | [150] |
10%Ni-1%MgO/SiO2 | co-impregnation | 350 | 15,000 | 67 | 98 | 50 | [151] |
Ni/Sm2O3–CeO2 | microwave-assisted sol-gel method | 350 | 25,000 | 44.9 | 100 | - | [152] |
40%Ni/SiO2 | ammonia-evaporation | 370 | 30,000 | 82.4 | 95.5 | 60 | [153] |
Ni-Ce/Al2O3 | simultaneous impregnation | 375 | 21,500 | 68 | >99 | 90 | [154] |
20%Ni-CeO2/MCM-41 | deposition–precipitation | 380 | 9000 | 85.6 | 99.8 | 30 | [155] |
Ni/SiO2-Al2O3 | impregnation | 400 | 10,000 | 70 | 100 | 30 | [156] |
Ni-5%Ru/SiO2 | wet impregnation | 400 | 6000 | 71 | 92 | 24 | [157] |
Ni/Ca/Si | sequential impregnation | 400 | 15,000 | 73.3 | 98.9 | 50 | [158] |
Catalyst | Preparation | T (°C) | GHSV/WHSV | X.CO2 (%) | S.CH4 (%) | Stability (h) | Ref. |
---|---|---|---|---|---|---|---|
2.5%Ru/TiO2 | TiO2 mixing with RuO2 | 325 | 6000 mL h−1 g−1 | >80 | 100 | 50 | [86] |
Ru/Ce0.9Cr0.1Ox | impregnation | 325 | 36,000 mL h−1 g−1 | 70 | 100 | 55 | [130] |
Ru/Al2O3 | Evaporation and dryness | 86 | 100 | 30 | [159] | ||
10Ru-10Ni/Sm2O3 | wet impregnation | 350 | 6000 mL h−1 g−1 | 33 | 94 | 13 | [160] |
0.89%Ru−5%Li/Al2O3 | incipient wetness | 320 | 25,000 h−1 | >45 | 99.5 | - | [161] |
Ru-Ni/CeO2-Al2O3 | co-impregnation | 350 | 24 L g −1 h−1 | 82 | 99 | 20 | [162] |
4%Ru/Al2O3 a | impregnation | 375 | 10,000 h−1 | 85 | 98 | 24 | [163] |
Ru/Ce3PrOx | incipient wetness impregnation | 270 | 9000 h−1 | 55 | 100 | - | [164] |
Ru/CeO2-rod | hydrothermal | 300 | 72,000 mL h−1 g−1 | 72 | 99 | 24 | [165] |
3%Ru/Al2O3 | (commercial) | 350 | 55,000 h−1 | 93 | 100 | - | [166] |
Ru/m-ZrO2 | selective deposition method | 250 | 10,000 mL h−1 g−1 | 82 | >99 | 70 | [133] |
5%Ru/CeO2 | spray pyrolysis | 300 | 7640 h−1 | 83 | 99 | - | [167] |
Catalyst | Particle Size | Temp (°C) | CO2 Conv (%) | CH4 Select (%) | Ref. |
---|---|---|---|---|---|
Ni-Ce13X | single atom | 320 | 78 | 100 | [186] |
Ni-Ce/Na-USY a | 2.4 nm | 350 | 23 | 85 | [192] |
Ni-Ce13X | single atom | 280 | 69.9 | 100 | [186] |
Ni-CeUSY | 17–33 nm | 300 | 3 | 84 | [193] |
Ru/CeO2 | single atom | 260 | 28 | 100 | [139] |
Ni/CeO2 | 7.4 nm | 350 | 57.7 | 97.5 | [194] |
Ru/h-BN b | single atom | 350 | 29 | 93.5 | [189] |
Ru/TiO2 | 2.9 nm | 300 | 30 | >90 | [195] |
Ru/TiO2 | single atom | 210 | 15.6 | 97.3 | [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Podila, S.; Alamoudi, M.A.; Al-Zahrani, A.A. Current Research Status and Future Perspective of Ni- and Ru-Based Catalysts for CO2 Methanation. Catalysts 2025, 15, 203. https://doi.org/10.3390/catal15030203
Usman M, Podila S, Alamoudi MA, Al-Zahrani AA. Current Research Status and Future Perspective of Ni- and Ru-Based Catalysts for CO2 Methanation. Catalysts. 2025; 15(3):203. https://doi.org/10.3390/catal15030203
Chicago/Turabian StyleUsman, Muhammad, Seetharamulu Podila, Majed A. Alamoudi, and Abdulrahim A. Al-Zahrani. 2025. "Current Research Status and Future Perspective of Ni- and Ru-Based Catalysts for CO2 Methanation" Catalysts 15, no. 3: 203. https://doi.org/10.3390/catal15030203
APA StyleUsman, M., Podila, S., Alamoudi, M. A., & Al-Zahrani, A. A. (2025). Current Research Status and Future Perspective of Ni- and Ru-Based Catalysts for CO2 Methanation. Catalysts, 15(3), 203. https://doi.org/10.3390/catal15030203