Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 13 March 2022).
- Taguchi, M.; Yano, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Nishiwaki, T.; Fujita, K.; Maruyama, E. 24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer. IEEE J. Photovolt. 2014, 4, 96–99. [Google Scholar] [CrossRef]
- Würfel, U.; Cuevas, A.; Würfel, P. Charge Carrier Separation in Solar Cells. IEEE J. Photovolt. 2015, 5, 461–469. [Google Scholar] [CrossRef]
- DeWolf, S.; Descoeudres, A.; Holman, Z.C.; Ballif, C. High-efficiency silicon heterojunction solar cells: A review. Green 2012, 2, 7–24. [Google Scholar] [CrossRef]
- Feifel, M.; Ohlmann, J.; Benick, J.; Rachow, T.; Janz, S.; Hermle, M.; Dimroth, F.; Belz, J.; Beyer, A.; Volz, K.; et al. MOVPE Grown Gallium Phosphide–Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2017, 7, 502–507. [Google Scholar] [CrossRef]
- Tsai, M.-L.; Su, S.-H.; Chang, J.-K.; Tsai, D.-S.; Chen, C.-H.; Wu, C.-I.; Li, L.-J.; Chen, L.-J.; He, J.-H. Monolayer MoS2 Heterojunction Solar Cells. ACS Nano 2014, 8, 8317–8322. [Google Scholar] [CrossRef]
- Sebenik, R.F.; Burkin, A.R.; Dorfler, R.R.; Laferty, J.M.; Leichtfried, G.; Meyer-Grünow, H.; Mitchell, P.C.H.; Vukasovich, M.S.; Church, D.A.; Van Riper, G.G.; et al. Molybdenum and Molybdenum Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd.: New York, NY, USA, 2000; ISBN 978-3-527-30673-2. [Google Scholar]
- Neville, R.A.; Evans, B.L. The Band Edge Excitons in 2H-MoS2. Phys. Status Solidi B 1976, 73, 597–606. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS 2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef]
- Song, I.; Park, C.; Choi, H.C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 2015, 5, 7495–7514. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Novoselov, K. Two-Dimensional Crystals: Beyond Graphene. Mater. Express 2011, 1, 8. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xin, L.; Liu, L.; Pang, D.; Jiao, Y.; Cong, R.; Yu, W. Large area MoS2/Si heterojunction-based solar cell through sol-gel method. Mater. Lett. 2019, 238, 13–16. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, X.; Liu, X.; Cong, R.; Sun, Y.; Lu, W.; Yu, W. Boosting the photovoltaic performance of MoS2/Si heterojunction solar cells with thiourea-doped MoS2 films. Micro Nanostruct. 2022, 167, 207241. [Google Scholar] [CrossRef]
- Cui, X.; Lee, G.-H.; Kim, Y.; Arefe, G.; Huang, P.; Lee, C.-H.; Chenet, D.; Zhang, X.; Wang, L.; Ye, F.; et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540. [Google Scholar] [CrossRef]
- Gao, J.; Li, B.; Tan, J.; Chow, P.; Lu, T.-M.; Koratkar, N. Aging of Transition Metal Dichalcogenide Monolayers. Available online: https://pubs.acs.org/doi/pdf/10.1021/acsnano.5b07677 (accessed on 9 February 2022).
- Afanasiev, P.; Lorentz, C. Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps. J. Phys. Chem. C 2019, 123, 7486–7494. [Google Scholar] [CrossRef]
- Martincová, J.; Otyepka, M.; Lazar, P. Is Single Layer MoS2 Stable in the Air? Chem. Eur. J. 2017, 23, 13233–13239. [Google Scholar] [CrossRef]
- Chhowalla, M.; Amaratunga, G.A.J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 2000, 407, 164–167. [Google Scholar] [CrossRef]
- Du, G.; Guo, Z.; Wang, S.; Zeng, R.; Chen, Z.; Liu, H. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 2010, 46, 1106–1108. [Google Scholar] [CrossRef]
- Park, S.; Mutz, N.; Schultz, T.; Blumstengel, S.; Han, A.; Aljarb, A.; Li, L.-J.; List-Kratochvil, E.J.W.; Amsalem, P.; Koch, N. Direct determination of monolayer MoS2and WSe2exciton binding energies on insulating and metallic substrates. 2D Mater. 2018, 5, 025003. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Stebunov, Y.V.; Vyshnevyy, A.A.; Tatarkin, D.E.; Yakubovsky, D.I.; Novikov, S.M.; Baranov, D.G.; Shegai, T.; Nikitin, A.Y.; Arsenin, A.V.; et al. Broadband optical properties of monolayer and bulk MoS2. Npj 2D Mater. Appl. 2020, 4, 21. [Google Scholar] [CrossRef]
- Bjelopavlić, D.; Pantić, D.; Đorđević, B.; Pantić, D. Simulation of hetero-junction silicon solar cells. Contemp. Mater. 2010, 1, 186–194. [Google Scholar] [CrossRef]
- Ermachikhin, A.V.; Vorobyov, Y.V.; Maslov, A.D.; Trusov, E.P.; Litvinov, V.G. External Quantum Efficiency of Bifacial HIT Solar Cells. Semiconductors 2020, 54, 1254–1259. [Google Scholar] [CrossRef]
- Dhyani, V.; Das, S. High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors. Sci. Rep. 2017, 7, 44243. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices. Sci. Rep. 2016, 6, 29016. [Google Scholar] [CrossRef] [PubMed]
- Davelou, D.; Kopidakis, G.; Kioseoglou, G.; Remediakis, I. MoS2 nanostructures: Semiconductors with metallic edges. Solid State Commun. 2014, 192, 42–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 Thin Flake Transistors. Available online: https://pubs.acs.org/doi/pdf/10.1021/nl2021575 (accessed on 17 February 2022).
Film | 2θ (°) | Inter-Reticular Spacing d (nm) | Crystallite Size (nm) |
---|---|---|---|
4 ML | 13.096 | 0.676 | 1.7 |
5 ML | 13.002 | 0.68 | 1.7 |
7 ML | 13.812 | 0.641 | 3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerbo, B.F.; Modreanu, M.; Povey, I.; Lin, J.; Létoublon, A.; Rolland, A.; Pédesseau, L.; Even, J.; Lépine, B.; Turban, P.; et al. Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics. Crystals 2022, 12, 1363. https://doi.org/10.3390/cryst12101363
Zerbo BF, Modreanu M, Povey I, Lin J, Létoublon A, Rolland A, Pédesseau L, Even J, Lépine B, Turban P, et al. Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics. Crystals. 2022; 12(10):1363. https://doi.org/10.3390/cryst12101363
Chicago/Turabian StyleZerbo, Bienlo Flora, Mircea Modreanu, Ian Povey, Jun Lin, Antoine Létoublon, Alain Rolland, Laurent Pédesseau, Jacky Even, Bruno Lépine, Pascal Turban, and et al. 2022. "Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics" Crystals 12, no. 10: 1363. https://doi.org/10.3390/cryst12101363
APA StyleZerbo, B. F., Modreanu, M., Povey, I., Lin, J., Létoublon, A., Rolland, A., Pédesseau, L., Even, J., Lépine, B., Turban, P., Schieffer, P., Moréac, A., & Durand, O. (2022). Study of MoS2 Deposited by ALD on c-Si, Towards the Development of MoS2/c-Si Heterojunction Photovoltaics. Crystals, 12(10), 1363. https://doi.org/10.3390/cryst12101363