Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Fibers
2.2. Extraction of Cellulose from Fibers
2.3. Preparation of Cellulose Nanocrystals
2.4. Production of Films (Nanobiocomposites)
2.5. Characterization of Cellulose Nanocrystals
2.6. Characterization of Films—Determination of Thickness and Mechanical Properties
2.7. Statistical Analysis
3. Results
3.1. Characterization of Fibers
3.2. Characterization of Cellulose Nanocrystals
3.3. Production and Characterization of Films
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mihindukulasuriya, S.D.F.; Lim, L.-T. Nanotechnology development in food packaging: A review. Trends Food Sci. Technol. 2014, 40, 149–167. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef]
- Dudefoi, W.; Villares, A.; Peyron, S.; Moreau, C.; Ropers, M.-H.; Gontard, N.; Cathala, B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innov. Food Sci. Emerg. Technol. 2018, 46, 107–121. [Google Scholar] [CrossRef]
- Villena de Francisco, E.; García-Estepa, R.M. Nanotechnology in the agrofood industry. J. Food Eng. 2018, 238, 1–11. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Vicente, A.A.; Pastrana, L.M. Nanotechnology in Food Packaging: Opportunities and Challenges. Nanomater. Food Packag. 2018, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhang, X.; Kan, J.; Jin, C. Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 147, 39–47. [Google Scholar] [CrossRef]
- Soni, B.; Mahmoud, B.; Chang, S.; El-Giar, E.M.; Hassan, E.B. Physicochemical, antimicrobial and antioxidant properties of chitosan/TEMPO biocomposite packaging films. Food Packag. Shelf Life 2018, 17, 73–79. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Li, Y.-C.; Xiao, H.; Wang, X. Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr. Polym. 2018, 199, 210–218. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Zhao, R.; Guo, D.; Zhang, J. Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr. Polym. 2018, 197, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Dasan, Y.K.; Bhat, A.H.; Ahmad, F. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohydr. Polym. 2017, 157, 1323–1332. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Nunes, I.L.; Druzian, J.I.; Pereira, F.V. Development and evaluation of the efficacy of biodegradable cassava starch films with nanocellulose as reinforcement and with erva-mate extract as an antioxidant additive. Ciênc. Rural 2012, 42, 2085–2091. [Google Scholar] [CrossRef]
- Dilarri, G.; Rosai Mendes, C.; Otavio Martins, A. Synthesis of Chitosan biofilms crosslinked with Tripolyphosphate acting as chelating agent in the fixation of Silver nanoparticles. Sci. Eng. J. 2016, 25, 97–103. [Google Scholar]
- Cerqueira, J.C.; Penha, S.; Oliveira, R.S.; Lefol, L.; Guarieiro, N.; Melo, S.; Viana, J.D.; Aparecida, B.; Machado, S. Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers. Polímeros 2017, 27, 320–329. [Google Scholar] [CrossRef]
- Mujtaba, M.; Salaberria, A.M.; Andres, M.A.; Kaya, M.; Gunyakti, A.; Labidi, J. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int. J. Biol. Macromol. 2017, 104, 944–952. [Google Scholar] [CrossRef]
- Silva, R.; Haraguchi, S.K.; Muniz, E.C.; Rubira, A.F. Applications of lignocellulosic fibers in polymer chemistry and composites. Quim. Nova 2009, 32, 661–671. [Google Scholar] [CrossRef]
- De Lemos, A.L.; de Martins, R.M. Development and Characterization of Polymeric Composites Based on Poly (Lactic Acid) and Natural Fibers. Polímeros Ciência e Tecnol. 2014, 24, 190–197. [Google Scholar]
- Alves, J.S.; Reis, K.C.; Menezes, E.G.T.; Pereira, F.V.; Pereira, J. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydr. Polym. 2015, 115, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Mazzaglia, A.; Torre, L.; Puglia, D.; Luzi, F.; Del Buono, D.; Balestra, G.M.; Benincasa, P.; Fortunati, E. Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind. Crops Prod. 2016, 92, 201–217. [Google Scholar]
- Garcia-Garcia, D.; Lopez-Martinez, J.; Balart, R.; Strömberg, E.; Moriana, R. Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. Eur. Polym. J. 2018, 104, 10–18. [Google Scholar] [CrossRef]
