Calcination Temperature-Induced Morphology Transformation in WO3 Flower-like Thin Films for Photocatalytic Wastewater Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalyst Characterization Results
2.2. Phenol Photodegradation
3. Materials and Methods
3.1. Synthesis of WO3 Nanoflowers
3.2. WO3 Photoactivity Evaluation
3.3. WO3 Analytical Characterization
4. Conclusions
- Anodization produces WO3·H2O that is converted to monoclinic WO3 after calcination in air;
- WO3·H2O forms a flower-like nanostructure, which transforms into a platelet-like and granular nanostructures when heated above 500 °C;
- As the calcination temperature increases, the oxide layer presents different colors;
- The monoclinic WO3 exhibited bandgap energies ranging from 2.43 to 2.67 eV, depending on the calcination temperature and time;
- The flower-like morphology showed lower recombination compared to platelet-like or granular morphologies;
- The highest photoactivity was observed for the WO3 granular-like morphology (700 °C), with the highest activity for the nanoflower-like structure being observed for the WO3_300 °C sample.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical Pollution of the World’s Rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Hamza, R.A.; Iorhemen, O.T.; Tay, J.H. Occurrence, impacts and removal of emerging substances of concern from wastewater. Environ. Technol. Innov. 2016, 5, 161–175. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, N.; Paulose, M.; Verghese, O.K.; Mor, G.K.; Grimes, C.A. Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res. 2003, 18, 2296–2299. [Google Scholar] [CrossRef]
- Zheng, Q.; Lee, C. Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochim. Acta 2014, 115, 140–145. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Hwang, Y.J.; Chae, S.Y.; Joo, O.S. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 2013, 1, 3479. [Google Scholar] [CrossRef]
- Shan, A.Y.; Mohd Ghazi, T.I.; Rashid, S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Catal. A Gen. 2010, 389, 1–8. [Google Scholar] [CrossRef]
- Galstyan, V.; Macak, J.M.; Djenizian, T. Anodic TiO2 nanotubes: A promising material for energy conversion and storage. Appl. Mater. Today 2022, 29, 101613. [Google Scholar] [CrossRef]
- Lincho, J.; Zaleska-Medynska, A.; Martins, R.C.; Gomes, J. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. Sci. Total Environ. 2022, 837, 155776. [Google Scholar] [CrossRef]
- Poudel, M.B.; Yu, C.; Kim, H.J. Synthesis of Conducting Bifunctional Polyaniline@Mn-TiO2 Nanocomposites for Supercapacitor Electrode and Visible Light Driven Photocatalysis. Catalysts 2020, 10, 546. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, A.A. Silver Nanoparticles Decorated TiO2 Nanoflakes for Antibacterial Properties. Inorg. Chem. Commun. 2023, 152, 110675. [Google Scholar] [CrossRef]
- Zlamal, M.; Macak, J.; Schmuki, P.; Krysa, J. Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem. Commun. 2007, 9, 2822–2826. [Google Scholar] [CrossRef]
- Pancielejko, A.; Rzepnikowska, M.; Zaleska-Medynska, A.; Łuczak, J.; Mazierski, P. Enhanced Visible Light Active WO3 Thin Films Toward Air Purification: Effect of the Synthesis Conditions. Materials 2020, 13, 3506. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Domene, R.M.; Roselló-Márquez, G.; Sánchez-Tovar, R.; Lucas-Granados, B.; García-Antón, J. Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH. Sep. Purif. Technol. 2019, 212, 458–464. [Google Scholar] [CrossRef]
