Advancements in Metal–Organic Framework Materials for Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Metal Clusters and Organic Ligands in MOFs
2.1. Metal Clusters
2.2. Organic Ligands in MOFs
3. MOF-Based Composites for Photocatalysts
3.1. Metal Oxides
3.2. Sulfides
3.3. Perovskites
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- McNutt, M. Time’s up, CO2. Science 2019, 365, 411. [Google Scholar] [CrossRef] [PubMed]
- Adil, K.; Belmabkhout, Y.; Pillai, R.S.; Cadiau, A.; Bhatt, P.M.; Assen, A.H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal–organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed]
- Al-Rowaili, F.N.; Jamal, A.; Ba Shammakh, M.S.; Rana, A. A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and non-MOF catalysts: Challenges and future prospects. ACS Sustain. Chem. Eng 2018, 6, 15895–15914. [Google Scholar] [CrossRef]
- Nikokavoura, A.; Trapalis, C. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2. Appl. Surf. Sci. 2017, 391, 149–174. [Google Scholar] [CrossRef]
- Liu, S.; Tao, H.; Zeng, L.; Liu, Q.; Xu, Z.; Liu, Q.; Luo, J.-L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cao, Y.; Li, F.; Tian, Y.; Song, H. Enzyme-assisted microbial electrosynthesis of Poly(3-hydroxybutyrate) via CO2 bioreduction by engineered ralstonia eutropha. ACS Catal. 2018, 8, 4429–4437. [Google Scholar] [CrossRef]
- Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C.J.; Sun, X.; Peterson, A.A.; Sun, S. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836. [Google Scholar] [CrossRef] [PubMed]
- Stanley, P.M.; Haimerl, J.; Shustova, N.B.; Fischer, R.A.; Warnan, J. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 2022, 14, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Acc. Chem. Res. 2022, 55, 2978–2997. [Google Scholar] [CrossRef]
- Gong, E.; Ali, S.; Hiragond, C.B.; Kim, H.S.; Powar, N.S.; Kim, D.; Kim, H.; In, S.-I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, S.; Yang, P.; Huang, C.; Wang, X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X. Multifunctional metal–organic frameworks for photocatalysis. Small 2015, 11, 3097–3112. [Google Scholar] [CrossRef] [PubMed]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef] [PubMed]
- Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594–5617. [Google Scholar] [CrossRef]
- Li, R.; Zhang, W.; Zhou, K. Metal–organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, 1705512. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Long, R.; Gao, C.; Xiong, Y. Metal–organic frameworks for artificial photosynthesis via photoelectrochemical route. Curr. Opin. Electrochem. 2019, 17, 114–120. [Google Scholar] [CrossRef]
- Kidanemariam, A.; Lee, J.; Park, J. Recent innovation of metal-organic frameworks for carbon dioxide photocatalytic reduction. Polymers 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-C.; Zhang, Y.-Q.; Li, J.; Wang, P. Photocatalytic CO2 reduction in metal–organic frameworks: A mini review. J. Mol. Struct. 2015, 1083, 127–136. [Google Scholar] [CrossRef]
- Navarro Amador, R.; Carboni, M.; Meyer, D. Photosensitive titanium and zirconium metal organic frameworks: Current research and future possibilities. Mater. Lett. 2016, 166, 327–338. [Google Scholar] [CrossRef]
- Shao, P.; Yi, L.; Chen, S.; Zhou, T.; Zhang, J. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. J. Energy Chem. 2020, 40, 156–170. [Google Scholar] [CrossRef]
