Enhanced Adsorption Ability of CoS-Doped CuS for Promoting Electrochemical Oxidation of HMF
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials and Characterizations
3.2. Synthesis of CoS–CuS and Control Catalysts
3.3. In Situ FT-IR Testing
3.4. Electrochemical Measurement
3.5. HPLC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balmaceda, M.M. Differentiation, materiality, and power: Towards a political economy of fossil fuels. Energy Res. Soc. Sci. 2018, 39, 130–140. [Google Scholar] [CrossRef]
- Cheng, Y.; Jabeen, S.; Lei, S.; Liu, N.; Liu, Y.; Liu, Y.; Li, Y.; Wu, X.; Tong, Z.; Yu, J. N-doped carbon dots—Modulated interfacial charge transfer and surface structure in FeNbO4 photocatalysts for enhanced CO2 conversion selectivity to CH4. Chem. Eng. J. 2024, 498, 155576. [Google Scholar] [CrossRef]
- Salman, M.; Long, X.; Dauda, L.; Mensah, C.N. The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea, and Thailand. J. Clean. Prod. 2019, 241, 118331. [Google Scholar] [CrossRef]
- Brosemer, K.; Schelly, C.; Gagnon, V.; Arola, K.L.; Pearce, J.M.; Bessette, D.; Olabisi, L.S. The energy crises revealed by COVID: Intersections of Indigeneity, inequity, and health. Energy Res. Soc. Sci. 2020, 68, 101661. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, J.; Tian, G.; Gong, Y.; Guo, B.; Cheng, F. Regulations on the corporate social irresponsibility in the supply chain under the multiparty game: Taking China’s organic food supply chain as an example. J. Clean. Prod. 2021, 317, 128459. [Google Scholar] [CrossRef]
- Fu, M.; Gu, L.; Zhen, Z.; Sun, M.; Tian, L. Optimal carbon tax income distribution and health welfare spillover effect based on health factors. Appl. Energy 2020, 276, 115475. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, W.; Rauf, A.; Ozturk, I. Transitioning from conventional energy to clean renewable energy in G7 countries: A signed network approach. Energy 2024, 307, 132655. [Google Scholar] [CrossRef]
- Jiao, H.; Al-Tohamy, R.; Li, F.; Schagerl, M.; Sun, J.; Ali, S.S. Harnessing wastewater—Based microalgae for biohydrogen production. Process Saf. Environ. Prot. 2024, 190, 372–385. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 1901–1929. [Google Scholar] [CrossRef]
- Zhuang, C.; Li, W.; Chang, Y.; Li, S.; Zhang, Y.; Li, Y.; Gao, J.; Chen, G.; Kang, Z. Coordination environment dominated catalytic selectivity of photocatalytic hydrogen and oxygen reduction over switchable gallium and nitrogen active sites. J. Mater. Chem. A 2024, 12, 5711–5718. [Google Scholar] [CrossRef]
- Suzuki, K.; Tsuji, N.; Shirai, Y.; Hassan, M.A.; Osaki, M. Evaluation of biomass energy potential towards achieving sustainability in biomass energy utilization in Sabah, Malaysia. Biomass Bioenergy 2017, 97, 149–154. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.; Panjwani, M.K.; Mangi, F.H.; Li, H.; Jan, A.; Ahmad, M.; Rehman, A. Assessing the energy dynamics of Pakistan: Prospects of biomass energy. Energy Rep. 2020, 6, 80–93. [Google Scholar] [CrossRef]
- Wu, X.; Tong, Z.; Liu, Y.; Li, Y.; Cheng, Y.; Yu, J.; Cao, P.; Zhuang, C.; Shi, Q.; Liu, N. Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene. Nano Res. 2024, 17, 7194–7202. [Google Scholar] [CrossRef]
