Research Progress on CO2 Capture and Catalytic Conversion of Metal-Organic Frameworks Materials
Abstract
:1. Introduction
2. Metal-Organic Framework Materials (MOFs)
2.1. Classification of MOFs
2.1.1. Categorized by Ligand Type
2.1.2. Classified According to the Cambridge Structural Database (CSD)
2.1.3. Classification Based on Substructure Units (SBUs)
2.1.4. Classification by Function
2.2. Synthesis of Metal-Organic Skeleton Material MOFs
- (1)
- Solvothermal/Hydrothermal Synthesis
- (2)
- Microwave-Assisted Synthesis
- (3)
- Mechanochemical Synthesis
- (4)
- Diffusion Method
- (5)
- Ultrasound-Assisted Synthesis
- (6)
- Electrochemical Synthesis
- (7)
- Specialized Methods
2.3. General Modification Strategies for Metal-Organic Skeleton Materials MOFs
3. CO2 Capture and Catalytic Conversion by MOFs
3.1. CO2 Capture by MOFs
MOF | Metal Center | Specific Surface Area/m2·g−1 | CO2 Adsorption Capacity/mmol·g−1 | Pressure/MPa | Selective CO2/N2 | Reference |
---|---|---|---|---|---|---|
MIL-53 | Al | 634 | 10.4 | 30 | 50 | [44,45] |
MIL-53 | Mn0.27Al0.73 | 1748 | 11.8 | 30 | 83 | [46] |
MIL-53 | Mn0.5Al0.5 | 1817 | 13.3 | 30 | 95 | [46] |
MIL-53 | Mn0.6Al0.4 | 1576 | 12.8 | 30 | 45 | [46] |
MIL-100 | Fe | 1811 | 2.6 | 1 | 49.6 | [47] |
MIL-100 | Al, Fe | 1993 | 3.3 | 1 | 76.5 | [46] |
MIL-120 | Al | 3084 | 4.8 | 10 | - | [46] |
MOF-74 | Mg | 1640 | 8.0 | 1 | 233 | [48,49,50] |
MOF-74 | Zn0.14Mg0.86 | 1277 | 0.5 | 1 | - | [51] |
MOF-74 | Zn0.48Mg0.52 | 794 | 2.1 | 1 | - | [51] |
MOF-74 | Zn0.75Mg0.25 | 668 | 3.2 | 1 | - | [51] |
MOF-74 | Ni | 1274 | 5.2 | 1.1 | 11.3 | [41,47] |
MOF-74 | Pd, Ni | 1115 | 12.2 | 32 | 14.6 | [52] |
MOF-74 | Co | 1404 | 3.7 | 1.1 | 9.7 | [52] |
MOF-74 | Pd, Co | 1088 | 11.4 | 32 | 12.4 | [52] |
MOF-5 | Zn | 1858 | 0.5 | 1 | - | [53] |
MOF-11 | Zn | 2096 | 14.7 | 35 | - | [54] |
MOF-210 | Zn | 6240 | - | 50 | - | [55] |
UiO-66 | Zr | 1455 | 4.3 | 20 | - | [56] |
HKUST-1 | Cu | 1440 | 3.4 | 1 | - | [57] |
HKUST-1 | Li, Cu | 1000 | 2.6 | 2 | - | [58] |
Cu3(BTC)2 | Cu | 1781 | 10.7 | 35 | - | [54] |
[Ni6(OH)4(COO)8(H2O)6] | Ni | 468 | 1.4 | 1 | - | [58] |
[Ni4.1Co1.9(OH)4(BTB)8/3(H2O)6] | Ni4.1Co1.9 | 491 | 1.7 | 1 | - | [58] |
[Ni3.1Co2.9(OH)4(BTB)8/3(H2O)6] | Ni3.1Co2.9 | 526 | 1.9 | 1 | - | [58] |
[Ni2.8Co3.2(OH)4(BTB)8/3(H2O)6] | Ni2.8Co3.2 | 819 | 2.3 | 1 | - | [58] |
3.2. Catalytic Conversion of CO2 by MOFs
- (1)
- Photocatalysis
- (2)
- Electrocatalytic
- (3)
- Thermal Catalysis
- (4)
- Multiphase Catalysis
4. Challenges and Future Perspectives
4.1. Technological Problems
- (1)
- Stability
- (2)
- Cost
- (3)
- Adaptation to Working Conditions
4.2. Frontier Research Directions
- (1)
- Machine Learning Assisted Design
- (2)
- Replacement of Precious Metals with Cheaper Metals and Green Synthesis
Funding
Conflicts of Interest
References
- Zhou, Y.J.; Han, J.F.; Wang, F.; Liu, X.S.; Liu, Y.J.; Yan, X.; Zhang, G.S.; Ma, J.X.; Wei, T.; Jin, Z.W.; et al. Global warming changes patterns of runoff and sediment flux in Tibetan Yangtze River headwater. J. Hydrol. 2025, 656, 133009. [Google Scholar] [CrossRef]
- Available online: https://ourworldindata.org/grapher/ghg-emissions-by-sector (accessed on 22 April 2025).
