Heterogeneous Acid Catalysts for Biodiesel Production: Effect of Physicochemical Properties on Their Activity and Reusability
Abstract
:1. Introduction
2. Effect of Acid Density on Catalytic Activity
3. Effect of Acid Types on Catalytic Activity
4. Effect of Acid Strength on Catalytic Activity
5. Effect of Wettability on Catalytic Activity
6. Effect of Specific Surface Area on Catalytic Activity
7. Magnetic Catalyst Is Beneficial to Recovery
8. Thermosensitive Catalyst
9. Conclusions and Perspectives
- (1)
- Acid density is an important parameter reflecting the number of acidic sites in a catalyst. A high acid density is beneficial for improving the catalytic activity of a catalyst due to the provision of abundant acidic sites for activating reaction substrates.
- (2)
- B acidic sites are conducive to facilitate esterification reaction, while L acidic sites are beneficial for promoting the transesterification reaction. The synergy of B and L acidic sites is helpful for the conversion of high-acid-value oil into biodiesel in one pot via catalyzing the esterification and transesterification reactions simultaneously.
- (3)
- The strength of acidic sites in catalysts has a significant impact on their catalytic activity. Super strong acid sites have a strong ability to activate reaction substrates, resulting in a high catalytic activity. The development of efficient and stable solid superacids is highly desirable for the production of biodiesel.
- (4)
- Catalysts with a high specific surface area are beneficial for facilitating contact efficiency between acidic sites and reaction substrates, improving the yield of biodiesel. Making a catalyst with a porous or nanoscale structure is an effective strategy to increase the specific surface area of the catalyst. A catalyst with a microporous structure is futile for improving catalytic activity due to oil molecules being larger than two nanometers, leading to difficulty in achieving contact between oil molecules and acid sites in the micropore channel.
- (5)
- A desirable heterogeneous acid surface for the production of biodiesel is supposed to selectively adsorb reaction substrates (methanol, fatty acids, or/and triglycerides) but expel water and glycerol as by-products, so as to weaken the reverse reaction.
- (6)
- Catalyst recycling is tedious, especially for homogeneous catalysts and nanocatalysts. Magnetic catalysts are easily and effectively recovered from reaction mixtures with an external magnet.
- (7)
- By designing temperature-sensitive acidic ionic liquids (ILs), temperature-dependent ILs–liquid biphasic catalytic systems can be developed. These exhibit the dual advantages of homogeneous catalysts with an excellent catalytic activity and heterogeneous catalysts with convenient recycling.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, H.; Li, J.; Wang, Y.; Xia, Q.; Qiu, L.; Zhou, B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. Adv. Sci. 2024, 11, 2402651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, H.; Xu, C.C.; Yang, S. Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catal. 2019, 9, 10990–11029. [Google Scholar] [CrossRef]
- Wang, A.; Sudarsanam, P.; Xu, Y.; Zhang, H.; Li, H.; Yang, S. Functionalized magnetic nanosized materials for efficient biodiesel synthesis via acid-base/enzyme catalysis. Green Chem. 2020, 22, 2977–3012. [Google Scholar] [CrossRef]