- Krishnamoorthi, M.; Malayalamurthi, R.; He, Z.; Kandasamy, S. A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renew. Sustain. Energy Rev. 2019, 116, 109404. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, F.; Wang, F.; Wen, S.; Liu, X. Selective Oxidation of 5-hydroxymethylfurfural to 2,5-Diformylfuran Over a Vanadium Manganese Oxide Catalyst. Catal. Lett. 2022, 152, 2280–2287. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49, 4273–4306. [Google Scholar] [CrossRef]
- Zhang, H.; Mahunu, G.K.; Castoria, R.; Yang, Q.; Apaliya, M.T. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends Food Sci. Technol. 2018, 78, 180–187. [Google Scholar] [CrossRef]
- Trapasso, G.; Chícharo, B.; Gherardi, T.; Redolfi-Bristol, D.; Aricò, F. Iron(III) Sulfate—Mediated Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid. Catalysts 2023, 13, 1114. [Google Scholar] [CrossRef]
- Thiensuwan, N.; Sankaranarayanan, S.; Yokoi, T.; Ngamcharussrivichai, C. Exfoliated Layered Metal Oxide—Supported Ruthenium Catalysts for Base—Free Oxidation of 5-hydroxymethylfurfural into a Renewable Bioplastic Precursor. ACS Sustain. Chem. Eng. 2023, 11, 11424–11436. [Google Scholar] [CrossRef]
- Ahmed, S.; Cardinaels, R.; Abu-Jdayil, B.; Munam, A.; Iqbal, M.Z. Toughening Brittle Poly(ethylene Furanoate) with Linear Low—Density Polyethylene via Interface Modulation Using Reactive Compatibilizers. ACS Omega 2025, 10, 5756–5769. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Dai, Y.; Zhang, Y.; Jiang, M.; Zhou, G. High performance biobased poly(ethylene 2,5-furandicarboxylate) nanocomposites for food and cosmetics packaging materials: PMDA chain extended and TiO2 NPs functionalized. Arab. J. Chem. 2023, 16, 105228. [Google Scholar] [CrossRef]
- Kwaw, E.; Yongkun, M.; William, T.; Tibiru, A.M.; Sackle, S.A.; Meng, W.; Xiao, L. Effect of pulsed light treatment on the phytochemical, volatile, and sensorial attributes of lactic-acid-fermented mulberry juice. Int. J. Food Prop. 2018, 21, 213–228. [Google Scholar] [CrossRef]
- Cui, H.; Dai, Y.; Lin, L. Enhancing antibacterial efficacy of nisin in pork by poly-γ-glutamic acid/poly-l-lysine nanoparticles encapsulation. J. Food Saf. 2018, 38, e12475. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.; Zhang, Z.; Lv, B.; Li, J.; Liu, Z.; Zhu, W.; Tao, F.; Lv, G.; Yang, Y. High efficient catalytic oxidation of 5-hydroxymethylfurfural into 2,5-Furandicarboxylic acid under benign conditions with nitrogen–doped graphene encapsulated Cu nanoparticles. J. Energy Chem. 2020, 50, 96–105. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, M.; Xian, J.; Sun, Y.; Li, G. Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. J. Mater. Chem. A 2021, 9, 20164–20183. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Cheng, F.; Zhou, S.; Xu, Q.; Yin, D.; Liu, X. V–doped MoO3 nanorods for highly selective oxidation of 5-hydroxymethylfurfural to bio-monomer 2,5-furandicarboxylic acid. Renew. Energy 2024, 226, 120409. [Google Scholar] [CrossRef]