- Available online: https://baijiahao.baidu.com/s?id=1816323030870707434&wfr (accessed on 22 April 2025).
- Chagolla-Aranda, M.A.; Simá, E.; Hernández-López, I.; Piña-Ortiz, A.; Ávila-Hernández, A. Dynamic thermal evaluation of a green roof system under warm weather conditions: Case of Tropical and Dry climates. J. Build. Eng. 2025, 103, 112053. [Google Scholar] [CrossRef]
- Joseph, M.; Charlotte, L.O.; Silvia, C.; Luísa, G.C.; Felipe, D.; Lynn, V.D.; Jeff, O.; Tim, N. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 2023, 9, eadh0756. [Google Scholar] [CrossRef]
- Li, W.H.; An, X.F.; Chen, J.J.; Dong, F. Functionally graded porous materials derived from MOFs based on cellulose skeleton support strategy for low energy consumption carbon dioxide separation from flue gas. Chem. Phys. Lett. 2023, 832, 140890. [Google Scholar] [CrossRef]
- Luo, H.H.; Yu, L.Q.; Liu, C.; Chen, N.N.; Xue, K.H.; Liu, W.D.; Zhu, H.F.; Zhang, Y.P. Comprehensive review of synthesis strategies and performance enhancement of metal-organic frameworks and their derivatives for photocatalytic applications. Journal of Energy Chemistry. 2025, 103, 408–439. [Google Scholar] [CrossRef]
- Deyko, G.S.; Glukhov, L.M.; Isaeva, V.I.; Vergun, V.V.; Chernyshev, V.V.; Kapustin, G.I.; Kustov, L.M. Adsorption of methane and ethane on HKUST-1 metal-organic framework and mesoporous silica composites. Mendeleev Commun. 2023, 33, 817–820. [Google Scholar] [CrossRef]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Loredana, V.; Bartolomeo, C.; Sachin, C.; Silvia, B.; Merete, H.N.; Søren, J.; Karl, P.L. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718. [Google Scholar] [CrossRef]
- Bahareh, B.; Saeed, D. Highly efficient visible-light photocatalytic nitrogen fixation via single-atom iron catalyst site and synergistic effect of Zr-cluster in zirconium-based porphyrinic metal-organic frameworks (PCN-222). J. Solid State Chem. 2023, 324, 124079. [Google Scholar] [CrossRef]
- Glove, T.; Gregory, W.P.; Bryan, J.S.; David, B.; Omar, Y. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 2011, 66, 163–170. [Google Scholar] [CrossRef]
- Subham, S.; Sumit, M.; Debajit, S. Luminescent lanthanide metal organic frameworks (LnMOFs): A versatile platform towards organomolecule sensing. Coord. Chem. Rev. 2022, 470, 214707. [Google Scholar] [CrossRef]
- Tu, T.N.; Nguyen, M.V.; Nguyen, H.L.; Brian, Y.; Kyle, E.C.; Selçuk, D. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev. 2018, 364, 33–50. [Google Scholar] [CrossRef]
- Du, X.Y.; Wu, G.; Dou, X.L.; Ding, Z.Y.; Xie, J. Recent advances of fluorescence MOF-based sensors for the freshness of aquatic products. Microchem. J. 2024, 203, 110901. [Google Scholar] [CrossRef]
- Peyman, Z.M.; Aurelia, L.; Liu, X.W.; Rocio, B.; Wang, S.D. Targeted classification of metal–organic frameworks in the Cambridge structural database (CSD). Chem. Sci. 2020, 11, 8373–8387. [Google Scholar] [CrossRef]
- Niu, Y.F.; Cui, L.T.; Han, J.; Zhao, X.L. Solvent-mediated secondary building units (SBUs) diversification in a series of MnII-based metal-organic frameworks (MOFs). J. Solid State Chem. 2016, 241, 18–25. [Google Scholar] [CrossRef]
- Xie, G.M.; Bai, X.Y.; Yu, F.; Yuang, Q.Y.; Wang, Z.J. Oxygen vacancy engineering in MOF-derived AuCu/ZnO bimetallic catalysts for methanol synthesis via CO2 hydrogenation. Catal. Today 2024, 434, 114702. [Google Scholar] [CrossRef]
- Cheng, Q.Y.; Zhang, S.; Gu, Y.H.; Wang, Z.; Wang, J.T.; Li, L.; Wang, Y.J.; Wang, H.; Qian, J.D. Catalytic systems for the direct synthesis of dimethyl carbonate from carbon dioxide and methanol containing dehydrating agent, a review. J. Fuel Chem. Technol. 2023, 51, 1593–1616. [Google Scholar] [CrossRef]
