Iron-Based Alumina-Supported Catalysts for Clean Hydrogen Production from Ammonia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fresh Catalysts
2.2. Activity Performance
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalyst Evaluation
4. Conclusions
- ➢
- XRD profiles indicated that iron oxide, i.e., Fe2O3, was found to be the major active component that contributes to catalytic activity performance during ammonia decomposition reaction.
- ➢
- The amount of hydrogen adsorption sites increased with an increase in iron loading, as depicted by H2-TPD results.
- ➢
- The strong affinity of iron for nitrogen leading to iron nitride formation was observed by N2-TPD, where the amount of N2 desorbed decreased with an increase in iron amount.
- ➢
- The increase in iron facilitated an easier reduction in oxides of iron, as demonstrated by H2-TPR.
- ➢
- The specific surface area decreased with iron loading due to the fact that iron blocked pores of the support.
- ➢
- Activity results showed that with the increase in iron from 10 to 30 wt%, ammonia conversion increased, with F30Al outperforming the rest of the catalysts.
- ➢
- The ammonia conversions of iron-based catalysts of this work were both comparable and, in some cases, higher than previously reported catalysts.
- ➢
- The easily reducible iron species, higher hydrogen desorption, and formation of iron nitride remained as the major factors behind the remarkable catalytic performance of iron-based catalysts of this work.
- ➢
- The scientific findings and insights of this work could provide a guideline for designing an efficient iron-based catalyst in future research and development advancing the field of hydrogen production and transport.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for Hydrogen Storage; A Review of Catalytic Ammonia Decomposition and Hydrogen Separation and Purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, Y.; Kim, H.W.; Lee, S.-U.; Kim, J.-R.; Kim, T.-W.; Lee, Y.-J.; Chae, H.-J. Ru-Supported Lanthania-Ceria Composite as an Efficient Catalyst for COx-Free H2 Production from Ammonia Decomposition. Appl. Catal. B Environ. 2021, 285, 119831. [Google Scholar] [CrossRef]
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.; Lund, C.R.F.; Wu, G. Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation. Appl. Catal. B Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- Arabczyk, W.; Zamlynny, J. Study of the Ammonia Decomposition over Iron Catalysts. Catal. Lett. 1999, 60, 167–171. [Google Scholar] [CrossRef]
- Akarçay, Ö.; Kurtoğlu, S.F.; Uzun, A. Ammonia Decomposition on a Highly-Dispersed Carbon-Embedded Iron Catalyst Derived from Fe-BTC: Stable and High Performance at Relatively Low Temperatures. Int. J. Hydrogen Energy 2020, 45, 28664–28681. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Z.; Ma, D.; Yang, Z. Adsorption and Dissociation of Ammonia on Small Iron Clusters. Int. J. Hydrogen Energy 2015, 40, 346–352. [Google Scholar] [CrossRef]
- Lanzani, G.; Laasonen, K. NH3 Adsorption and Dissociation on a Nanosized Iron Cluster. Int. J. Hydrogen Energy 2010, 35, 6571–6577. [Google Scholar] [CrossRef]