- Wu, T.; Fan, X.; Wang, C.; Wu, L.; Bai, Y.; Jia, G. The first principles study of the dual-atom catalyst based on g-C3N5 for efficient nitrogen fixation. Appl. Surf. Sci. 2025, 682, 161648. [Google Scholar] [CrossRef]
- Davidson, M.G.; Elgie, S.; Parsons, S.; Young, T.J. Production of HMF, FDCA and their derived products: A review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies. Green Chem. 2021, 23, 3154. [Google Scholar] [CrossRef]
- Massaro, M.C.; Monteverde, A.H.A. Techno-Economic Analysis of FDCA Production through Electrocatalytic Processes. J. Electrochem. Soc. 2022, 169, 054515. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Choi, M.; Kim, H.; Jeong, K.; Nam, K.T. Scaling Up Biomass Electrorefining: A 100-Liter Continuous-Flow Reactor for FDCA Production with >95% Carbon Efficiency. Joule 2023, 7, 1842–1857. [Google Scholar]
- Wei, L.; Dong, Z.; Chen, R.; Wu, Q.; Li, J. Review of carbon–based nanocomposites as electrocatalyst for H2O2 production from oxygen. Ionics 2022, 28, 4045–4063. [Google Scholar] [CrossRef]
- Lang, Z.; Wang, X.; Jabeen, S.; Cheng, Y.; Liu, N.; Liu, Z.; Gan, T.; Zhuang, Z.; Li, H.; Wang, D. Destabilization of Single–Atom Catalysts: Characterization, Mechanisms, and Regeneration Strategies. Adv. Mater 2025, 37, 2418942. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Niu, J.; Yang, C.; Qin, J.; Zhang, X.; Liu, R. The OER/ORR activities of copper oxyhydroxide series electrocatalysts. Mol. Catal. 2023, 537, 112942. [Google Scholar] [CrossRef]
- Li, J.; Qiu, R.; Zhang, S.; Peng, L.; Dong, Y.; Jiang, Y.; Li, Y.; Fang, N.; Yu, J.; Dong, J.-C. Synergistically Enhanced Co-Adsorption of Reactant and Hydroxyl on Platinum-Modified Copper Oxide for High–Performance HMF Oxidation. Adv. Mater. 2025, 37, 2417684. [Google Scholar] [CrossRef]
- Yu, H.; Li, F.; Zhang, Y.; Wang, C.; Liu, S.; Zhou, W.; Li, H.; Sun, Y. Boosting the Electrocatalytic Oxidation of Biomass-Derived Aldehydes on Cu-Co Oxide/Hydroxide Hierarchical Nanostructures. ACS Catal. 2021, 11, 5069–5078. [Google Scholar]
- Liu, S.; Dou, S.; Meng, J.; Liu, Y.; Liu, Y.; Yu, H. Efficient biobased carboxylic acids synthesis by synergistic electrocatalysis of multi–active sites on bimetallic Cu–Co oxide/oxyhydroxide. Appl. Catal. B Environ. 2023, 331, 122709. [Google Scholar] [CrossRef]
- Liao, S.; Shi, S.; Hu, J.; Yao, W.; Liu, S.; Wang, W.; Xiao, W.; Zhao, D.; Wang, S.; Chen, C. Enhanced electrooxidation of 5-hydroxymethylfurfural over a ZIF–67@β–Ni(OH)2/NF heterostructure catalyst: Synergistic effects and mechanistic insights. J. Colloid Interface Sci. 2025, 688, 806–817. [Google Scholar] [CrossRef]
- Gong, C.; Meng, X.; Jin, C.; Yang, M.; Liu, J.; Sheng, K.; Pu, Y.; Ragauskas, A.; Ji, G.; Zhang, X. Green synthesis of cellulose formate and its efficient conversion into 5-hydroxymethylfurfural. Ind. Crops Prod. 2023, 192, 115985. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Zhao, T.; Li, F.; Zhang, M.; Li, J.; Zou, Y.; Wang, W.; Cobbina, S.J.; Wu, X. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food Chem. 2016, 194, 712–722. [Google Scholar] [CrossRef]