- Fortunati, E.; Luzi, F.; Jiménez, A.; Gopakumar, D.A.; Puglia, D.; Thomas, S.; Kenny, J.M.; Chiralt, A.; Torre, L. Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr. Polym. 2016, 149, 357–368. [Google Scholar] [CrossRef]
- Orasugh, J.T.; Saha, N.R.; Sarkar, G.; Rana, D.; Mishra, R.; Mondal, D.; Ghosh, S.K.; Chattopadhyay, D. Synthesis of methylcellulose/cellulose nano-crystals nanocomposites: Material properties and study of sustained release of ketorolac tromethamine. Carbohydr. Polym. 2018, 188, 168–180. [Google Scholar] [CrossRef]
- Dungani, R.; Khalil, A.; Aprilia, N.A.S.; Sumardi, I.; Aditiawati, P.; Darwis, A.; Karliati, T.; Sulaeman, A.; Rosamah, E.; Riza, M. Bionanomaterial from agricultural waste and its application. In Cellulose-Reinforced Nanofibre Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–88. [Google Scholar]
- Islam, M.S.; Kao, N.; Bhattacharya, S.N.; Gupta, R.; Choi, H.J. Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chin. J. Chem. Eng. 2018, 26, 465–476. [Google Scholar] [CrossRef]
- Orasugh, J.T.; Saha, N.R.; Sarkar, G.; Rana, D.; Mondal, D.; Ghosh, S.K.; Chattopadhyay, D. A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int. J. Biol. Macromol. 2018, 109, 1246–1252. [Google Scholar] [CrossRef]
- Ghani, S.; Bakochristou, F.; ElBialy, E.M.A.A.; Gamaledin, S.M.A.; Rashwan, M.M.; Abdelhalim, A.M.; Ismail, S.M. Design challenges of agricultural greenhouses in hot and arid environments—A review. Eng. Agric. Environ. Food 2019, 12, 48–70. [Google Scholar] [CrossRef]
- Akitt, J.W. Some observations on the greenhouse effect at the Earth’s surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 127–134. [Google Scholar] [CrossRef]
- Tuckett, R. Greenhouse Gases. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Silva, D.D.J.; D’Almeida, M.L.O. Cellulose whiskers. O Papel. 2009, 70, 34–52. [Google Scholar]
- Mesquita, J.P. Cellulose Nanocrystals for the Preparation of Bionanocomposites with Chitosan and Nanostructured Carbonates for Technological and Environmental Applications. Ph.D. Thesis, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil, 2012. [Google Scholar]
- Azevedo, V.V.C.; Chaves, S.A.; Bezerra, D.C.; Fook, M.V.L.; Costa, A.C.F.M. Chitin and Chitosan: Applications as biomaterials. Rev. Eletrôn. Mater. Process. 2007, 2, 27–34. [Google Scholar]
- Nery, T.B.R.; José, N.M. Study of Pre-treated and in natura Banana Fibers as Possible Raw Material for Reinforcement in Polymer Composites. Rev. Virtual Quim. 2018, 10, 313–322. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; Yamashita, F. Starch films: Production, properties and potential of use. Semin. Agrar. 2010, 31, 137–156. [Google Scholar] [CrossRef]
- Fráguas, R.M.; Simão, A.A.; Faria, P.V.; Queiroz, E.D.R.; de Oliveira Junior, Ê.N.; de Abreu, C.M.P. Preparation and characterization of chitosan edible films. Polímeros 2015, 25, 48–53. [Google Scholar] [CrossRef]
- Yassue-Cordeiro, P.H.; Zandonai, C.H.; da Silva, C.F.; Fernandes-Machado, N.R.C. Development and characterization of composite films of chitosan and zeolites with silver. Polímeros 2015, 25, 492–502. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Ali-Komi, D.; Hamblin, M. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Grifoll-Romero, L.; Pascual, S.; Aragunde, H.; Biarnés, X.; Planas, A. Chitin deacetylases: Structures, specificities, and biotech applications. Polymers 2018, 10, 352. [Google Scholar] [CrossRef]
- Dunlop, M.J.; Acharya, B.; Bissessur, R. Isolation of nanocrystalline cellulose from tunicates. J. Environ. Chem. Eng. 2018, 6, 4408–4412. [Google Scholar] [CrossRef]
- Salari, M.; Sowti Khiabani, M.; Rezaei Mokarram, R.; Ghanbarzadeh, B.; Samadi Kafil, H. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 2018, 84, 414–423. [Google Scholar] [CrossRef]
- Rodrigues, S.; Dionísio, M.; López, C.R.; Grenha, A. Biocompatibility of Chitosan Carriers with Application in Drug Delivery. J. Funct. Biomater. 2012, 3, 615–641. [Google Scholar] [CrossRef]
- Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 2017, 110, 97–109. [Google Scholar] [CrossRef]
- Marín-Silva, D.A.; Rivero, S.; Pinotti, A. Chitosan-based nanocomposite matrices: Development and characterization. Int. J. Biol. Macromol. 2019, 123, 189–200. [Google Scholar] [CrossRef]