- Yuan, Y.X.; Liao, Q.L.; Zhao, T.X. Synthesis of UiO-66-NH2@PILs core-shell composites for CO2 conversion into cyclic carbonates via synergistic catalysis under solvent- and additive-free conditions. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135492. [Google Scholar] [CrossRef]
- Mutyala, S.; Jonnalagadda, M.; Ibrahim, S.M. Effect of modification of UiO-66 for CO2 adsorption and separation of CO2/CH4. J. Mol. Struct. 2020, 1227, 129506. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Chen, H.Y.; Qian, Y.; Xi, H.X.; Xia, Q.B. Enhancement effect of lithium-doping functionalization on methanol adsorption in copper-based metal-organic framework. Chem. Eng. Sci. 2015, 123, 1–10. [Google Scholar] [CrossRef]
- Plant, D.F.; Maurin, G.; Deroche, I.; Llewellyn, P.L. Investigation of CO2 adsorption in Faujasite systems: Grand canonical monte carlo and molecular dynamics simulations based on a new derived Na+–CO2 force field. Microporous Mesoporous Mater. 2007, 99, 70–78. [Google Scholar] [CrossRef]
- Aisha, A.; Naseem, I.; Tayyaba, N.; Majid, A.; Timothy, L. Easun Efficient One-Pot Synthesis of a Hexamethylenetetramine-Doped Cu-BDC Metal-Organic Framework with Enhanced CO2 Adsorption. Nanomaterials 2019, 9, 1063. [Google Scholar] [CrossRef]
- Aysu, Y.; Yuda, Y. A controlled synthesis strategy to enhance CO2 adsorption capacity of MIL-88B type MOF crystallites by the crucial role of narrow micropores. Ind. Eng. Chem. Res. 2019, 58, 14058–14072. [Google Scholar] [CrossRef]
- Rasha, A. A review on modified MOFs as CO2 adsorbents using mixed metals and functionalized linkers. Samarra J. Pure Appl. Sci. 2023, 5, 1–18. [Google Scholar] [CrossRef]
- Zhou, J.W.; Liu, M.; Chen, X.; Bai, S.Y.; Sun, J.H. Interfacial growth strategy for synthesizing Mg-MOF-74@clinoptilolites with hierarchical structures for enhancing adsorptive separation performance of CO2/CH4, CH4/N2 and CO2/N2. Surf. Interfaces 2024, 54, 105106. [Google Scholar] [CrossRef]
- Zheng, Z.L.; Nguyenc, H.L.; Hanikel, N.; Li, K.K.-Y.; Zhou, Z.H.; Ma, T.; Yaghi, O.M. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 2023, 18, 136–156. [Google Scholar] [CrossRef]
- Liu, L.J.; Zuo, L.Y.; Zhai, X.J.; Xiao, X.P.; Fan, H.T.; Li, B.; Wang, L.Y. A novel hexagonal prism of Zr-based MOF@ZnIn2S4 core−shell nanorod as an efficient photocatalyst for hydrogen evolution. Appl. Catal. B Environ. Energy 2025, 361, 124686. [Google Scholar] [CrossRef]
- Fang, X.X.; Zhu, Y.Z.; Dong, H.T.; Ma, N.; Dai, W. Ability evaluation of thiophenic sulfurs capture with a novel (MOF-818)-on-(Cu-BTC) composite in the presence of moisture. Microporous Mesoporous Mater. 2022, 333, 111756. [Google Scholar] [CrossRef]
- Ivan, V.G.; Vladimir, Y.G. High-throughput screening of Metal−Organic frameworks for helium recovery from natural gas. Microporous Mesoporous Mater. 2024, 368, 113021. [Google Scholar] [CrossRef]
- Aniruddha, D.; Nagaraj, A.; Amarajothi, D.; Shyam, B. A highly catalytically active Hf(IV) metal-organic framework for Knoevenagel condensation. Microporous Mesoporous Mater. 2019, 284, 459–467. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.J.; Liu, X.Y.; Hanna, S.L.; Wang, X.J.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O.K. A historical overview of the activation and porosity of metal–organic frameworks. Chem. Soc. Rev. 2020, 49, 7406–7427. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Xing, X.F.; Wang, D.; Zhang, J.Z.; Chu, J.M.; Yu, C.C.; Wei, Z.T.; Hu, M.L.; Zhang, X.; Li, Z.X. Highly ordered hierarchically macroporous MIL-125 with high specific surface area for photocatalytic CO2 fixation. ACS Sustain. Chem. Eng. 2019, 8, 148–153. [Google Scholar] [CrossRef]
- Dipendu, S.; Deng, S.G. Hydrogen adsorption on metal-organic framework MOF-177. Tsinghua Sci. Technol. 2010, 15, 363–376. [Google Scholar] [CrossRef]
- Yoshio, H.; Katsuhei, K.; Akira, M.; Shin, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 15, 897–898. [Google Scholar] [CrossRef]