- Ganley, J.C.; Thomas, F.S.; Seebauer, E.G.; Masel, R.I. A Priori Catalytic Activity Correlations: The Difficult Case of Hydrogen Production from Ammonia. Catal. Lett. 2004, 96, 117–122. [Google Scholar] [CrossRef]
- Hu, X.-C.; Fu, X.-P.; Wang, W.-W.; Wang, X.; Wu, K.; Si, R.; Ma, C.; Jia, C.-J.; Yan, C.-H. Ceria-Supported Ruthenium Clusters Transforming from Isolated Single Atoms for Hydrogen Production via Decomposition of Ammonia. Appl. Catal. B Environ. 2020, 268, 118424. [Google Scholar] [CrossRef]
- Ju, X.; Liu, L.; Yu, P.; Guo, J.; Zhang, X.; He, T.; Wu, G.; Chen, P. Mesoporous Ru/MgO Prepared by a Deposition-Precipitation Method as Highly Active Catalyst for Producing COx-Free Hydrogen from Ammonia Decomposition. Appl. Catal. B Environ. 2017, 211, 167–175. [Google Scholar] [CrossRef]
- Huang, C.; Yu, Y.; Yang, J.; Yan, Y.; Wang, D.; Hu, F.; Wang, X.; Zhang, R.; Feng, G. Ru/La2O3 Catalyst for Ammonia Decomposition to Hydrogen. Appl. Surf. Sci. 2019, 476, 928–936. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, A.; Li, Y.; Zhang, Y.; Cheng, X.; Shi, C. An Investigation of the Thermal Stability, Crystal Structure and Catalytic Properties of Bulk and Alumina-Supported Transition Metal Nitrides. J. Alloys Compd. 2008, 464, 488–496. [Google Scholar] [CrossRef]
- Arabczyk, W.; Zamłynny, J.; Moszyński, D. Kinetics of Nanocrystalline Iron Nitriding. Pol. J. Chem. Technol. 2010, 12, 38–43. [Google Scholar] [CrossRef]
- Wood, T.J.; Makepeace, J.W.; David, W.I.F. Neutron Diffraction and Gravimetric Study of the Iron Nitriding Reaction under Ammonia Decomposition Conditions. Phys. Chem. Chem. Phys. 2017, 19, 27859–27865. [Google Scholar] [CrossRef]
- Pelka, R.; Moszyńska, I.; Arabczyk, W. Catalytic Ammonia Decomposition Over Fe/Fe4N. Catal. Lett. 2008, 128, 72–76. [Google Scholar] [CrossRef]
- Pelka, R.; Arabczyk, W. Studies of the Kinetics of Reaction Between Iron Catalysts and Ammonia—Nitriding of Nanocrystalline Iron with Parallel Catalytic Ammonia Decomposition. Top. Catal. 2009, 52, 1506–1516. [Google Scholar] [CrossRef]
- Pelka, R.; Kiełbasa, K.; Arabczyk, W. Catalytic Ammonia Decomposition during Nanocrystalline Iron Nitriding at 475 °C with NH3/H2 Mixtures of Different Nitriding Potentials. J. Phys. Chem. C 2014, 118, 6178–6185. [Google Scholar] [CrossRef]
- Yeo, S.C.; Han, S.S.; Lee, H.M. Mechanistic Investigation of the Catalytic Decomposition of Ammonia (NH3) on an Fe(100) Surface: A DFT Study. J. Phys. Chem. C 2014, 118, 5309–5316. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Liu, C.; Gong, W.; Guo, H. Plasma Driven Ammonia Decomposition on a Fe-Catalyst: Eliminating Surface Nitrogen Poisoning. Chem. Commun. 2013, 49, 3787. [Google Scholar] [CrossRef]
- Lei, B.; Wen, J.; Ren, S.; Zhang, L.; Zhang, H. Highly Efficient COx-Free Hydrogen Evolution Activity on Rod Fe2N Catalysts for Ammonia Decomposition. New J. Chem. 2019, 43, 18277–18284. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Y.; Zhao, Y.; Zhang, R.; Zhang, J.; Guo, H. NH3 Decomposition for H2 Generation: Effects of Cheap Metals and Supports on Plasma–Catalyst Synergy. ACS Catal. 2015, 5, 4167–4174. [Google Scholar] [CrossRef]