- Celebi, H.; Kurt, A. Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr. Polym. 2015, 133, 284–293. [Google Scholar] [CrossRef]
- Corsello, F.A.; Bolla, P.A.; Anbinder, P.S.; Serradell, M.A.; Amalvy, J.I.; Peruzzo, P.J. Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr. Polym. 2017, 156, 452–459. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Mattoso, L.H.C.; Avena-Bustillos, R.J.; Filho, G.C.; Munford, M.L.; Wood, D.; McHugh, T.H. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 2010, 75, 1–7. [Google Scholar] [CrossRef]
- Pereda, M.; Dufresne, A.; Aranguren, M.I.; Marcovich, N.E. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr. Polym. 2014, 101, 1018–1026. [Google Scholar] [CrossRef]
- Coupland, J.N.; Shaw, N.B.; Monahan, F.J.; Dolores O’Riordan, E.; O’Sullivan, M. Modeling the effect of glycerol on the moisture sorption behavior of whey protein edible films. J. Food Eng. 2000, 43, 25–30. [Google Scholar] [CrossRef]
- Madaleno, E.; Rosa, D.D.S.; Zawadzki, S.F.; Pedrozo, T.H.; Ramos, L.P. Study of the Use of Plasticizer from Renewable Sources in PVC Compositions. Polímeros 2009, 19, 263–270. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N.; Cuq, B. Tecnology and Application of Edible Protective Films. Packag. Technol. Sci. 1995, 8, 339–346. [Google Scholar] [CrossRef]
- Veiga-Santos, P.; Scamparini, A.R.P.; Alves, A.J.; Cereda, M.P.; Oliveira, L.M. Mechanical properties, hydrophilicity and water activity of starch-gum films: Effect of additives and deacetylated xanthan gum. Food Hydrocoll. 2004, 19, 341–349. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Reis, J.H.D.O.; Cruz, L.S.; Leal, I.L.; Azevedo, J.B.; Barbosa, J.D.V.; Druzian, J.I. Characterization of cassava starch films plasticized with glycerol and strengthened with nanocellulose from green coconut fibers. Afr. J. Biotechnol. 2017, 16, 1567–1578. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Samir, A.S.A.; Alloin, F.; Dufresne, A. Reviews Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 2005, 6, 612–626. [Google Scholar] [CrossRef]
- de Souza, V.C. Cellulose Nanocrystals as a Reinforcement Phase for Chitosan Films: Obtaining, Characterization and Application. Ph.D. Thesis, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil, 2015. [Google Scholar]
- Flauzino Neto, W.P.; Mariano, M.; da Silva, I.S.V.; Silvério, H.A.; Putaux, J.-L.; Otaguro, H.; Pasquini, D.; Dufresne, A. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr. Polym. 2016, 153, 143–152. [Google Scholar] [CrossRef]
- Pessanha, K.L.F.; Farias, M.G.; Carvalho, C.W.P.; Godoy, R.L.D.O. Starch Films Added of Açaí Pulp (Euterpe oleracea Martius). Braz. Arch. Biol. Technol. 2018, 61, e18170824. [Google Scholar] [CrossRef]
- Da Silva, J.B.A.; Nascimento, T.; Costa, L.A.S.; Pereira, F.V.; Machado, B.A.; Gomes, G.V.P.; Assis, D.J.; Druzian, J.I. Effect of Source and Interaction with Nanocellulose Cassava Starch, Glycerol and the Properties of Films Bionanocomposites. Mater. Today Proc. 2015, 2, 200–207. [Google Scholar] [CrossRef]
- Nagy, S.; Csiszár, E.; Kun, D.; Koczka, B. Cellulose nanocrystal/amino-aldehyde biocomposite films. Carbohydr. Polym. 2018, 194, 51–60. [Google Scholar] [CrossRef]
- Pereira, F.V.; De Paula, E.L.; De Mesquita, J.P.; De Almeida Lucas, A.; Mano, V. Bionanocomposites prepared by the incorporation of cellulose nanocrystals into biodegradable polymers by means of solvent evaporation, self-assembly or electro-spinning. Quim. Nova 2014, 37, 1209–1219. [Google Scholar]
- De Souza Lima, M.M.; Borsali, R. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromol. Rapid Commun. 2004, 25, 771–787. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef]
- Salazar, R.F.S.; Silva, G.L.P.; Silva, M.L.C.P. Study of the Composition of Corn Straw for Later Use as a Support in the Preparation of Composites. In VI Congresso Brasileiro de Engenharia Química em Iniciação Científica 2005, 1, 1–6. Available online: https://www.researchgate.net/profile/Rodrigo_Salazar/publication/235645089_Estudo_da_composicao_da_palha_de_milho_para_posterior_utilizacao_como_suporte_na_preparacao_de_compositos/links/0fcfd51242db818444000000.pdf (accessed on 10 April 2019).