- Lei, Z.; Xue, Y.; Chen, W.; Qiu, W.; Zhang, Y.; Horike, S.; Tang, L. MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 2018, 8, 1801587. [Google Scholar] [CrossRef]
- Shen, L.; Liang, R.; Wu, L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chin. J. Catal. 2015, 36, 2071–2088. [Google Scholar] [CrossRef]
- Wang, C.-C.; Yi, X.-H.; Wang, P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B Environ. 2019, 247, 24–48. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Lin, H.; Zhu, J. Recent advances in metal–organic frameworks for photo-/electrocatalytic CO2 reduction. Chem. Eur. J. 2019, 25, 14026–14035. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.-Z.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W.-X.; Lan, Y.-Q. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew. Chem. Int. Ed. 2020, 59, 2659–2663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ding, H.; Pan, W.; Ma, J.; Zhang, K.; Zhao, Y.; Song, J.; Wei, C.; Lin, F. Research progress of metal–organic frameworks (MOFs) for CO2 conversion in CCUS. J. Energy Inst. 2023, 108, 101226. [Google Scholar] [CrossRef]
- Wang, R.; Liu, G.; Kim, S.K.; Bowen, K.H.; Zhang, X. Gas-phase CO2 activation with single electrons, metal atoms, clusters, and molecules. J. Energy Chem. 2021, 63, 130–137. [Google Scholar] [CrossRef]
- Xu, X.; Wei, Q.; Xi, Z.; Zhao, D.; Chen, J.; Wang, J.; Zhang, X.; Gao, H.; Wang, G. Research progress of metal-organic frameworks-based materials for CO2 capture and CO2-to-alcohols conversion. Coord. Chem. Rev. 2023, 495, 215393. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Wang, B. Incorporating Fe-O cluster in multivariate (MTV) metal–organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chem. Eng. J. 2022, 446, 137446. [Google Scholar] [CrossRef]
- Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-Based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260. [Google Scholar] [CrossRef]
- Dao, X.-Y.; Guo, J.-H.; Zhang, X.-Y.; Wang, S.-Q.; Cheng, X.-M.; Sun, W.-Y. Structure-dependent iron-based metal–organic frameworks for selective CO2-to-CH4 photocatalytic reduction. J. Mater. Chem. A 2020, 8, 25850–25856. [Google Scholar] [CrossRef]
- Li, J.; Ma, K.; Li, C.; Shi, Z.; Feng, S. Trinuclear Fe clusters for highly efficient CO2 photoreduction. ACS Appl. Mater. Interfaces 2023, 15, 26619–26626. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, D.; Moon, D.; Choi, Y.N.; Baek, S.B.; Lah, M.S. Symmetry-guided syntheses of mixed-linker Zr metal–organic frameworks with precise linker locations. Chem. Sci. 2019, 10, 5801–5806. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, S.; Huang, D.; Liu, Z.; Shao, B.; Liang, Q.; Wu, T.; Pan, Y.; Huang, J.; Liu, Y.; et al. Recent advances of Zr based metal organic frameworks photocatalysis: Energy production and environmental remediation. Coord. Chem. Rev. 2021, 448, 214177. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Zhou, T.; Li, Y.-Q.; Lu, X.; Guan, Y.-B.; Cao, Y.-C.; Cao, G.-P. Microenvironment modulation of metal–organic frameworks (MOFs) for coordination Olefin oligomerization and (co)Polymerization. Small 2023, 19, 2205898. [Google Scholar] [CrossRef]
- Kong, X.J.; He, T.; Zhou, J.; Zhao, C.; Li, T.C.; Wu, X.Q.; Wang, K.; Li, J.R. In situ porphyrin substitution in a Zr(IV)-MOF for stability enhancement and photocatalytic CO2 reduction. Small 2021, 17, 2005357. [Google Scholar] [CrossRef]