- Yoshio, H.; Hidetoshi, W.; Toshio, T.; Osamu, K. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839. [Google Scholar] [CrossRef]
- Yoshio, H.; Akira, M.; Ryutaro, T. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1989, 85, 2309–2326. [Google Scholar] [CrossRef]
- Yang, J.F.; Bai, H.H.; Zhang, F.F.; Liu, J.Q.; Winarta, J.; Wang, Y.; Mu, B. Effects of activation temperature and densification on adsorption performance of MOF MIL-100(Cr). J. Chem. Eng. Data 2019, 64, 5814–5823. [Google Scholar] [CrossRef]
- Farhad, A.; Salman, A.; Hossein, M.; Mashallah, R.; Tejraj, M.A.; Mohammad, A. Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66. J. Environ. Manag. 2020, 274, 111155. [Google Scholar] [CrossRef]
- Jia, B.Y.; Sun, J.H.; Bing, L.J.; Bai, S.Y. Nonionic surfactant-assisted strategy towards disorderly layered UiO-66-on-clinoptilolites heterostructure as efficient adsorbent for selective adsorption of CO2 and CH4. Mater. Lett. 2022, 328, 133147. [Google Scholar] [CrossRef]
- Yan, X.L.; Komarneni, S.; Zhang, Z.Q.; Yan, Z.F. Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 2014, 183, 69–73. [Google Scholar] [CrossRef]
- Allmond, K.; Stone, J.; Harp, S.; Mujibur, K. Synthesis and electrospraying of nanoscale MOF (Metal Organic Framework) for high-performance CO2 adsorption membrane. Nanoscale Res. Lett. 2017, 12, 6. [Google Scholar] [CrossRef]
- Sandrine, B.; Philip, L.L.; Christian, S.; Franck, M.; Thierry, L.; Gérard, F. Different adsorption behaviors of methane and CO2 in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 2005, 127, 13519–13521. [Google Scholar] [CrossRef]
- Saptasree, B.; Debabrata, S.; Christos, D.M.; Karam, B.I.; Xie, H.M.; Wang, X.L.; Michael, L.B.; Nathaniel, M.B.; Vinayak, P.D.; Timur, I.; et al. Suitability of a diamine functionalized metal–organic framework for direct air capture. Chem. Sci. 2023, 14, 9380–9388. [Google Scholar] [CrossRef]
- Hussein, R.A.; Zana, H.R.; Liu, L.H.; Wang, S.B.; Liu, S.M. Striking CO2 capture and CO2/N2 separation by Mn/Al bimetallic MIL-53. Polyhedron 2021, 193, 114898. [Google Scholar] [CrossRef]
- Van, N.L.; Van, C.N.; Huu, T.N.; Hoai, D.T.; Thach, N.T.; Woo-Sik, K. Facile synthesis of bimetallic MIL-100(Fe, Al) for enhancing CO2 adsorption performance. Microporous Mesoporous Mater. 2023, 360, 112716. [Google Scholar] [CrossRef]
- Garzón-Tovar, L.; Carné-Sánchez, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Optimised room temperature, water-based synthesis of CPO-27-M metal–organic frameworks with high space-time yields. J. Mater. Chem. A 2015, 3, 20819–20826. [Google Scholar] [CrossRef]
- Zhuang, X.L.; Zhang, S.T.; Tang, Y.J.; Yu, F.; Li, Z.M.; Pang, H. Recent progress of MOF/MXene-based composites: Synthesis, functionality and application. Coord. Chem. Rev. 2023, 490, 215208. [Google Scholar] [CrossRef]
- Yang, D.A.; Cho, H.Y.; Kim, J.; Yang, S.T.; Ahn, W.S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Liang, L.; Zhang, X.; Xu, P.; Sun, J.M. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS Appl. Mater. Interfaces 2021, 13, 61334–61345. [Google Scholar] [CrossRef]
- Abhijit, K.A.; Lin, K.S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon. Chem. Eng. J. 2016, 284, 1348–1360. [Google Scholar] [CrossRef]
- Deng, H.X.; Christian, J.D.; Hiroyasu, F.; Ricardo, B.F.; John, T.; Carolyn, B.K.; Wang, B.; Omar, M.Y. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.M.; Omar, M.Y. Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Hiroyasu, F.; Nakeun, K.; Yong, B.G.; Naoki, A.; Sang, B.C.; Eunwoo, C. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef]
- Farrando-Pérez, J.; Martinez-Navarrete, G.; Gandara-Loe, J.; Reljic, S.; Garcia-Ripoll, A.; Fernandez, E.; Silvestre-Albero, J. Controlling the adsorption and release of ocular drugs in metal–organic frameworks: Effect of polar functional groups. Inorg. Chem. 2022, 61, 18861–18872. [Google Scholar] [CrossRef]