- Ziglio, B.R.; Bezerra, J.R.M.V.; Branco, I.G.; Bastos, R.; Rigo, M. Bread-making with corncob flower. Rev. Ciências Exatas e Nat. 2007, 9, 115–128. [Google Scholar]
- Dantas, R.D.L.; Silva, G.D.S.; Rocha, A.P.T. Characterization and Technological Assessment of Stabilized Mixed Pasta. In Encontro Nacional de Educação, Ciência e Tecnologia UEPB 2012, 1, 1–10. Available online: https://editorarealize.com.br/revistas/enect/trabalhos/2d268d7f8f09e15b37f35ce1f7fc5132_586.pdf (accessed on 10 April 2019).
- De Souza, E.E.; Vale, R.D.S.; Vieira, J.G.; Ribeiro, S.D.; Rodrigues Filho, G.; Marques, F.A.; de Assunção, R.M.N.; Meireles, C.D.S.; Barud, H.D.S.; de Souza, E.E.; et al. Preparation and Characterization of Regenerated Cellulose Membranes Using Cellulose Extracted from Agroindustrial Residues for Application in Separation Processes. Quim. Nova 2014, 38, 202–208. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Suntijitto, A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr. Build. Mater. 2015, 94, 664–669. [Google Scholar] [CrossRef]
- Merali, Z.; Collins, S.R.A.; Elliston, A.; Wilson, D.R.; Käsper, A.; Waldron, K.W. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofuels 2015, 8, 23. [Google Scholar] [CrossRef]
- Mendes, D.E.C.; Antônio, F.; Adnet, D.E.O.; Christina, M.; Moreira, A.; Russi, C.; Furtado, G.; Maria, A.N.A.; Sousa, F.D.E.; De Janeiro, R. Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cellul. Chem. Technol. Chem. 2015, 49, 727–735. [Google Scholar]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Schütz, C.; Salajkova, M.; Noh, J.; Hyun Park, J.; Scalia, G.; Bergström, L. Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 2014, 6, e80. [Google Scholar] [CrossRef]
- Naduparambath, S.; Jinitha, T.V.; Shaniba, V.; Sreejith, M.P.; Balan, A.K. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr. Polym. 2018, 180, 13–20. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Lopez-Rubio, A.; Lagaron, J.M. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym. 2011, 85, 228–236. [Google Scholar] [CrossRef]
- Souza-Lima, M.M.; Borsali, R. Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 2001, 992–996. [Google Scholar]
- Machado, B.A.S.; Reis, J.H.O.; da Silva, J.B.; Cruz, L.S.; Nunes, I.L.; Pereirae, F.V.; Druzian, J.I. Obtaining Nanocelulose from Green Coconut Fiber and Incorporation in Biodegradable Films of Starch Plasticized with Glycerol. Quim. Nova 2014, 37, 1275–1282. [Google Scholar]
- Rosa, M.F.; Medeiros, E.S.; Malmonge, J.A.; Gregorski, K.S.; Wood, D.F.; Mattoso, L.H.C.; Glenn, G.; Orts, W.J.; Imam, S.H. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 2010, 81, 83–92. [Google Scholar] [CrossRef]
- Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A. Preparation and characterization of PVA / nanocellulose/Ag nanocomposite fi lms for antimicrobial food packaging. Carbohydr. Polym. 2018, 184, 453–464. [Google Scholar] [CrossRef]
- De Oliveira, T.M. Cellulose Nanocrystals: Obtaining, Characterization and Modification of Surface. Master’s Thesis, Campinas State University (UNICAMP), Campinas, Brazil, 2012. [Google Scholar]