- Dai, H.; Huang, Y.; Bai, H.; Li, H.; Zhao, H.; Wang, F.; Fan, W.; Shi, W. Adsorption–Activation Bifunctional Center of Al/Co–Base Catalyst for Boosting 5-hydroxymethylfurfural Oxidation. Adv. Energy Mater 2024, 14, 2402789. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, X.; Tao, S.; Wu, J.; Wang, H.; Wei, X.; Wang, T.; Zhou, B.; Lu, Y.; Frauenheim, T. Heterogeneous–Interface–Enhanced Adsorption of Organic and Hydroxyl for Biomass Electrooxidation. Adv. Mater 2022, 34, 2204089. [Google Scholar] [CrossRef]
- Yao, Y.; He, J.; Yang, X.; Peng, L.; Zhu, X.; Li, K.; Qu, M. Superhydrophilic/underwater superaerophobic self–supporting CuS/Cu foam electrode for efficient oxygen evolution reaction. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127934. [Google Scholar] [CrossRef]
- Li, M.C.; Qian, Y.T.; Du, J.M.; Wu, H.R.; Zhang, L.Y.; Li, G.; Li, K.D.; Wang, W.M.; Kang, D.J. CuS Nanosheets Decorated with CoS2 Nanoparticles as an Efficient Electrocatalyst for Enhanced Hydrogen Evolution at All pH Values. ACS Sustain. Chem. Eng. 2019, 7, 14016–14022. [Google Scholar] [CrossRef]
- Bilecka, I.; Niederberger, M. Microwave Chemistry for Inorganic Nanomaterials Synthesis. Nanoscale 2010, 2, 1358–1374. [Google Scholar] [CrossRef]
- Rao, B.N.; Satyanarayana, N. Aging effects of KOH+NH2OH solution on the etching characteristics of silicon. ECS J. Solid State Sci. Technol. 2021, 10, 103003. [Google Scholar]
- Komarneni, S.; Li, Q.; Roy, R. Microwave–hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 1992, 27, 1393–1405. [Google Scholar] [CrossRef]
- Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Microwave–Assisted Synthesis of Metallic Nanostructures in Solution. Chem. Eur. J. 2005, 11, 3417–3424. [Google Scholar] [CrossRef]
- Raghavendra, K.V.G.; Rao, K.M.; Kumar, N.T.U. Hydrothermal synthesis of CuS/CoS nano composite as an efficient electrode for the supercapattery applications. J. Energy Storage 2021, 41, 102749. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Liu, N.; Li, Y.; Cheng, Y.; Cao, P.; Liu, Y.; Yuan, X.; Zhang, X.; Li, H. Modification strategies on nickel–based electrocatalysts for energy–efficient anodic reactions. Nano Res. 2025, 18, 94907014. [Google Scholar] [CrossRef]
- Gao, H.; Fang, M.; Zhang, Z.; Han, Y.; Wang, D.; Wang, Y.; Xia, H.; Zhu, X.; Miao, S.; Kang, X. Electronic coupling of iron–cobalt in Prussian blue towards improved peroxydisulfate activation. J. Colloid Interface Sci. 2025, 678, 1087–1098. [Google Scholar] [CrossRef]
- Peng, C.; Luo, G.; Zhang, J.; Chen, M.; Wang, Z.; Sham, T.-K.; Zhang, L.; Li, Y.; Zheng, G. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580. [Google Scholar] [CrossRef]
- Qi, R.; Chen, F.; Zhong, Z.; Jia, Y.; Yang, Y.; Yun, Z.; Ye, Q. Multi–morphology CuS catalyst for selective electrocatalytic of CO2 conversion to formate. J. Alloys Compd. 2024, 1008, 176713. [Google Scholar] [CrossRef]
- Swathi, S.; Yuvakkumar, R.; Ravi, G.; Hong, S.I.; Velauthapillai, D.; Thambidurai, M.; Dang, C.; Al-Mohaimeed, A.M.; Al-onazi, W.A. CuS@β–SnS nanocomposite electrocatalysts for efficient electrochemical water oxidation. Int. J. Hydrogen Energy 2021, 46, 3387–3400. [Google Scholar] [CrossRef]