- Zhou, L.L.; Niu, Z.D.; Jin, X.; Tang, L.H.; Zhu, L.P. Effect of lithium doping on the structures and CO2 adsorption properties of metal-organic frameworks HKUST-1. Chem. Sel. 2018, 3, 12865–12870. [Google Scholar] [CrossRef]
- Cui, P.; Li, J.J.; Dong, J.; Zhao, B. Modulating CO2 adsorption in metal–organic frameworks via metal-Ion doping. Inorg. Chem. 2018, 57, 6135–6141. [Google Scholar] [CrossRef] [PubMed]
- Christian, S.D.; Liu, Y.Z.; Kyle, E.C.; Omar, M.Y. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307. [Google Scholar] [CrossRef]
- Fu, Y.G.; Sun, D.G.; Chen, Y.J.; Huang, R.K.; Ding, Z.X.; Fu, X.Z.; Li, Z.H. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364–3367. [Google Scholar] [CrossRef]
- Nai, J.W.; Zhang, J.T.; Xiong, W. Construction of single-crystalline prussian blue analog hollow nanostructures with tailorable topologies. Chem 2018, 4, 1967–1982. [Google Scholar] [CrossRef]
- Wang, S.B.; Yao, W.S.; Lin, J.L.; Ding, Z.X.; Wang, X.C. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Li, S.M.; Huang, N.Y.; Li, X.R. Recent advances in metal–organic framework-derived materials for electrocatalytic and photocatalytic CO2 reduction. Coord. Chem. Rev. 2024, 510, 215858. [Google Scholar] [CrossRef]
- Wang, P.; Ba, X.H.; Zhang, X.W.; Gao, H.Y.; Han, M.Y.; Zhao, Z.Y.; Chen, X.; Wang, L.M.; Diao, X.M.; Wang, G. Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chem. Eng. J. 2023, 457, 141248. [Google Scholar] [CrossRef]
- Fu, Y.H.; Yang, H.; Du, R.F.; Tu, G.M.; Xu, C.H.; Zhang, F.M.; Fan, M.H.; Zhu, W.D. Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light. RSC Adv. 2017, 7, 42819–42825. [Google Scholar] [CrossRef]
- Lin, H.; Ma, M.; Qi, H.; Wang, X.; Xing, Z.; Alowasheeir, A.; Tang, H.P.; Jun, C.J.; Yamauchi, Y.; Liu, S.D. 3D-Printed photocatalysts for revolutionizing catalytic conversion of solar to chemical energy. Prog. Mater. Sci. 2025, 151, 101427. [Google Scholar] [CrossRef]
- Xu, H.J.; Cao, J.; Shan, C.F.; Wang, B.K.; Xi, P.X.; Liu, W.S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. Int. Ed. 2018, 57, 8654–8658. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, C.C.; Li, D.D.; Guo, W.J.; Zhong, D.Z.; Zhao, Q. FeNi-based bimetallic MIL-101 directly applicable as an efficient electrocatalyst for oxygen evolution reaction. Microporous Mesoporous Mater. 2019, 286, 92–97. [Google Scholar] [CrossRef]
- Gaikwad, S.; Kim, Y.; Gaikwad, R.; Han, S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. J. Environ. Chem. Eng. 2021, 9, 105523. [Google Scholar] [CrossRef]
- Zhang, W.J.; Hu, Y.; Ma, L.B.; Zhu, G.Y.; Wang, Y.R.; Xue, X.L.; Chen, R.P.; Yang, S.Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275. [Google Scholar] [CrossRef]
- Zou, R.Y.; Li, P.Z.; Zeng, Y.F.; Liu, J.; Zhao, R.; Duan, H.; Luo, Z.; Wang, J.G.; Zou, R.Q.; Zhao, Y.L. Bimetallic metal-organic frameworks: Probing the lewis acid site for CO2 conversion. Small 2016, 12, 2334–2343. [Google Scholar] [CrossRef]
- Sun, M.Y.; Zhao, B.H.; Chen, F.P.; Liu, C.B.; Lu, S.Y.; Yu, Y.F.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280. [Google Scholar] [CrossRef]
- Rui, Y.; Huang, Q.; Sha, X.L.; Gao, B.B.; Peng, J. Regulation of bimetallic coordination centers in MOF catalyst for electrochemical CO2 reduction to formate. Int. J. Mol. Sci. 2023, 24, 18. [Google Scholar] [CrossRef]
- Naoki, O.; Sayaka, U. Metal–oxo-cluster-based crystals as solid catalysts. Chem Catal. 2023, 37, 100607. [Google Scholar] [CrossRef]
- Di, Z.; Qi, Y.; Yu, X.; Hu, F. The progress of metal-organic framework for boosting CO2 conversion. Catalysts 2022, 12, 1582. [Google Scholar] [CrossRef]