- Mzimela, N.; Tichapondwa, S.; Chirwa, E. Visible-light-activated photocatalytic degradation of rhodamine B using WO3 nanoparticles. RSC Adv. 2022, 12, 34652–34659. [Google Scholar] [CrossRef]
- Syrek, K. Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity. Electrochim. Acta 2017, 8, 61–68. [Google Scholar] [CrossRef]
- Mena, E.; Rey, A.; Contreras, S.; Beltrán, F.J. Visible light photocatalytic ozonation of DEET in the presence of different forms of WO3. Catal. Today 2015, 252, 100–106. [Google Scholar] [CrossRef]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; Cifre-Herrando, M.; García-Antón, J. Degradation of Diazinon based on photoelectrocatalytic technique using enhanced WO3 nanostructures: Mechanism and pathway. J. Environ. Chem. Eng. 2021, 9, 105371. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Segura-Sanchís, E.; García-Antón, J. Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions. Chem. Eng. J. 2016, 286, 59–67. [Google Scholar] [CrossRef]
- Ng, C.Y.; Abdul Razak, K.; Lockman, Z. Effect of annealing temperature on anodized nanoporous WO3. J. Porous Mater. 2015, 22, 537–544. [Google Scholar] [CrossRef]
- Wang, C.-K.; Lin, C.-K.; Wu, C.-L.; Wang, S.-C.; Huang, J.-L. Synthesis and characterization of electrochromic plate-like tungsten oxide films by acidic treatment of electrochemical anodized tungsten. Electrochim. Acta 2013, 112, 24–31. [Google Scholar] [CrossRef]
- Desseigne, M.; Dirany, N.; Chevallier, V.; Arab, M. Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation. Appl. Surf. Sci. 2019, 483, 313–323. [Google Scholar] [CrossRef]
- Yang, M.; Shrestha, N.K.; Schmuki, P. Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochem. Commun. 2009, 11, 1908–1911. [Google Scholar] [CrossRef]
- Abbaspoor, M.; Aliannezhadi, M.; Tehrani, F.S. High-performance photocatalytic WO3 nanoparticles for treatment of acidic wastewater. J. Sol-Gel Sci. Technol. 2023, 105, 565–576. [Google Scholar] [CrossRef]
- Syrek, K.; Kotarba, S.; Zych, M.; Pisarek, M.; Uchacz, T.; Sobańska, K.; Pięta, Ł.; Sulka, G.D. Surface Engineering of Anodic WO3 Layers by In Situ Doping for Light-Assisted Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 36752–36762. [Google Scholar] [CrossRef]
- Hatel, R.; Baitoul, M. Nanostructured Tungsten Trioxide (WO3): Synthesis, structural and morphological investigations. J. Phys. Conf. Ser. 2019, 1292, 012014. [Google Scholar] [CrossRef]
- Ng, C.; Ye, C.; Ng, Y.H.; Amal, R. Flower-Shaped Tungsten Oxide with Inorganic Fullerene-like Structure: Synthesis and Characterization. Cryst. Growth Des. 2010, 10, 3794–3801. [Google Scholar] [CrossRef]
- Amano, F.; Tian, M.; Ohtani, B.; Chen, A. Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets. J. Solid State Electrochem. 2012, 16, 1965–1973. [Google Scholar] [CrossRef]
- Deb, S.K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 1973, 27, 801–822. [Google Scholar] [CrossRef]
- Teoh, L.G.; Shieh, J.; Lai, W.H.; Hung, I.M.; Hon, M.H. Structure and optical properties of mesoporous tungsten oxide. J. Alloys Compd. 2005, 396, 251–254. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xiao, J.; Cao, H.; Guo, Z.; Rabeah, J.; Brückner, A.; Xie, Y. The role of ozone and influence of band structure in WO3 photocatalysis and ozone integrated process for pharmaceutical wastewater treatment. J. Hazard. Mater. 2018, 360, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shi, Y.; Zhu, B.; Zhang, S.; Huang, W. Highly photostable palladium-loaded TiO2 nanotubes and the active species in the photodegradation of methyl orange. Chin. J. Catal. 2015, 36, 221–228. [Google Scholar] [CrossRef]