- Benseghir, Y.; Solé-Daura, A.; Cairnie, D.R.; Robinson, A.L.; Duguet, M.; Mialane, P.; Gairola, P.; Gomez-Mingot, M.; Fontecave, M.; Iovan, D.; et al. Unveiling the mechanism of the photocatalytic reduction of CO2 to formate promoted by porphyrinic Zr-based metal–organic frameworks. J. Mater. Chem. A 2022, 10, 18103–18115. [Google Scholar] [CrossRef]
- Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem. Commun. 2015, 51, 2056–2059. [Google Scholar] [CrossRef] [PubMed]
- Karagoz, S.; Kiremitler, N.B.; Sarp, G.; Pekdemir, S.; Salem, S.; Goksu, A.G.; Onses, M.S.; Sozdutmaz, I.; Sahmetlioglu, E.; Ozkara, E.S.; et al. Antibacterial, antiviral, and self-cleaning mats with sensing capabilities based on electrospun nanofibers decorated with ZnO nanorods and Ag nanoparticles for protective clothing applications. ACS Appl. Mater. Interfaces 2021, 13, 5678–5690. [Google Scholar] [CrossRef]
- Zhang, Y.; Steiner, A.L. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat. Commun. 2022, 13, 1234. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liao, Y.; Zhao, S.; Zhang, X.; Liu, Q.; Shi, X. Research progress in metal–organic frameworks (MOFs) in CO2 capture from post-combustion coal-fired flue gas: Characteristics, preparation, modification and applications. J. Mater. Chem. A 2022, 10, 5174–5211. [Google Scholar] [CrossRef]
- Li, D.; Kassymova, M.; Cai, X.; Zang, S.-Q.; Jiang, H.-L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262. [Google Scholar] [CrossRef]
- Xie, L.-H.; Xu, M.-M.; Liu, X.-M.; Zhao, M.-J.; Li, J.-R. Hydrophobic metal–organic frameworks: Assessment, construction, and diverse applications. Adv. Sci. 2020, 7, 1901758. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yang, M.; Li, R.-X.; He, Z.-Z.; Wang, Y.; Sun, W.-Y. Nanosheet-engineered NH2-MIL-125 with highly active facets for enhanced solar CO2 reduction. ACS Catal. 2022, 12, 9486–9493. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, W.; Peng, P.; Sun, Q.; Li, Y.; Ding, N.; Zhao, C.; Li, S.; Pang, S. Covalent synthesis of Ti-MOF for enhanced photocatalytic CO2 reduction. Mol. Catal. 2024, 558, 114042. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Yuan, S.; Song, L.; Ren, H.; Xu, Y.; He, M.; Zhang, Y.; Wang, H.; Huang, Y.; et al. Covalently-bonded single-site Ru-N2 knitted into covalent triazine frameworks for boosting photocatalytic CO2 reduction. Appl. Catal. B Environ. 2023, 322, 122097. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Xue, W.; Sun, K.; Song, X.; Wu, C.; Nie, L.; Li, Y.; Liu, C.; Pan, Y.; et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729. [Google Scholar] [CrossRef]
- Hu, M.; Liu, J.; Song, S.; Wang, W.; Yao, J.; Gong, Y.; Li, C.; Li, H.; Li, Y.; Yuan, X.; et al. Ultra-thin Two-dimensional trimetallic metal–organic framework for photocatalytic reduction of CO2. ACS Catal. 2022, 12, 3238–3248. [Google Scholar] [CrossRef]
- Ahmed, I.; Mondol, M.M.H.; Jung, M.J.; Lee, G.H.; Jhung, S.H. MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coord. Chem. Rev. 2023, 475, 214912. [Google Scholar] [CrossRef]
- Sun, Q.; Qin, L.; Lai, C.; Liu, S.; Chen, W.; Xu, F.; Ma, D.; Li, Y.; Qian, S.; Chen, Z.; et al. Constructing functional metal-organic frameworks by ligand design for environmental applications. J. Hazard. Mater. 2023, 447, 130848. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sun, Q.; Gao, W.; Perman, J.A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A stable metal–organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Ed. 2018, 57, 4657–4662. [Google Scholar] [CrossRef] [PubMed]