- Pan, H.; Xia, Q.; Wang, Y.; Shen, Z.; Huang, H.; Ge, Z.; Li, X.; He, J.; Wang, X.; Li, L.; et al. Recent advances in biodiesel production using functional carbon materials as acid/base catalysts. Fuel Process. Technol. 2022, 237, 107421. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Hu, Y.; Rao, K.T.V.; Xu, C.C.; Yang, S. Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renew. Sust. Energ. Rev. 2019, 114, 109296. [Google Scholar] [CrossRef]
- Anil, N.; Rao, P.K.; Sarkar, A.; Kubavat, J.; Vadivel, S.; Manwar, N.R.; Paul, B. Advancements in sustainable biodiesel production: A comprehensive review of bio-waste derived catalysts. Energ. Convers. Manag. 2024, 318, 118884. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Zhang, H.; Wang, A.; Yang, S. Functional nanomaterials-catalyzed production of biodiesel. Curr. Nanosci. 2020, 16, 376–391. [Google Scholar] [CrossRef]
- Guo, Y.; Delbari, S.A.; Namini, A.S.; Van Le, Q.; Park, J.Y.; Kim, D.; Varma, R.S.; Jang, H.W.; T-Raissi, A.; Shokouhimehr, M.; et al. Recent developments in solid acid catalysts for biodiesel production. Mol. Catal. 2023, 547, 113362. [Google Scholar] [CrossRef]
- Xie, W.; Li, J. Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review. Renew. Sust. Energ. Rev. 2023, 171, 113017. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Zhang, H.; Wang, A.; Jin, D.; Yang, S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energ. Convers. Manag. 2018, 166, 534–544. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, L.; He, L.; Wang, H.; Li, H.; Zhang, H.; Yang, S. Facile synthesis of chitosan-derived sulfonated solid acid catalysts for realizing highly effective production of biodiesel. Ind. Crop. Prod. 2024, 210, 118058. [Google Scholar] [CrossRef]
- Ruatpuia, J.V.; Changmai, B.; Pathak, A.; Alghamdi, L.A.; Kress, T.; Halder, G.; Wheatley, A.E.; Rokhum, S.L. Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study. Renew. Energ. 2023, 206, 597–608. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, M.; Tang, W.; Wang, X.; Wu, C.; Wang, Q.; Xie, H. Reduced surface sulphonic acid concentration Alleviates carbon-based solid acid catalysts deactivation in biodiesel production. Energy 2023, 271, 127079. [Google Scholar] [CrossRef]
- Chang, F.; Zhou, Q.; Pan, H.; Liu, X.F.; Zhang, H.; Xue, W.; Yang, S. Solid mixed-metal-oxide catalysts for biodiesel production: A review. Energy Technol. Ger. 2014, 2, 865–873. [Google Scholar] [CrossRef]
- Tan, X.; Sudarsanam, P.; Tan, J.; Wang, A.; Zhang, H.; Li, H.; Yang, S. Sulfonic acid-functionalized heterogeneous catalytic materials for efficient biodiesel production: A review. J. Environ. Chem. Eng. 2021, 9, 104719. [Google Scholar] [CrossRef]
- Huth, D.; Rose, M. Selective catalytic synthesis of short chain oxymethylene ethers by a heteropoly acid-a reaction parameter and kinetic study. Catal. Sci. Technol. 2021, 11, 1974–1980. [Google Scholar] [CrossRef]
- Alismaeel, Z.T.; Al-Jadir, T.M.; Albayati, T.M.; Abbas, A.S.; Doyle, A.M. Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling. Adv. Powder Technol. 2022, 33, 103646. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A Gen. 2010, 382, 197–204. [Google Scholar] [CrossRef]
- Yadav, N.; Yadav, G.; Ahmaruzzaman, M. Biomass-derived sulfonated polycyclic aromatic carbon catalysts for biodiesel production by esterification reaction. Biofuel. Bioprod. Bior. 2023, 17, 1343–1367. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Pan, H.; Liu, X.; Yang, K.; Huang, S.; Yang, S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energ. Convers. Manag. 2017, 138, 45–53. [Google Scholar] [CrossRef]