- Wu, Z.; Sheng, Z.; Liu, Y.; Wang, H.; Tang, N.; Wang, J. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase. J. Hazard. Mater. 2009, 164, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Reszczyńska, J.; Grzyb, T.; Sobczak, J.W.; Lisowski, W.; Gazda, M.; Ohtani, B.; Zaleska, A. Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B Environ. 2015, 163, 40–49. [Google Scholar] [CrossRef]
- Anik, M.; Cansizoglu, T. Dissolution Kinetics of WO3 in Acidic Solutions. J. Appl. Electrochem. 2006, 36, 603–608. [Google Scholar] [CrossRef]
- Moghazy, M.A. Leidenfrost Green Synthesis Method for MoO3 and WO3 Nanorods Preparation: Characterization and Methylene Blue Adsorption Ability. BMC Chem. 2023, 17, 5. [Google Scholar] [CrossRef]
- Canle, M.; Pérez, M.I.F.; Santaballa, J.A. Photocatalyzed Degradation/Abatement of Endocrine Disruptors. Curr. Opin. Green Sustain. Chem. 2017, 8, 101–138. [Google Scholar] [CrossRef]
- Mazierski, P.; Nischk, M.; Gołkowska, M.; Lisowski, W.; Gazda, M.; Winiarski, M.J.; Klimczuk, T.; Zaleska-Medynska, A. Photocatalytic Activity of Nitrogen-Doped TiO2 Nanotubes Prepared by Anodic Oxidation: The Effect of Applied Voltage, Anodization Time and Amount of Nitrogen Dopant. Appl. Catal. B 2016, 196, 77–88. [Google Scholar] [CrossRef]
- Adhikari, S.; Sarath Chandra, K.; Kim, D.-H.; Madras, G.; Sarkar, D. Understanding the morphological effects of WO3 photocatalysts for the degradation of organic pollutants. Adv. Powder Technol. 2018, 29, 1591–1600. [Google Scholar] [CrossRef]
- Aslam, M.; Ismail, I.M.I.; Chandrasekaran, S.; Hameed, A. Morphology-Controlled Bulk Synthesis of Disc-Shaped WO3 Powder and Evaluation of Its Photocatalytic Activity for the Degradation of Phenols. J. Hazard. Mater. 2014, 276, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Desseigne, M.; Madigou, V.; Coulet, M.-V.; Heintz, O.; Chevallier, V.; Arab, M. Au/WO3 nanocomposite based photocatalyst for enhanced solar photocatalytic activity. J. Photochem. Photobiol. A Chem. 2023, 437, 114427. [Google Scholar] [CrossRef]
- Nishimoto, S.; Mano, T.; Kameshima, Y.; Miyake, M. Photocatalytic water treatment over WO3 under visible light irradiation combined with ozonation. Chem. Phys. Lett. 2010, 500, 86–89. [Google Scholar] [CrossRef]
- Mano, T.; Nishimoto, S.; Kameshima, Y.; Miyake, M. Water Treatment Efficacy of Various Metal Oxide Semiconductors for Photocatalytic Ozonation under UV and Visible Light Irradiation. Chem. Eng. J. 2015, 264, 221–229. [Google Scholar] [CrossRef]
- Rey, A.; Mena, E.; Chávez, A.M.; Beltrán, F.J.; Medina, F. Influence of Structural Properties on the Activity of WO3 Catalysts for Visible Light Photocatalytic Ozonation. Chem. Eng. Sci. 2015, 126, 80–90. [Google Scholar] [CrossRef]
- Figueredo, M.A.; Rodríguez, E.M.; Checa, M.; Beltrán, F.J. Ozone-Based Advanced Oxidation Processes for Primidone Removal in Water Using Simulated Solar Radiation and TiO2 or WO3 as Photocatalyst. Molecules 2019, 24, 1728. [Google Scholar] [CrossRef] [PubMed]