- Zhuang, C.; Chang, Y.; Li, W.; Li, S.; Xu, P.; Zhang, H.; Zhang, Y.; Zhang, C.; Gao, J.; Chen, G. Light–Induced Variation of Lithium Coordination Environment in g–C3N4 Nanosheet for Highly Efficient Oxygen Reduction Reactions. ACS Nano 2024, 18, 5206–5217. [Google Scholar] [CrossRef]
- Kundu, J.; Khilari, S.; Bhunia, K. Ni-Doped CuS as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. Catal. Sci. Technol. 2019, 9, 406–417. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, T.; Dong, C.-L.; Huang, Y.-C.; Li, Y.; Chen, J.; Zou, Y.; Wang, S. Tuning the Selective Adsorption Site of Biomass on Co3O4 by Ir Single Atoms for Electrosynthesis. Adv. Mater. 2021, 33, 2007056. [Google Scholar] [CrossRef]
- Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue, X.; Xiao, Z.; Zou, Y.; Wang, S. Activity origin and alkalinity effect of electrocatalytic biomass oxidation on nickel nitride. J. Energy Chem. 2021, 61, 179–185. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, Y.; Sun, M.; Huang, Q.; Sun, K.; Ma, J.; Li, J.; Tan, H.; Li, M.; Pan, Y. Cooperative Rh-O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production. J. Am. Chem. Soc. 2023, 145, 17577–17587. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Fan, C.; Liu, N.; Yin, J.; Li, Y.; Cheng, Y.; Yuan, X.; Zhang, X.; Liu, Y. A nanoflower-on-nanowire heterogeneous electrocatalyst for enhanced interfacial water activation in nitrate reduction reaction. Nano Res. 2025, 18, 94907135. [Google Scholar] [CrossRef]
- Barwe, S.; Weidner, J.; Cychy, S.; Morales, D.M.; Dieckhöfer, S.; Hiltrop, D.; Masa, J.; Muhler, M.; Schuhmann, W. Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural Using High-Surface-Area Nickel Boride. Angew. Chem. Int. Ed. 2018, 57, 11460–11464. [Google Scholar] [CrossRef]
- Poerwoprajitno, A.R.; Gloag, L.; Watt, J.; Cychy, S.; Cheong, S.; Kumar, P.V.; Benedetti, T.M.; Deng, C.; Wu, K.-H.; Marjo, C.E. Faceted Branched Nickel Nanoparticles with Tunable Branch Length for High-Activity Electrocatalytic Oxidation of Biomass.Angew. Chem. Int. Ed. 2020, 59, 15487–15491. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, P.; Liu, Y.; Yang, R.; Li, Y.; Cheng, Y.; Yu, J.; Zhang, X.; Phiri, P.; Yuan, X.; Yang, Y.; et al. Enhanced Adsorption Ability of CoS-Doped CuS for Promoting Electrochemical Oxidation of HMF. Catalysts 2025, 15, 422. https://doi.org/10.3390/catal15050422
Cao P, Liu Y, Yang R, Li Y, Cheng Y, Yu J, Zhang X, Phiri P, Yuan X, Yang Y, et al. Enhanced Adsorption Ability of CoS-Doped CuS for Promoting Electrochemical Oxidation of HMF. Catalysts. 2025; 15(5):422. https://doi.org/10.3390/catal15050422
Chicago/Turabian StyleCao, Peng, Yunliang Liu, Ruihua Yang, Yaxi Li, Yuanyuan Cheng, Jingwen Yu, Xinyue Zhang, Peter Phiri, Xinya Yuan, Yi Yang, and et al. 2025. "Enhanced Adsorption Ability of CoS-Doped CuS for Promoting Electrochemical Oxidation of HMF" Catalysts 15, no. 5: 422. https://doi.org/10.3390/catal15050422
APA StyleCao, P., Liu, Y., Yang, R., Li, Y., Cheng, Y., Yu, J., Zhang, X., Phiri, P., Yuan, X., Yang, Y., Liu, N., Liu, Y., & Li, H. (2025). Enhanced Adsorption Ability of CoS-Doped CuS for Promoting Electrochemical Oxidation of HMF. Catalysts, 15(5), 422. https://doi.org/10.3390/catal15050422