- Istadi, I.; Riyanto, T.; Buchori, L.; Anggoro, D.D.; Gilbert, G.; Meiranti, K.A.; Khofiyanida, E. Enhancing Brønsted and Lewis acid sites of the utilized spent RFCC catalyst waste for the continuous cracking process of palm oil to biofuels. Ind. Eng. Chem. Res. 2020, 59, 9459–9468. [Google Scholar] [CrossRef]
- Karimi, S.; Saidi, M. Application of nano hydrophobic sulfated mordenite as a novel catalyst for biodiesel production from neem seed-derived oil by electrochemical method. Energ. Convers. Manag. 2024, 299, 117886. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, K.; Jiang, Y.; Chen, L.; Zhang, H.; Li, H.; Yang, S. Biomass-derived hydrophobic metal-organic frameworks solid acid for green efficient catalytic esterification of oleic acid at low temperatures. Fuel Process. Technol. 2023, 239, 107558. [Google Scholar] [CrossRef]
- Gouda, S.P.; Ngaosuwan, K.; Assabumrungrat, S.; Selvaraj, M.; Halder, G.; Rokhum, S.L. Microwave assisted biodiesel production using sulfonic acid-functionalized metal-organic frameworks UiO-66 as a heterogeneous catalyst. Renew. Energ. 2022, 197, 161–169. [Google Scholar] [CrossRef]
- Nakason, K.; Sumrannit, P.; Youngjan, S.; Wanmolee, W.; Kraithong, W.; Khemthong, P.; Kanokkantapong, V.; Panyapinyopol, B. Environmental impact of 5-hydroxymethylfurfural production from cellulosic sugars using biochar-based acid catalyst. Chem. Eng. Sci. 2024, 287, 119729. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, C.; Yan, X.; Mao, Y.; Cao, Y.; Liu, Y.; Guan, W.; Chen, Y. High-efficient microwave-assisted conversion of fructose to 5-hydroxymethylfurfural over rice straw-derived sulfonated porous carbonaceous catalyst. Fuel 2024, 373, 132348. [Google Scholar] [CrossRef]
- Tesfa, M.; Duval, J.F.; Marsac, R.; Dia, A.; Pinheiro, J.P. Absolute and Relative Positioning of Natural Organic Matter Acid-Base Potentiometric Titration Curves: Implications for the Evaluation of the Density of Charged Reactive Sites. Environ. Sci. Technol. 2022, 56, 10494–10503. [Google Scholar] [CrossRef]
- Yun, T.Y.; Chandler, B.D. Surface hydroxyl chemistry of titania-and alumina-based supports: Quantitative titration and temperature dependence of surface Brønsted acid-base parameters. ACS Appl. Mater. Inter. 2023, 15, 6868–6876. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Bian, Y.; Dai, W. Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chin. J. Struc. Chem. 2024, 43, 100250. [Google Scholar] [CrossRef]
- Liu, F.; Kong, W.; Qi, C.; Zhu, L.; Xiao, F.S. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal. 2012, 2, 565–572. [Google Scholar] [CrossRef]
- Busca, G.; Gervasini, A. Solid acids, surface acidity and heterogeneous acid catalysis. Adv. Catal. 2020, 67, 1–90. [Google Scholar] [CrossRef]
- Pan, H.; Li, H.; Liu, X.F.; Zhang, H.; Yang, K.L.; Huang, S.; Yang, S. Mesoporous polymeric solid acid as efficient catalyst for (trans) esterification of crude Jatropha curcas oil. Fuel Process. Technol. 2016, 150, 50–57. [Google Scholar] [CrossRef]
- Lokman, I.M.; Rashid, U.; Taufiq-Yap, Y.H.; Yunus, R. Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renew. Energ. 2015, 81, 347–354. [Google Scholar] [CrossRef]
- Leng, Y.; Zhao, J.; Jiang, P.; Lu, D. POSS-derived solid acid catalysts with excellent hydrophobicity for highly efficient transformations of glycerol. Catal. Sci. Technol. 2015, 6, 875–881. [Google Scholar] [CrossRef]
- Arun Kumar, M.; Kamali, M.; Putla, S.B.; Subha, P.; Sudarsanam, P. Nb2O5/Ce1–x NbxO2−δ Nanorod Catalyst for Selective Oxidative Coupling of Aromatic Alcohols and Amines. ACS Appl. Nano. Mater. 2024, 7, 5899–5911. [Google Scholar] [CrossRef]