- Aamir, L. Novel p-type Ag-WO3 nano-composite for low-cost electronics, photocatalysis, and sensing: Synthesis, characterization, and application. J. Alloys Compd. 2021, 864, 158108. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified Titanium Dioxide for Environmental Photocatalytic Applications: A Review. J. Photochem. Photobiol. A Chem. 2012, 238, 41–52. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Sánchez-Tovar, R.; Lucas-Granados, B.; Muñoz-Portero, M.J.; Ramírez-Grau, R.; García-Antón, J. Visible-Light Photoelectrodegradation of Diuron on WO3 Nanostructures. J. Environ. Manag. 2018, 226, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Márquez, G.; Fernández-Domene, R.M.; Sánchez-Tovar, R.; García-Antón, J. Photoelectrocatalyzed degradation of organophosphorus pesticide fenamiphos using WO3 nanorods as photoanode. Chemosphere 2020, 246, 125677. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Lin, S.; Liu, L.; Hu, J.; Cui, W. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO₆: Enhanced photocatalytic degradation under visible light irradiation. Appl. Catal. B Environ. 2015, 164, 192–203. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, Y.; Li, J. Preparation of flower-like BiOBr–WO3–Bi2WO6 ternary hybrid with enhanced visible-light photocatalytic activity. J. Alloys Compd. 2015, 651, 184–192. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kawashima, J.; Natsui, S.; Suzuki, R.O. Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst. Appl. Surf. Sci. 2017, 422, 130–137. [Google Scholar] [CrossRef]
- Ismail, S.; Ng, C.Y.; Ahmadi, E.; Razak, K.A.; Lockman, Z. Segmented nanoporous WO3 prepared via anodization and their photocatalytic properties. J. Mater. Res. 2016, 31, 721–728. [Google Scholar] [CrossRef]
- Lai, C.W. WO3 nanoplates film: Formation and photocatalytic oxidation studies. J. Nanomater. 2015, 2015, 563587. [Google Scholar] [CrossRef]
- Ou, J.Z.; Rani, R.A.; Balendhran, S.; Zoolfakar, A.S.; Field, M.R.; Zhuiykov, S.; O’Mullane, A.P.; Kalantar-zadeh, K. Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic activity. Electrochem. Commun. 2013, 27, 128–132. [Google Scholar] [CrossRef]
- Lai, C.W.; Sreekantan, S. Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange. Mater. Sci. Semicond. Process. 2013, 16, 303–310. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, K.; Hu, L.; Chu, P.K. Fabrication and photocatalytic activity of nanoporous WO3 film. Nanosci. Nanotechnol. Lett. 2010, 2, 51–57. [Google Scholar] [CrossRef]
- Watchatenwong, A.; Chanmanee, W.; de Tacconi, N.R.; Chenthamarakshan, C.R.; Kajitvichyanukul, P.; Rajeshwar, K. Anodic growth of nanoporous WO3 films: Morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion. J. Electroanal. Chem. 2008, 612, 112–120. [Google Scholar] [CrossRef]
- Lai, C.W.; Hamid, S.B.A.; Sreekantan, S. A Novel Solar Driven Photocatalyst: Well-Aligned Anodic WO3 Nanotubes. Int. J. Photoenergy 2013, 2013, 745301. [Google Scholar] [CrossRef]
- Lai, C.W. Photocatalysis and Photoelectrochemical Properties of Tungsten Trioxide Nanostructured Films. Sci. World J. 2014, 2014, 843587. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Xiao, S.; Chen, X.; Li, R.; Cao, Y.; Zhang, D.; Pu, S.; Li, Z.; Li, G.; Li, H. Efficient Photocatalytic Fuel Cell via Simultaneous Visible-Photoelectrocatalytic Degradation and Electricity Generation on a Porous Coral-like WO3/W Photoelectrode. Environ. Sci. Technol. 2019, 53, 3697–3706. [Google Scholar] [CrossRef]