- Xu, N.; Li, J.M.; Wang, Y.J.; Akram, M.Y.; Hu, B.; Dong, H.J. Adjustment of charge transfer behavior for layered photocatalysts through fabricating face-to-face 2D/2D S-scheme heterojunction toward efficient carbon dioxide reduction. Sep. Purif. Technol. 2025, 354, 129518. [Google Scholar] [CrossRef]
- Chae, H.K.; Diana, Y.S.; Kim, J.; Go, Y.B.; Eddaoudi, M.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.Q.; Xu, H.T.; Su, Y.Q.; Xu, Z.L.; Wang, K.F.; Wang, W.Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, P.; Li, G.; Webley, P.A. Effect of flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by vacuum swing adsorption. Energy Procedia 2009, 1, 1115–1122. [Google Scholar] [CrossRef]
- Noureddine, J.; Ali, B.A.; Imed, R.F. Machine learning for MOF catalyst design: Current status and future perspectives. Artif. Intell. Rev. 2023, 56, 3853–3876. [Google Scholar] [CrossRef]
- Anantharaj, S. Ru-tweaking of non-precious materials: The tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. J. Mater. Chem. A 2021, 9, 6710–6731. [Google Scholar] [CrossRef]
- Chen, Y.T.; Tang, S.K. Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. J. Solid State Chem. 2019, 276, 68–74. [Google Scholar] [CrossRef]
Series | Metal Nodes | Organic Ligand | Characteristic | Limitation |
---|---|---|---|---|
IRMOF Series | Zn2+ (e.g., Zn4O clusters) | Carboxylic acid ligands (e.g., terephthalic acid, BDC) | 1. High specific surface area: IRMOF-1 (MOF-5) has a specific surface area of 3000 m2·g−1 2. Adjustable pore size: extend the pore by extending the ligand length (e.g., IRMOF-16 pore size up to 2.9 nm) 3. Applications: hydrogen storage, CO2 adsorption | Poor water stability |
ZIF Series | Zn2+or Co2+ | Imidazole ligands (e.g., 2-methylimidazole) | 1. Zeolite topology: mimics the pore structure of natural zeolites (e.g., SOD, RHO topology) 2. High chemical stability: ZIF-8 is stable in boiling water and resistant to acid and alkali. 3. Selective adsorption: ZIF-7 is >100% selective for CO2/CH4. 4. Applications: gas separation, catalytic carriers | Easily restricted pore size |
MIL Series | Fe3+, Cr3+, Al3+, etc. | Carboxylic acid ligands (e.g., homotrimellitic acid, BTC) | 1. Variety of advantages: e.g., MIL-101 (Cr) 2. Ultra large pores: pore size up to 3.4 nm, specific surface area 4100 m2·g−1 3. Applications: macromolecular adsorption (e.g., drug delivery), catalysis MIL-53(Al) 4. Breathing effect: orifices open and close dynamically with pressure/temperature 1. Applications: CO2 capture, water adsorption. 2. Advantage: high thermal stability (some MIL materials withstand temperatures > 573 K) | Synthesis of high environmental pollution, adsorbent regeneration difficulty |
UiO Series | Zr⁶ clusters (e.g., UiO-66, UiO-67) | Carboxylic acid ligands (e.g., terephthalic acid) | 1. Ultra-high stability: resistant to water, acid (pH = 1–11), high temperature (773 K) 2. Functionalization potential: Enhancement of CO2 adsorption by post-synthetic modification with the introduction of amino groups (UiO-66-NH2) 3. Applications: nuclear waste treatment, catalysis (e.g., photocatalytic degradation of pollutants) | Limited resistance to high temperatures and susceptibility to UV rays |
HKUST Series | Cu2+ (formation of Cu2+ clusters) | Benzene Tricarboxylic Acid (BTC) | 1. Open metal sites: Cu2+ is exposed to the pore and enhances gas adsorption (e.g., CO2, CH4). 2. High porosity: Specific surface area ~1500 m2·g−1 3. Applications: gas storage, electrocatalytic CO2 reduction. | Poor gas transfer efficiency due to poor water stability |
PCN Series | Combining highly stable metal clusters (e.g., Zr6, Fe3O) with functionalized ligands | - | Applications: photo-/electrocatalysis, biomedical imaging. | Insufficient hardness, limited chemical resistance, limited UV resistance |