- Deng, R.; Liu, H.; Cui, H.; Tian, Y.; Yang, H. Efficient and high para-selective conversion of toluene with NO2 to para-nitrotoluene in an O2–Ac2O–HβD4 composite catalytic system. Catal. Sci. Technol. 2024, 14, 1854–1866. [Google Scholar] [CrossRef]
- Huang, Z.; ChenYang, Y.; Wang, X.; Cai, R.; Han, B. Biodiesel synthesis through soybean oil transesterification using choline-based amino acid ionic liquids as catalysts. Ind. Crop. Prod. 2024, 208, 117869. [Google Scholar] [CrossRef]
- Guo, F.; Fang, Z.; Tian, X.F.; Long, Y.D.; Jiang, L.Q. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids. Bioresour. Technol. 2013, 140, 447–450. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.; Luo, M.; Zhao, C.J.; Gu, C.B.; Zu, Y.G.; Fu, Y.J. Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted-Lewis acidic ionic liquid. Appl. Energ. 2014, 115, 438–444. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Y.; Zhang, C.; Wang, L.; Wan, H.; Guan, G. Biodiesel Production by Esterification of Oleic Acid over Brønsted Acidic Ionic Liquid Supported onto Fe-Incorporated SBA-15. Ind. Eng. Chem. Res. 2012, 51, 16590–16596. [Google Scholar] [CrossRef]
- Léon, C.I.S.; Song, D.; Su, F.; An, S.; Liu, H.; Gao, J.; Guo, Y.; Leng, J. Propylsulfonic acid and methyl bifunctionalized TiSBA-15 silica as an efficient heterogeneous acid catalyst for esterification and transesterification. Micropor. Mesopor. Mat. 2015, 204, 218–225. [Google Scholar] [CrossRef]
- Trickett, C.A.; Osborn Popp, T.M.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J.; Kalmutzki, M.J.; Liu, Q.; et al. Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170–176. [Google Scholar] [CrossRef]
- Macht, J.; Carr, R.T.; Iglesia, E. Functional assessment of the strength of solid acid catalysts. J. Catal. 2009, 264, 54–66. [Google Scholar] [CrossRef]
- Okuhara, T. Water-tolerant solid acid catalysts. Chem. Rev. 2002, 102, 3641–3666. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Han, X.; Chen, Q.; Zhou, L. Transesterification of soybean oil to biodiesel by brønsted-type ionic liquid acid catalysts. Catal. Chem. Eng. Technol. 2013, 36, 1559–1567. [Google Scholar] [CrossRef]
- Zuo, D.; Lane, J.; Culy, D.; Schultz, M.; Pullar, A.; Waxman, M. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl. Catal. B Environ. 2013, 129, 342–350. [Google Scholar] [CrossRef]
- Liu, Y.; Lotero, E.; Goodwin, J.G., Jr. A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J. Catal. 2006, 242, 278–286. [Google Scholar] [CrossRef]
- Mukhtar, A.; Saqib, S.; Lin, H.; Shah, M.U.H.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; Asif, S.; et al. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew. Sust. Energ. Rev. 2022, 157, 112012. [Google Scholar] [CrossRef]
- Kong, T.; Guo, G.; Pan, J.; Gao, L.; Huo, Y. Polystyrene sulfonate threaded in MIL-101Cr (III) as stable and efficient acid catalysts. Dalton Trans. 2016, 45, 18084–18088. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Yang, B.; Zeng, X.; Zhang, Q.; Zou, J.J.; Xie, J. Superhydrophobic and superacid magnetic catalyst induced highly selective aldol condensation and alkylation for high-density biofuels. Fuel 2024, 378, 132930. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Verma, G.; Liu, X.; Dai, Z.; Deng, F.; Meng, X.; Xiao, F.; Ma, S. Superhydrophobicity: Constructing homogeneous catalysts into superhydrophobic porous frameworks to protect them from hydrolytic degradation. Chem 2016, 1, 628–639. [Google Scholar] [CrossRef]