- Hao, L.; Li, F.; Hu, T.; Hu, Y.; Zhao, Q.; Guan, S.; Lu, Y. WO3 Films Prepared by Anodic Oxidation in Acid Electrolytes and Their Photocatalytic Activity of Organic Dye Degradation. J. Mater. Sci. Mater. Electron. 2022, 33, 2921–2931. [Google Scholar] [CrossRef]
- Guo, Y.; Quan, X.; Lu, N.; Zhao, H.; Chen, S. High Photocatalytic Capability of Self-Assembled Nanoporous WO3 with Preferential Orientation of (002) Planes. Environ. Sci. Technol. 2007, 41, 4422–4427. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.S.; Guaraldo, T.T.; Wenk, J.; Mattia, D.; Zanoni, M.V.B. Nanoporous WO3 Grown on a 3D Tungsten Mesh by Electrochemical Anodization for Enhanced Photoelectrocatalytic Degradation of Tetracycline in a Continuous Flow Reactor. J. Electroanal. Chem. 2022, 920, 116617. [Google Scholar] [CrossRef]
Sample | Type of Nanostructure | Bandgap Energy (eV) | Phenol Photodegradation—UV-Vis (%) | Phenol Photodegradation—Vis (%) |
---|---|---|---|---|
WO3_A | Flower-like | 2.42 | 30 | 1 |
WO3_200 °C | Flower-like | 2.65 | 27 | 2 |
WO3_300 °C | Flower-like | 2.49 | 30 | 3 |
WO3_300 °C_1h | Flower-like | 2.53 | 29 | 1 |
WO3_300 °C_2h | Flower-like | 2.45 | 30 | 2 |
WO3_300 °C_6h | Flower-like | 2.43 | 31 | 1 |
WO3_400 °C | Flower-like | 2.50 | 27 | 1 |
WO3_500 °C | Platelet-like | 2.64 | 32 | 1 |
WO3_600 °C | Granular | 2.67 | 34 | 2 |
WO3_700 °C | Granular | 2.64 | 35 | 0 |
Radiation | Contaminant | Photocatalyst Form | Annealing Conditions | Main Results | Reference |
---|---|---|---|---|---|
Visible radiation—>400 nm | Methyl orange (20 ppm, 20 mL) | Nanoporous WO3 (3 × 4 cm2) | Air, 500 °C, 2 h, 2 °C/min | Monoclinic crystallite structure 70.4% degradation in 180 min | [5] |
UV radiation—325 nm | Acid orange 7 (~5 ppm, 2 mL) | Nanoporous WO3 | Air, 500 °C, 1 h, | Orthorhombic crystallite structure About 48% removal in 150 min | [23] |
Visible radiation—455 nm | Methylene blue (~16 ppm, 3 mL) | Nanoporous WO3 (1.5 × 0.9 cm2) | Argon, 500 °C, 3 h | Monoclinic and orthorhombic crystallite structure About 3%, 5%, 6% and 7% in 60, 120, 180, and 240 min, respectively | [53] |
UV radiation | Methyl orange (30 ppm) | WO3 nanopores (4 × 1 cm2) | Air, 500 °C, 1 h | Monoclinic crystallite structure About 2%, 18%, 25%, 38%, and 45% in 60, 120, 180, 240, and 300 min, respectively | [54] |
UV-Vis-Infrared radiation | Methyl orange (30 ppm, 100 mL) | WO3 nanoplates (5 × 1 cm2) | Argon, 400 °C, 4 h | Orthorhombic WO3⋅H2O crystallite structure About 17%, 37%, 52%, 64%, 75% in 60, 120, 180, 240, and 300 min | [55] |
Solar simulated radiation | Congo red (~7 ppm, 2 mL) | Nanoporous WO3 | Air, 450 °C, 1 h, 2 °C/min | Orthorhombic crystallite structure About 65% and 86% for 60 and 90 min, respectively | [56] |
Visible radiation | Methyl orange (30 ppm, 100 mL) | Nanoporous WO3 (4 × 1 cm2) | Air, 400 °C, 4 h | Monoclinic crystallite structure 50% degradation in 300 min | [57] |
Visible radiation | Methyl orange (10 ppm, 20 mL) | Nanoporous WO3 (1 × 1 cm2) | Air, 500 °C, 3 h, 10 °C/min | Monoclinic crystallite structure About 10%, 22%, 32%. 40%, and 45% degradation in 60, 120, 180, 240, and 300 min, respectively | [58] |
Visible radiation—>400 nm | Methylene blue (~10 ppm, 25 mL) | Nanoporous WO3 (0.63 cm2) | - | About 40 and 60% degradation in 60 and 120 min, respectively | [59] |
Solar simulated radiation | Methyl orange (30 ppm, 100 mL) | WO3 nanotubes WO3 nanopores (4 cm2) | - | About 27%, 48%, 63%, and 73% for WO3 nanotubes and about 17%, 46%, 57%, and 60% for WO3 nanopores in 120, 180, 240, and 300 min, respectively | [60] |