MOF-74 Series | Mg2+, Zn2+, Ni2+, etc. | Dihydroxyterephthalic acid (DHTA) | 1. One-dimensional pores: pore size ~1.4 nm, surface rich in hydroxyl groups. 2. High CO2 adsorption: Mg-MOF-74 adsorbs up to 8.6 mmol·g−1 at 298 K (under low pressure). 3. Applications: carbon capture, natural gas purification | Prone to hygroscopic decomposition, poor chemical stability, harsh synthesis conditions, application limitations |
ZJU Series | Rare earth metals (e.g., Y3+) | Polycarboxylic acid ligands | 1. Luminous properties: Rare earth metals impart fluorescent properties for use in sensors. 2. High stability: water and heat resistant. 3. Applications: environmental monitoring, optoelectronic devices. | Low heat resistance and susceptibility to corrosion, Poor process performance |
Bio-MOF Series | (e.g., Ca2+, Fe3+) | Natural ligands (e.g., amino acids, nucleotides) | 1. Low toxicity: suitable for drug delivery (e.g., drug-carrying Bio-MOF-1). 2. Responsive degradation: release of the drug in response to a specific pH or enzyme. 3. Applications: cancer therapy, antimicrobial materials. | Less stable and more difficult to develop synthetically |
Synthesis Method | Vantage | Drawbacks |
---|---|---|
Hydrothermal method | 1. Simple equipment and operation, low production costs, suitable for large-scale preparation, and better control of the frame structure 2. Preparation of MOF materials with good stability, small particle size, and light particle agglomeration 3. Mature system, easy to modify | 1. Reaction systems are difficult to observe in closed containers 2. Longer reaction times (usually hours to days), higher energy consumption, and lower yields. 3. The use of organic solvents (e.g., DMF, DEF, etc.) may cause environmental problems and require high-temperature and high-pressure reactors, which is a big investment. |
Microwave method | 1. Improve the selectivity of the reaction, which can control the product particle size and physical phase, which can help to quickly screen the optimal synthesis conditions and improve the yield 2. Fast reaction rates and crystallization efficiencies, high process efficiencies, significant reduction in reaction times, often from hours to minutes to hours | 1. The equipment is more expensive and complex, requiring specialized design 2. Heating too fast will lead to “hot spot” and “thermal runaway”; the sample temperature is difficult to measure accurately. 3. For some precursors that are not sensitive to microwaves, the effect is not obvious, and there may be an impurity reaction. 4. Safety hazards, violent reaction to phase contamination of the insulation layer. |
Diffusion method | 1. Mild reaction conditions, slow crystal growth, easy to obtain high-quality, large-size single crystals 2. Convenient for research, suitable for fine characterization of crystal structures, e.g., single crystal X-ray diffraction. | 1. High requirements on equipment sealing and temperature gradient make it difficult for large-scale production. There are certain requirements for the reactants, such as a certain solubility, and at the same time, it is convenient to purify. Time-consuming 2. Time-consuming (may take days to weeks), low birth rate. |
Mechanosynthesis | 1. Simple preparation process, low preparation cost, simple, better adaptability to thermally unstable ligands or metal salts 2. Green environmental protection, the amount of solvent is very small or even no solvent, which can reduce the effect of solvent evaporation on environmental pollution. 3. Short reaction times, high yields in minutes to tens of minutes, suitable for large-scale preparations | 1. Single crystals are not easily obtained, and the MOF materials that can be synthesized are relatively homogeneous 2. Difficulty in accurately controlling grain size, morphology, and defect concentration 3. Product purity is not ideal, needs to be ground and use other mechanical force equipment, equipment is more expensive |