- Silvério, H.A. Extraction and Characterization of Cellulose Nanocrystals from Corn Sabugo and Its Application as a Strengthening Agent in Polymer Nanocomposites Using Polyvinyl Alcohol as a Matrix. Master’s Thesis, Federal University of Uberlândia (UFU), Uberlândia, Brazil, 2013. [Google Scholar]
- Costa, S.S.; Silva, R.P.D.; Alves, A.R.C.; Guarieiro, L.L.N.; Machado, B.A.S. Prospective Study on the Collection and Incorporation of Cellulose Nanocrystals in Biodegradable Films. Rev. Virtual Quim. 2016, 8, 1104–1114. [Google Scholar] [CrossRef]
- Mattos, A.L.A.; Rosa, M.D.F.; Crisóstomo, L.A.; Bezerra, F.C.; Correia, D. Benefit of the green coconut shell. In Embrapa Agroindústria Tropical, Fortaleza; Ceinfo EMBRAPA: Fortaleza, Brazil, 2011; p. 37. [Google Scholar]
- Rosa, M.D.F.; Santos, F.J.D.S.; Teles, A.A.M.; de Abreu, F.A.P.; Correia, D.; de Araújo, F.B.S.; Norões, E.R.D.V. Characterization of Green Coconut Peel Powder Used as Agricultural Substrate; Ceinfo EMBRAPA: Fortaleza, Brazil, 2001; Volume 54, p. 6. [Google Scholar]
- Nascimento, V.; França, C.; Hernández-Montelongo, J.; Machado, D.; Lancellotti, M.; Cotta, M.; Landers, R.; Beppu, M. Influence of pH and ionic strength on the antibacterial effect of hyaluronic acid/chitosan films assembled layer-by-layer. Eur. Polym. J. 2018, 109, 198–205. [Google Scholar] [CrossRef]
- Sharmin, M.; Das Banya, P.; Paul, L.; Chowdhury, F.F.K.; Afrin, S.; Acharjee, M.; Rahman, T.; Noor, R. Study of microbial proliferation and the in vitro antibacterial traits of commonly available flowers in Dhaka Metropolis. Asian Pac. J. Trop. Dis. 2015, 5, 91–97. [Google Scholar] [CrossRef]
- Heinrich, K.; Leslie, D.J.; Jonas, K. Modulation of Bacterial Proliferation as a Survival Strategy. Adv. Appl. Microbiol. 2015, 92, 127–171. [Google Scholar]
- Mathlouthi, M. Water content, water activity, water structure and the stability of foodstuffs. Food Control 2001, 12, 409–417. [Google Scholar] [CrossRef]
- Riggio, G.M.; Wang, Q.; Kniel, K.E.; Gibson, K.E. Microgreens—A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef]
- Smigic, N.; Djekic, I.; Martins, M.L.; Rocha, A.; Sidiropoulou, N.; Kalogianni, E.P. The level of food safety knowledge in food establishments in three European countries. Food Control 2016, 63, 187–194. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Broussolle, V.; Colin, P.; Nguyen-The, C.; Prieto, M. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. Int. J. Food Microbiol. 2015, 213, 99–109. [Google Scholar] [CrossRef]
- Seabra, A.B.; Bernardes, J.S.; Fávaro, W.J.; Paula, A.J.; Durán, N. Cellulose nanocrystals as carriers in medicine and their toxicities: A review. Carbohydr. Polym. 2018, 181, 514–527. [Google Scholar] [CrossRef]
- Hänninen, A.; Sarlin, E.; Lyyra, I.; Salpavaara, T.; Kellomäki, M. Nanocellulose and chitosan based fi lms as low cost, green piezoelectric materials. Carbohydr. Polym. 2018, 202, 418–424. [Google Scholar] [CrossRef]