Solar simulated radiation | Methyl orange (30 ppm, 200 mL) | WO3 nanotubes WO3 oxide layer (2.5 × 2.5 cm2) | - | About 55% and 72% degradation for WO3 oxide layer and WO3 nanotubes in 300 min, respectively | [61] |
Visible radiation—>420 nm | Methyl orange Rhodamine B Methylene blue 4-chlorophenol Bisphenol A (5 ppm) | WO3 nanoporous (2 × 2 cm2) | Air, 550 °C, 3 h | Monoclinic crystallite structure MO: ~3% and ~7% RhB: ~18% and ~38% MB: ~30% and ~58% 4-CP: ~14% and ~29% degradation in 60 and 120 min, respectively BPA: ~1% degradation in 120 min | [62] |
Visible radiation—>420 nm | Methylene blue (~3 ppm, 20 mL) | WO3 nanotubes WO3 nanoplates (1 × 1 cm2) | Air, 450 °C, 4 h, 5 °C/min | Orthorhombic crystallite structure About 55%, 75%, and 82% in 60, 120, and 150 min for both nanostructures, respectively | [63] |
UVA radiation—365 nm | Pentachlorophenol (20 ppm) | Nanoporous WO3 Thin-film WO3 | Oxygen, 450 °C, 4 h, 5 °C/min | Monoclinic crystallite structure About 65% and 97% for nanoporous WO3 and 35% and 66% degradation in 60 and 120 min for thin-film WO3, respectively | [64] |
Visible radiation | Pentachlorophenol (20 ppm) | Nanoporous WO3 Thin-film WO3 | Oxygen, 450 °C, 4 h, 5 °C/min | Monoclinic crystallite structure About 21% and 34% for nanoporous WO3 and 6% and 13% degradation in 60 and 120 min for thin-film WO3, respectively | [64] |
Solar simulated radiation | Tetracycline hydrochloride (20 ppm, 30 mL) | Nanoporous WO3 (2.3 cm2) | Air, 450 °C, 2 h, 3 °C/min | Monoclinic crystallite structure About 43% degradation in 60 min | [65] |
UV-Vis radiation | Phenol (20 ppm, 8 mL) | Nanoflower-like WO3 (1.9 cm2) | Air, 300 °C, 4 h, 4 °C/min | Monoclinic crystallite structure 30% degradation in 60 min | This work |
Visible radiation—>420 nm | Phenol (20 ppm, 8 mL) | Nanoflower-like WO3 (1.9 cm2) | Air, 300 °C, 4 h, 4 °C/min | Monoclinic crystallite structure 3% degradation in 60 min | This work |
UV-Vis radiation | Phenol (20 ppm, 8 mL) | Nanoflower-like WO3 (1.9 cm2) | Air, 700 °C, 4 h, 4 °C/min | Monoclinic crystallite structure 35% degradation in 60 min | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lincho, J.; Mazierski, P.; Klimczuk, T.; Martins, R.C.; Gomes, J.; Zaleska-Medynska, A. Calcination Temperature-Induced Morphology Transformation in WO3 Flower-like Thin Films for Photocatalytic Wastewater Treatment. Catalysts 2025, 15, 207. https://doi.org/10.3390/catal15030207
Lincho J, Mazierski P, Klimczuk T, Martins RC, Gomes J, Zaleska-Medynska A. Calcination Temperature-Induced Morphology Transformation in WO3 Flower-like Thin Films for Photocatalytic Wastewater Treatment. Catalysts. 2025; 15(3):207. https://doi.org/10.3390/catal15030207
Chicago/Turabian StyleLincho, João, Paweł Mazierski, Tomasz Klimczuk, Rui C. Martins, João Gomes, and Adriana Zaleska-Medynska. 2025. "Calcination Temperature-Induced Morphology Transformation in WO3 Flower-like Thin Films for Photocatalytic Wastewater Treatment" Catalysts 15, no. 3: 207. https://doi.org/10.3390/catal15030207
APA StyleLincho, J., Mazierski, P., Klimczuk, T., Martins, R. C., Gomes, J., & Zaleska-Medynska, A. (2025). Calcination Temperature-Induced Morphology Transformation in WO3 Flower-like Thin Films for Photocatalytic Wastewater Treatment. Catalysts, 15(3), 207. https://doi.org/10.3390/catal15030207