- Bell, T.E.; Torrente-Murciano, L. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Top. Catal. 2016, 59, 1438–1457. [Google Scholar] [CrossRef]
- Tseng, J.-C.; Gu, D.; Pistidda, C.; Horstmann, C.; Dornheim, M.; Ternieden, J.; Weidenthaler, C. Tracking the Active Catalyst for Iron-Based Ammonia Decomposition by In Situ Synchrotron Diffraction Studies. ChemCatChem 2018, 10, 4465–4472. [Google Scholar] [CrossRef]
- AlAmoudi, O.M.; Ullah Khan, W.; Hantoko, D.; Bakare, I.A.; Ali, S.A.; Hossain, M.M. Catalytic Activity of Co/γ-Al2O3 Catalysts for Decomposition of Ammonia to Produce Hydrogen. Fuel 2024, 372, 132230. [Google Scholar] [CrossRef]
- Pirola, C.; Bianchi, C.L.; Di Michele, A.; Vitali, S.; Ragaini, V. Fischer Tropsch and Water Gas Shift Chemical Regimes on Supported Iron-Based Catalysts at High Metal Loading. Catal. Commun. 2009, 10, 823–827. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Fakeeha, A.H.; Al-Fatesh, A.S.; Abasaeed, A.E.; Khan, W.U. Methane Decomposition over Iron Catalyst for Hydrogen Production. Int. J. Hydrogen Energy 2015, 40, 7593–7600. [Google Scholar] [CrossRef]
- Brunauer, S.; Love, K.S.; Keenan, R.G. Adsorption of Nitrogen and the Mechanism of Ammonia Decomposition Over Iron Catalysts. J. Am. Chem. Soc. 1942, 64, 751–758. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, Q.; Ren, S.; Arshid, M.A.; Chu, W.; Chen, C. Implication of Iron Nitride Species to Enhance the Catalytic Activity and Stability of Carbon Nanotubes Supported Fe Catalysts for Carbon-Free Hydrogen Production via Low-Temperature Ammonia Decomposition. Catal. Sci. Technol. 2018, 8, 907–915. [Google Scholar] [CrossRef]
- Lu, B.; Li, L.; Ren, M.; Liu, Y.; Zhang, Y.; Xu, X.; Wang, X.; Qiu, H. Ammonia Decomposition over Iron-Based Catalyst: Exploring the Hidden Active Phase. Appl. Catal. B Environ. 2022, 314, 121475. [Google Scholar] [CrossRef]
- Purcel, M.; Berendts, S.; Bonati, L.; Perego, S.; Müller, A.; Lerch, M.; Parrinello, M.; Muhler, M. Iron Nitride Formation and Decomposition during Ammonia Decomposition over a Wustite-Based Bulk Iron Catalyst. ACS Catal. 2024, 14, 13947–13957. [Google Scholar] [CrossRef]
- Muroyama, H.; Saburi, C.; Matsui, T.; Eguchi, K. Ammonia Decomposition over Ni/La2O3 Catalyst for on-Site Generation of Hydrogen. Appl. Catal. A Gen. 2012, 443–444, 119–124. [Google Scholar] [CrossRef]
- Lorenzut, B.; Montini, T.; Bevilacqua, M.; Fornasiero, P. FeMo-Based Catalysts for H2 Production by NH3 Decomposition. Appl. Catal. B Environ. 2012, 125, 409–417. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Z.H.; Yan, Z.F.; Lu, G.Q.; Rintoul, L. Catalytic Ammonia Decomposition over Ru/Carbon Catalysts: The Importance of the Structure of Carbon Support. Appl. Catal. A Gen. 2007, 320, 166–172. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Chen, W.; Gong, Q.; Luo, J.; Lin, R.; Xin, H.; Zhang, H.; Wang, D.; Peng, Q.; et al. Sub-Nm Ruthenium Cluster as an Efficient and Robust Catalyst for Decomposition and Synthesis of Ammonia: Break the “Size Shackles”. Nano Res. 2018, 11, 4774–4785. [Google Scholar] [CrossRef]