Ultrasonic method | 1. Fast ultrasonic cavitation effect promotes rapid nucleation and crystal growth with short reaction times (often minutes to hours) 2. MOF particles with small particle size or special morphology can be obtained. 3. Uniform nucleation is possible | 1. It is not easy to get single crystals, ultrasonic conditions (frequency, power) on the product have a greater impact and need to be optimized 2. Reactors are vulnerable 3. High equipment requirements are not suitable for mass production, ultrasonic energy distribution is not balanced, amplification is more difficult |
Electrochemical method | 1. Can be synthesized at room temperature and pressure with low energy consumption 2. Thin films or coatings can be directionally grown on electrode surfaces for sensing, electrocatalysis, and other applications. 3. The reaction conditions are mild and high temperature decomposition can be avoided. | 1. Applies only to metal ions capable of participating in reactions in electrochemical systems. 2. There are certain requirements for electrode materials and technical challenges for large-scale production. |
Types | Reaction Temperature | Relative Energy Consumption | Dominance | Limitation |
---|---|---|---|---|
Photocatalysis | room temperatures | Low | Reaction conditions are mild and environmentally friendly; catalytic materials are diverse and functionality is easy to regulate; catalysts are highly stable and reusable | Narrow light absorption range, low solar energy utilization; high photogenerated carrier complex rate, limited catalytic efficiency; poor selectivity, easy to inactivate in complex systems; high cost for large-scale application, difficult engineering |
Electrocatalysis | Room temperatures | high | Green efficiency and controllability; high selectivity and multifunctionality; energy efficiency and device compactness; emerging materials driving performance breakthroughs | High cost and precious metal dependence; low current efficiency and energy challenges; mass transfer limitations and unclear mechanisms; side reactions and stability issues |
Thermocatalysis | 473–623 K | Middle | Easy separation and recycling of catalysts, high industrialization maturity; adaptable to harsh reaction conditions | Higher energy consumption and carbon emissions; catalyst deactivation issues; mass transfer limitations; precious metal dependence and cost |
Polyphase catalysis | 573–873 K | Middle | Easy separation and recycling of catalysts; high stability and tolerance; industrial maturity | Mass transfer limitations; catalyst active sites are susceptible to carbon, sulfide, or metal toxicity; high energy and cost; deactivated catalysts require high temperature calcination or chemical treatment, and regeneration is energy intensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Xiao, Y.; Chen, X.; Zhang, W.; Yang, X.; Yang, H.; Fang, D. Research Progress on CO2 Capture and Catalytic Conversion of Metal-Organic Frameworks Materials. Catalysts 2025, 15, 421. https://doi.org/10.3390/catal15050421
Lei Y, Xiao Y, Chen X, Zhang W, Yang X, Yang H, Fang D. Research Progress on CO2 Capture and Catalytic Conversion of Metal-Organic Frameworks Materials. Catalysts. 2025; 15(5):421. https://doi.org/10.3390/catal15050421
Chicago/Turabian StyleLei, Yang, Yangzixuan Xiao, Xiaolin Chen, Wentao Zhang, Xue Yang, Hu Yang, and De Fang. 2025. "Research Progress on CO2 Capture and Catalytic Conversion of Metal-Organic Frameworks Materials" Catalysts 15, no. 5: 421. https://doi.org/10.3390/catal15050421
APA StyleLei, Y., Xiao, Y., Chen, X., Zhang, W., Yang, X., Yang, H., & Fang, D. (2025). Research Progress on CO2 Capture and Catalytic Conversion of Metal-Organic Frameworks Materials. Catalysts, 15(5), 421. https://doi.org/10.3390/catal15050421