- Liu, F.; Zheng, A.; Noshadi, I.; Xiao, F. Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation. Appl. Catal. B Environ. 2013, 136, 193–201. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: Heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc. 2012, 134, 16948–16950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, X.; Liang, C.; Li, X.; Wang, Z.; Li, H. Highly active, water-compatible and easily separable magnetic mesoporous Lewis acid catalyst for the Mukaiyama–Aldol reaction in water. Green Chem. 2014, 16, 3768–3777. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, L.; Cheng, Z. Design of Water-Tolerant Solid Acids: A Trade-Off Between Hydrophobicity and Acid Strength and their Catalytic Performance in Esterification. Catal. Surv. Asia 2021, 25, 279–300. [Google Scholar] [CrossRef]
- Touchy, A.S.; Rashed, M.N.; Huang, M.; Toyao, T.; Shimizu, K.I.; Siddiki, S.H. Lewis acid promoted sustainable transformation of triglycerides to fatty acids using a water-tolerant Nb2O5 catalyst. ACS Sustain. Chem. Eng. 2022, 10, 11791–11799. [Google Scholar] [CrossRef]
- Dos Santos-Durndell, V.C.; Durndell, L.J.; Isaacs, M.A.; Lee, A.F.; Wilson, K. WOX/ZrOX functionalised periodic mesoporous organosilicas as water-tolerant catalysts for carboxylic acid esterification. Sustain. Energ. Fuels 2023, 7, 1677–1686. [Google Scholar] [CrossRef]
- Mobaraki, A.; Movassagh, B.; Karimi, B. Hydrophobicity-enhanced magnetic solid sulfonic acid: A simple approach to improve the mass transfer of reaction partners on the surface of the heterogeneous catalyst in water-generating reactions. Appl. Catal. A Gen. 2014, 472, 123–133. [Google Scholar] [CrossRef]
- Fukuhara, K.; Nakajima, K.; Kitano, M.; Hayashi, S.; Hara, M. Transesterification of Triolein over hydrophobic microporous carbon with SO3H groups. ChemCatChem 2015, 7, 3945–3950. [Google Scholar] [CrossRef]
- Pan, H.; Xia, Q.; Li, H.; Wang, Y.; Shen, Z.; Wang, Y.; Li, L.; Li, X.; Xu, H.; Zhou, Z. Direct production of biodiesel from crude Euphorbia lathyris L. Oil catalyzed by multifunctional mesoporous composite materials. Fuel 2022, 309, 122172. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Li, Z.; Zhang, H.; Li, H.; Yang, S. Green synthesis of heterogeneous polymeric bio-based acid decorated with hydrophobic regulator for efficient catalytic production of biodiesel at low temperatures. Fuel 2022, 329, 125467. [Google Scholar] [CrossRef]
- Xie, W.; Wan, F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J. 2019, 365, 40–50. [Google Scholar] [CrossRef]
- Tang, X.; Niu, S. Preparation of carbon-based solid acid with large surface area to catalyze esterification for biodiesel production. J. Ind. Eng. Chem. 2019, 69, 187–195. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, H.; Tang, D.; Mathews, J.P.; Li, S.; Tao, S. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes. Fuel 2016, 183, 420–431. [Google Scholar] [CrossRef]
- Albalawi, K.M.; Tahir, K.; Khan, A.U.; Nazir, S.; Almarhoon, Z.M.; Alanazi, A.A.; Althagafi, T.M.; Al-Saeedi, S.I.; Hassan, H.M.; Zaki, M.E. Catalytic conversion of triglycerides to biodiesel using ZnO/SnTiO4/SBA-15 nanostructures. Mater. Chem. Phys. 2024, 325, 129694. [Google Scholar] [CrossRef]
- Fatimah, I.; Fadillah, G.; Sagadevan, S.; Oh, W.-C.; Ameta, K.L. Mesoporous silica-based catalysts for biodiesel production: A review. ChemEngineering 2023, 7, 56. [Google Scholar] [CrossRef]