- Dao, X.-Y.; Guo, J.-H.; Wei, Y.-P.; Guo, F.; Liu, Y.; Sun, W.-Y. Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity. Inorg. Chem. 2019, 58, 8517–8524. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, J.; Du, R.; Guo, K.; Ma, R.; Zhang, F.; Zhu, W.; Fan, M. Temperature modulation of defects in NH2-UiO-66(Zr) for photocatalytic CO2 reduction. RSC Adv. 2019, 9, 37733–37738. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, Y.; Tao, Y.; Li, T.; Zhang, Y.; Shang, H.; Song, J.; Li, G. CO2 reduction to formic acid via NH2-C@Cu2O photocatalyst in situ derived from amino modified Cu-MOF. J. CO2 Util. 2021, 54, 101781. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Tan, Q.; Lu, L.; Wang, Z.; Wu, G. Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives. Chem. Eur. J. 2018, 24, 18137–18157. [Google Scholar] [CrossRef]
- Sun, D.; Gao, Y.; Fu, J.; Zeng, X.; Chen, Z.; Li, Z. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chem. Commun. 2015, 51, 2645–2648. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Gao, B.; Zheng, X.; Wu, W.; Kong, W.; Yan, P.; Wang, Z.; An, B.; Zhang, Y.; Li, Q.; et al. CO2-assisted rapid synthesis of porphyrin-based Bi-MOFs for photocatalytic CO2 reduction: An efficient strategy for carbon cycle. Appl. Catal. B Environ. Energy 2024, 353, 124097. [Google Scholar] [CrossRef]
- Cruz Neto, D.H.; Pugliese, E.; Gotico, P.; Quaranta, A.; Leibl, W.; Steenkeste, K.; Peláez, D.; Pino, T.; Halime, Z.; Ha-Thi, M.H. Time-resolved mechanistic depiction of photoinduced CO2 reduction catalysis on a urea-modified iron porphyrin. Angew. Chem. Int. Ed. 2024, 63, e202407723. [Google Scholar] [CrossRef]
- Tasaki, M.; Okabe, Y.; Iwami, H.; Akatsuka, C.; Kosugi, K.; Negita, K.; Kusaka, S.; Matsuda, R.; Kondo, M.; Masaoka, S. Modulation of self-assembly enhances the catalytic activity of iron porphyrin for CO2 reduction. Small 2021, 17, 2006150. [Google Scholar] [CrossRef]
- Sadeghi, N.; Sharifnia, S.; Sheikh Arabi, M. A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. J. CO2 Util. 2016, 16, 450–457. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Biomimetic porphyrin-modified 3D porous composite material adsorption enhances photocatalytic CO2 reduction and tetracycline oxidative degradation. Chem. Eng. J. 2023, 469, 144064. [Google Scholar] [CrossRef]
- Fei, H.; Sampson, M.D.; Lee, Y.; Kubiak, C.P.; Cohen, S.M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorg. Chem. 2015, 54, 6821–6828. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, D.; Jing, X.; Xu, B.; Duan, C. Engineering NH2-Cu-NH2 triple-atom sites in defective MOFs for selective overall photoreduction of CO2 into CH3COCH3. Angew. Chem. 2024, 136, 6821–6828. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Gao, F.; Tan, X.; Cai, Y.; Hu, B.; Huang, Q.; Fang, M.; Wang, X. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078. [Google Scholar] [CrossRef]
- Shen, M.; Zhu, X.; Lin, L.; Li, H.; Wang, Y.; Liang, Q.; Zhou, M.; Li, Z.; Xu, S. MOFs-derived S-scheme ZnO/BiOBr heterojunction with rich oxygen vacancy for boosting photocatalytic CO2 reduction. Sep. Purif. Technol. 2025, 353, 128620. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@metal–organic framework composites as effective photocatalysts. ACS Catal. 2021, 11, 13374–13396. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, X.; Yu, Q.; He, M.; Zhang, W.; Mo, Z.; Yuan, J.; She, Y.; Xu, H.; Li, H. Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. Chin. J. Catal. 2022, 43, 1286–1294. [Google Scholar] [CrossRef]