- Hu, X.-C.; Wang, W.-W.; Jin, Z.; Wang, X.; Si, R.; Jia, C.-J. Transition Metal Nanoparticles Supported La-Promoted MgO as Catalysts for Hydrogen Production via Catalytic Decomposition of Ammonia. J. Energy Chem. 2019, 38, 41–49. [Google Scholar] [CrossRef]
- Gu, Y.-Q.; Jin, Z.; Zhang, H.; Xu, R.-J.; Zheng, M.-J.; Guo, Y.-M.; Song, Q.-S.; Jia, C.-J. Transition Metal Nanoparticles Dispersed in an Alumina Matrix as Active and Stable Catalysts for COx-Free Hydrogen Production from Ammonia. J. Mater. Chem. A 2015, 3, 17172–17180. [Google Scholar] [CrossRef]
- Henpraserttae, S.; Charojrochkul, S.; Klysubun, W.; Lawtrakul, L.; Toochinda, P. Reduced Temperature Ammonia Decomposition Using Ni/Zr-Doped Al2O3 Catalyst. Catal. Lett. 2018, 148, 1775–1783. [Google Scholar] [CrossRef]
Catalyst | Physisorption Results | Fe2O3 (wt%) | |||
---|---|---|---|---|---|
SBET (m2/g) a | P.V. (cm3/g) b | P.D. (nm) c | Target | XRF | |
Al | 73.7 | 0.33 | 17.7 | - | - |
F10Al | 55.7 | 0.29 | 20.8 | 10 | 11.26 |
F20Al | 42.9 | 0.24 | 22.1 | 20 | 20.73 |
F30Al | 25.9 | 0.18 | 27.1 | 30 | 27.55 |
Catalyst | H2 Uptake (mmol/g) | N2 Uptake (mmol/g) |
---|---|---|
Al | - | - |
F10Al | 0.097 | 0.511 |
F20Al | 0.114 | 0.451 |
F30Al | 0.295 | 0.367 |
Catalyst | Metal Loading (wt%) | GHSV (L/h/gcat.) | Temperature (°C) | Ammonia Conversion (%) | Ref. |
---|---|---|---|---|---|
F10Al | 10 | 12 | 600 | 52 | This work |
Ni/ZrO2 | 10 | 6 | 600 | 20 | [32] |
Fe/YSZ | 10 | 46 | 600 | 19 | [33] |
MP-Fe | 10 | 15 | 610 | 52 | [23] |
F10Al | 10 | 12 | 540 | 19 | This work |
Ru/AC | 5 | 30 | 550 | 14.4 | [34] |
Mo/YSZ | 10 | 46 | 600 | 28 | [33] |
F20Al | 20 | 12 | 600 | 58 | This work |
Ni/γ-Al2O3 | 20 | 7.5 | 600 | 88 | [35] |
Ru/AC | 5 | 15 | 600 | 58 | [36] |
20Fe/La-MgO(5) | 20 | 22 | 550 | 61 | [37] |
F30Al | 30 | 12 | 600 | 85 | This work |
BM-Fe | 40 | 15 | 610 | 14 | [23] |
Fe PS3 | 95 | 7 | 500 | 20 | [4] |
FeAl | 90 | 36 | 600 | 86 | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.U.; Putra, A.F.P.; AlMohamadi, H.; Hossain, M.M. Iron-Based Alumina-Supported Catalysts for Clean Hydrogen Production from Ammonia. Catalysts 2025, 15, 242. https://doi.org/10.3390/catal15030242
Khan WU, Putra AFP, AlMohamadi H, Hossain MM. Iron-Based Alumina-Supported Catalysts for Clean Hydrogen Production from Ammonia. Catalysts. 2025; 15(3):242. https://doi.org/10.3390/catal15030242
Chicago/Turabian StyleKhan, Wasim Ullah, Achmad Ferdiansyah Pradana Putra, Hamad AlMohamadi, and Mohammad M. Hossain. 2025. "Iron-Based Alumina-Supported Catalysts for Clean Hydrogen Production from Ammonia" Catalysts 15, no. 3: 242. https://doi.org/10.3390/catal15030242
APA StyleKhan, W. U., Putra, A. F. P., AlMohamadi, H., & Hossain, M. M. (2025). Iron-Based Alumina-Supported Catalysts for Clean Hydrogen Production from Ammonia. Catalysts, 15(3), 242. https://doi.org/10.3390/catal15030242