- Mahdi, H.I.; Ramlee, N.N.; da Silva Duarte, J.L.; Cheng, Y.-S.; Selvasembian, R.; Amir, F.; de Oliveira, L.H.; Azelee, N.I.W.; Meili, L.; Rangasamy, G. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. Chemosphere 2023, 319, 138003. [Google Scholar] [CrossRef]
- Gardy, J.; Rehan, M.; Hassanpour, A.; Lai, X.; Nizami, A.S. Advances in nano-catalysts based biodiesel production from non-food feedstocks. J. Environ. Manag. 2019, 249, 109316. [Google Scholar] [CrossRef]
- Velusamy, K.; Devanand, J.; Kumar, P.S.; Soundarajan, K.; Sivasubramanian, V.; Sindhu, J.; Vo, D.V.N. A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel 2021, 306, 121632. [Google Scholar] [CrossRef]
- Pan, H.; Liu, Y.; Xia, Q.; Zhang, H.; Guo, L.; Li, H.; Jiang, L.; Yang, S. Synergetic combination of a mesoporous polymeric acid and a base enables highly efficient heterogeneous catalytic one-pot conversion of crude Jatropha oil into biodiesel. Green Chem. 2020, 22, 1698–1709. [Google Scholar] [CrossRef]
- Tamjidi, S.; Esmaeili, H.; Moghadas, B.K. Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: A review study. J. Clean. Prod. 2021, 305, 127200. [Google Scholar] [CrossRef]
- Hosseini, S.A. Nanocatalysts for biodiesel production. Arab. J. Chem. 2022, 15, 104152. [Google Scholar] [CrossRef]
- Baig, R.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013, 49, 752–770. [Google Scholar] [CrossRef] [PubMed]
- Mawlid, O.A.; Abdelhady, H.H.; El-Deab, M.S. Boosted biodiesel production from waste cooking oil using novel SrO/MgFe2O4 magnetic nanocatalyst at low temperature: Optimization process. Energ. Convers. Manag. 2022, 273, 116435. [Google Scholar] [CrossRef]
- Carrera, S.A.; Villarreal, J.S.; Acosta, P.I.; Noboa, J.F.; Gallo-Cordova, A.; Mora, J.R. Designing an efficient and recoverable magnetic nanocatalyst based on Ca, Fe and pectin for biodiesel production. Fuel 2022, 310, 122456. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Rashid, U.; Hazmi, B.; Moser, B.R.; Alharthi, F.A.; Rokhum, S.L.; Ngamcharussrivichai, C. Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel 2022, 317, 123525. [Google Scholar] [CrossRef]
- Changmai, B.; Wheatley, A.E.; Rano, R.; Halder, G.; Selvaraj, M.; Rashid, U.; Rokhum, S.L. A magnetically separable acid-functionalized nanocatalyst for biodiesel production. Fuel 2021, 305, 121576. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Zhang, J.; Li, G. In situ reactive extraction of cottonseeds with methyl acetate for biodiesel production using magnetic solid acid catalysts. Bioresour. Technol. 2014, 174, 182–189. [Google Scholar] [CrossRef]
- Ngu, T.A.; Li, Z. Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification. Green Chem. 2014, 16, 1202–1210. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Yan, Q.; Wu, X.; Zhang, H. Superparamagnetic nanospheres with efficient bifunctional acidic sites enable sustainable production of biodiesel from budget non-edible oils. Energ. Convers. Manag. 2023, 297, 117758. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Subbarao, D. Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J. Clean. Prod. 2013, 59, 131–140. [Google Scholar] [CrossRef]
- Zaera, F. Designing sites in heterogeneous catalysis: Are we reaching selectivities competitive with those of homogeneous catalysts? Chem. Rev. 2022, 122, 8594–8757. [Google Scholar] [CrossRef]
- Fang, D.; Yang, J.M.; Zhang, H.B.; Jiao, C.M. Synthesis of 4H-pyrans catalyzed by thermol-regulated PEG1000-based ionic liquid/EM. J. Ind. Eng. Chem. 2011, 17, 386–388. [Google Scholar] [CrossRef]