- Dong, W.; Jia, J.; Wang, Y.; An, J.; Yang, O.; Gao, X.; Liu, Y.; Zhao, J.; Li, D. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity. Chem. Eng. J. 2022, 438, 135622. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A.A. S-scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin. J. Catal. 2022, 43, 1657–1666. [Google Scholar] [CrossRef]
- Crake, A.; Christoforidis, K.C.; Gregg, A.; Moss, B.; Kafizas, A.; Petit, C. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small 2019, 15, e1805473. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Chen, Y.; Liu, L.; Yu, X.; Tian, G. Engineering of ultra-thin layer of MIL-125(Ti) nanosheet\Zn-tetracarboxy-phthalocyanine S-scheme heterojunction as photocatalytic CO2 reduction catalyst. Small 2024, 20, e2309094. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bian, J.; Zhang, X.; Bai, L.; Xu, L.; Qu, Y.; Li, Z.; Li, Y.; Jing, L. Construction of ultrathin S-scheme heterojunctions of single ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water. Adv. Mater. 2022, 34, 2205303. [Google Scholar] [CrossRef]
- Zeng, P.; Liu, H.; Jia, H.; Cai, J.; Deng, X.; Peng, T. In-situ synthesis of single-atom CoN clusters-decorated TiO2 for highly efficient charge separation and CO2 photoreduction. Appl. Catal. B Environ. 2024, 340, 123268. [Google Scholar] [CrossRef]
- Lian, R.; Wang, L.; Gao, Y.; Zhang, J.; Mei, Q.; Wang, Q. CdS-based ternary composite material for high-efficiency photocatalytic CO2 reduction via a cascade electron transfer. J. Alloys Compd. 2022, 924, 166590. [Google Scholar] [CrossRef]
- Zhang, T.; Meng, F.; Gao, M.; Wei, J.; Lim, K.J.H.; Lim, K.H.; Chirawatkul, P.; Wong, A.S.W.; Kawi, S.; Ho, G.W. Porous host–guest MOF-semiconductor hybrid with multisites heterojunctions and modulable electronic band for selective photocatalytic CO2 conversion and H2 evolution. Small 2023, 19, e2301121. [Google Scholar] [CrossRef]
- Yang, X.; Wang, T.; Ma, H.; Shi, W.; Xia, Z.; Yang, Q.; Zhang, P.; Ma, R.; Xie, G.; Chen, S. Matched micro-geometrical configuration leading to hetero-interfacial intimate contact of MoS2@UiO-66-NH2 Z-scheme heterojunction for efficient photocatalytic CO2 reduction. J. Mater. Sci. Technol. 2024, 182, 210–219. [Google Scholar] [CrossRef]
- Do, K.H.; Kumar, D.P.; Rangappa, A.P.; Lee, J.; Yun, S.; Kim, T.K. Design and synthesis of a covalent organic framework bridging CdS nanoparticles and a homogeneous cobalt–bipyridine cocatalyst for a highly efficient photocatalytic CO2 reduction. J. Mater. Chem. A 2023, 11, 8392–8403. [Google Scholar] [CrossRef]
- Zhang, T.; Li, T.; Gao, M.; Lu, W.; Chen, Z.; Ong, W.L.; Wong, A.S.W.; Yang, L.; Kawi, S.; Ho, G.W. Ligand mediated assembly of CdS colloids in 3D porous metal–organic framework derived scaffold with multi-sites heterojunctions for efficient CO2 photoreduction. Adv. Energy Mater. 2024, 14, 2400388. [Google Scholar] [CrossRef]
- Yang, S.; Byun, W.J.; Zhao, F.; Chen, D.; Mao, J.; Zhang, W.; Peng, J.; Liu, C.; Pan, Y.; Hu, J.; et al. CO2 enrichment boosts highly selective infrared-light-driven CO2 conversion to CH4 by UiO-66/Co9S8 photocatalyst. Adv. Mater. 2024, 36, 2312616. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Mo, S.; Zhao, X.; Zhou, J.; Zhou, X.; Zhang, Y.; Fan, Y.; Xie, Q.; Li, B.; Li, J. Constructing Co and Zn atomic pairs in core-shell Co3S4/NC@ZnS/NC derived from MOF-on-MOF nanostructures for enhanced photocatalytic CO2 reduction to C2H4. Appl. Catal. B Environ. Energy 2024, 352, 124019. [Google Scholar] [CrossRef]
- Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method. Chin. J. Catal. 2023, 51, 180–192. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Wang, Y.; Li, Z. Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: Recent advances, challenges, and prospects. ACS Energy Lett. 2022, 7, 2043–2059. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Chen, X.; Ma, B.; Zhu, M. Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coord. Chem. Rev. 2023, 482, 215076. [Google Scholar] [CrossRef]
- Fu, X.; Ren, T.; Jiao, S.; Tian, Z.; Yang, J.; Li, Q. Development strategies and improved photocatalytic CO2 reduction performance of metal halide perovskite nanocrystals. J. Energy Chem. 2023, 83, 397–422. [Google Scholar] [CrossRef]
- Wang, Q.S.; Yuan, Y.C.; Li, C.F.; Zhang, Z.R.; Xia, C.; Pan, W.G.; Guo, R.T. Research progress on photocatalytic CO2 reduction based on perovskite oxides. Small 2023, 19, e2301892. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhai, X.-P.; Ma, B.; Zhang, H.-J.; Xiao, M.-J.; Wang, Q.; Zhang, H.-L. Highly selective photocatalytic CO2 reduction via a lead-free perovskite/MOF catalyst. J. Mater. Chem. A 2023, 11, 4020–4029. [Google Scholar] [CrossRef]
- Kong, Z.-C.; Liao, J.-F.; Dong, Y.-J.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. Core@shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662. [Google Scholar] [CrossRef]
- Wan, S.; Ou, M.; Zhong, Q.; Wang, X. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295. [Google Scholar] [CrossRef]
- Xi, Y.; Zhang, X.; Shen, Y.; Dong, W.; Fan, Z.; Wang, K.; Zhong, S.; Bai, S. Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst. Appl. Catal. B Environ. 2021, 297, 120411. [Google Scholar] [CrossRef]
- Guo, S.-N.; Wang, D.; Wang, J.-X. ZIF-8@CsPbBr3 nanocrystals formed by conversion of Pb to CsPbBr3 in bimetallic MOFs for enhanced photocatalytic CO2 reduction. Small Methods 2024, 8, 2301508. [Google Scholar] [CrossRef]
- Wu, L.Y.; Mu, Y.F.; Guo, X.X.; Zhang, W.; Zhang, Z.M.; Zhang, M.; Lu, T.B. Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 9491–9495. [Google Scholar] [CrossRef]
- Huang, J.-N.; Dong, Y.-J.; Zhao, H.-B.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. Efficient encapsulation of CsPbBr3 and Au nanocrystals in mesoporous metal–organic frameworks towards synergetic photocatalytic CO2 reduction. J. Mater. Chem. A 2022, 10, 25212–25219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Yan, X.; Guo, X.; Wang, X.; Tang, S.; Liu, M. Advancements in Metal–Organic Framework Materials for Photocatalytic CO2 Reduction. Catalysts 2025, 15, 208. https://doi.org/10.3390/catal15030208
Zheng J, Yan X, Guo X, Wang X, Tang S, Liu M. Advancements in Metal–Organic Framework Materials for Photocatalytic CO2 Reduction. Catalysts. 2025; 15(3):208. https://doi.org/10.3390/catal15030208
Chicago/Turabian StyleZheng, Jilong, Xueli Yan, Xiaojuan Guo, Xinyi Wang, Shanfa Tang, and Maochang Liu. 2025. "Advancements in Metal–Organic Framework Materials for Photocatalytic CO2 Reduction" Catalysts 15, no. 3: 208. https://doi.org/10.3390/catal15030208
APA StyleZheng, J., Yan, X., Guo, X., Wang, X., Tang, S., & Liu, M. (2025). Advancements in Metal–Organic Framework Materials for Photocatalytic CO2 Reduction. Catalysts, 15(3), 208. https://doi.org/10.3390/catal15030208