- Li, D.; Liu, N.; Gao, Y.; Lin, W.; Li, C. Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as “smart” recyclable catalyst. J. Nanopart. Res. 2017, 19, 377. [Google Scholar] [CrossRef]
- Li, S.; Ge, Y.; Turner, A.P. A catalytic and positively thermosensitive molecularly imprinted polymer. Adv. Funct. Mater. 2011, 21, 1194–1200. [Google Scholar] [CrossRef]
- Lu, Z.; Li, K.; Yang, J.; He, F.; Zheng, X.; Zhu, H.; Wang, J.; Fan, L. Unlocking the Full Potential of Green Catalysis: A Novel Thermosensitive Catalytic System for Ultrasonic-microwave Liquefaction of Woody Biomass. Ind. Crop. Prod. 2024, 215, 118678. [Google Scholar] [CrossRef]
- Fang, D.; Yang, J.; Jiao, C. Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal. 2021, 1, 42–47. [Google Scholar] [CrossRef]
Catalyst | Advantages | Disadvantages |
---|---|---|
Homogeneous acid | Low cost and satisfactory catalytic activity | Severe corrosion of equipment, difficulty in recycling and reuse, increase the cost of purifying biodiesel, generate wastewater, and pollute the environment |
Heterogeneous acid | Low corrosion of equipment, easy to recycle and reuse, low wastewater generation, and environmentally friendly | Low catalytic activity and easy deactivation |
Catalyst | Sulfonation Time (h) | Acid Density (mmol/g) | S Content (%) | PFA Conversion Rate (%) |
---|---|---|---|---|
ICG | 0 | 0.12 ± 0.05 | 0 | 5.6 ± 0.35 |
ICG(5)-SO3H | 5 | 0.58 ± 0.08 | 1.61 ± 0.15 | 12.4 ± 0.75 |
ICG(8)-SO3H | 8 | 1.21 ± 0.10 | 2.08 ± 0.12 | 56.9 ± 0.80 |
ICG(10)-SO3H | 10 | 2.48 ± 0.15 | 2.50 ± 0.12 | 64.2 ± 0.70 |
ICG(12)-SO3H | 12 | 3.42 ± 0.14 | 3.36 ± 0.11 | 72.4 ± 0.90 |
ICG(15)-SO3H | 15 | 4.23 ± 0.11 | 4.89 ± 0.10 | 81.5 ± 0.60 |
Catalyst | Acid Density (mmol/g) | EAC Conv. (%) | EAB Conv. (%) | CBE Conv. (%) |
---|---|---|---|---|
H-PDVB-0.05-SO3H | 0.26 | 55.1 | 69.8 | 76.8 |
H-PDVB-0.1-SO3H | 0.48 | 69.2 | 87.2 | 82.7 |
H-PDVB-0.2-SO3H | 0.76 | 77.2 | 87.9 | 91.4 |
H-PDVB-0.33-SO3H | 1.02 | 78.1 | 89.9 | 89.3 |
H-PDVB-0.5-SO3H | 1.24 | 75.3 | 82.0 | 85.3 |
H-PDVB-1.0-SO3H | 1.53 | 67.2 | 85.6 | 83.1 |
H-PDVB-1.5-SO3H | 1.86 | 58.1 | 82.7 | 83.8 |
Catalyst | Oleic Acid Conversion Rate a | Biodiesel Yield (Crude Jatropha Oil) b |
---|---|---|
[BMIm] [TS] | 35 | 64 |
[BMIm] [TS]-LiCl | 41 | - |
[BMIm] [TS]-FeCl3 | 90 | 85 |
[BMIm] [TS]-AlCl3 | 91 | 64 |
[BMIm] [TS]-ZnCl2 | 46 | 88 |
[BMIm] [TS]-CuCl2 | 86 | 52 |
[BMIm] [TS]-CoCl2 | 42 | 80 |
[BMIm] [TS]-MnCl2 | 45 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, J.; Ji, M.; Jiao, P.; Yin, Z.; Xia, Q.; Jiang, L.; Zhang, J.; Pan, H. Heterogeneous Acid Catalysts for Biodiesel Production: Effect of Physicochemical Properties on Their Activity and Reusability. Catalysts 2025, 15, 396. https://doi.org/10.3390/catal15040396
Hua J, Ji M, Jiao P, Yin Z, Xia Q, Jiang L, Zhang J, Pan H. Heterogeneous Acid Catalysts for Biodiesel Production: Effect of Physicochemical Properties on Their Activity and Reusability. Catalysts. 2025; 15(4):396. https://doi.org/10.3390/catal15040396
Chicago/Turabian StyleHua, Jingfeng, Mimi Ji, Ping Jiao, Zhixian Yin, Qineng Xia, Lingchang Jiang, Jing Zhang, and Hu Pan. 2025. "Heterogeneous Acid Catalysts for Biodiesel Production: Effect of Physicochemical Properties on Their Activity and Reusability" Catalysts 15, no. 4: 396. https://doi.org/10.3390/catal15040396
APA StyleHua, J., Ji, M., Jiao, P., Yin, Z., Xia, Q., Jiang, L., Zhang, J., & Pan, H. (2025). Heterogeneous Acid Catalysts for Biodiesel Production: Effect of Physicochemical Properties on Their Activity and Reusability. Catalysts, 15(4), 396. https://doi.org/10.3390/catal15040396