- Benini, K.C.C.C.; Voorwald, H.J.C.; Cioffi, M.O.H. Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Eng. 2011, 10, 3246–3251. [Google Scholar] [CrossRef]
- Ljungberg, N.; Bonini, C.; Bortolussi, F.; Boisson, C.; Heux, L.; Cavaillé, J.-Y. New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics. Biomacromolecules 2005, 6, 2732–2739. [Google Scholar] [CrossRef]
- Rubentheren, V.; Ward, T.A.; Chee, C.Y.; Tang, C.K. Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr. Polym. 2015, 115, 379–387. [Google Scholar] [CrossRef]
Formulations | Chitosan (%, g/100 g) | Acetic Acid (%, g/100 g) | Glycerol (%, g/100 g) | Cellulose Nanocrystals (%, g/100 g) |
---|---|---|---|---|
Control | 1.50 | 1.00 | 0.15 | 0.00 |
CS | 1.50 | 1.00 | 0.15 | 5.00 |
CH | 1.50 | 1.00 | 0.15 | 5.00 |
CC | 1.50 | 1.00 | 0.15 | 5.00 |
WB | 1.50 | 1.00 | 0.15 | 5.00 |
Fibers | Moisture (%) | Activity Water | Ash Content (%) |
---|---|---|---|
CS | 88.7 ± 0.07 a | 0.970 ± 0.05 a | 5.37 ± 0.10 a |
CH | 67.1 ± 5.40 b | 0.940 ± 0.06 b | 0.92 ± 0.12 b |
CC | 72.7 ± 5.80 b | 0.770 ± 0.05 c | 3.64 ± 0.26 c |
WB | 12.4 ± 0.60 c | 0.640 ± 0.03 d | 4.75 ± 0.27 d |
Fibers | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
CS | 47.16 ± 1.24 b | 20.71 ± 0.66 b | 30.71 ± 0.21 a |
CH | 24.09 ± 1.13 c | 12.99 ± 0.58 c | 0.50 ± 0.13 c |
CC | 52.99 ± 1.79 a | 29.72 ± 0.69 a | 4.56 ± 1.84 b |
WB | 10.86 ± 1.25 d | 28.88 ± 0.32 a | 4.89 ± 0.84 b |
Lignocellulosic Source | CS | CH | CC | WB |
---|---|---|---|---|
Pulp Cellulose (%) | 12.50 | 25.40 | 38.70 | 28.00 |
Nanocellulose (g.10mL−1) | 0.660 | 0.050 | 0.072 | NA |
Nanocrystals | L ± sd (nm) | D ± sd (nm) | L/D |
---|---|---|---|
CS | 254.0 ± 98 | 6.32 ± 1.02 | 40.18 |
CH | 298.3 ± 97 | 7.30 ± 1.20 | 40.86 |
CC | 302.0 ± 86 | 8.12 ± 0.96 | 32.19 |
WB | - | - | - |
Film | aw±sd | M ± sd (%) | TS ± sd (%) | t ± sd (mm) | σ ± sd (MPa) | ε ± sd (%) |
---|---|---|---|---|---|---|
Control | 0.610±0.01 b | 20.75±0.78 a | 78.92±0.78 d | 0.049±0.02 a | 4.08±1.87 d | 115.9±4.36 e |
CS Film | 0.600±0.01 b | 15.13±0.01 c | 84.87±0.01 a | 0.040±0.04 ab | 11.38±3.53 a | 274.2±1.35 a |
CH Film | 0.658±0.02 a | 20.24±0.62 a | 79.76±0.62 c | 0.027±0.01 bc | 6.99±4.56 c | 155.2±5.13 c |
CC Film | 0.611±0.05 b | 18.32±0.90 b | 81.68±0.90 b | 0.019±0.01 c | 11.43±3.58 a | 195.2±8.76 b |
WB Film | 0.601±0.01 b | 20.86±0.06 a | 79.14±0.06 cd | 0.027±0.01 bc | 4.03 ±1.67 b | 141.0±9.09 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andrade, M.R.; Nery, T.B.R.; de Santana e Santana, T.I.; Leal, I.L.; Rodrigues, L.A.P.; de Oliveira Reis, J.H.; Druzian, J.I.; Machado, B.A.S. Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers 2019, 11, 658. https://doi.org/10.3390/polym11040658
de Andrade MR, Nery TBR, de Santana e Santana TI, Leal IL, Rodrigues LAP, de Oliveira Reis JH, Druzian JI, Machado BAS. Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers. 2019; 11(4):658. https://doi.org/10.3390/polym11040658
Chicago/Turabian Stylede Andrade, Marina Reis, Tatiana Barreto Rocha Nery, Taynã Isis de Santana e Santana, Ingrid Lessa Leal, Letícia Alencar Pereira Rodrigues, João Henrique de Oliveira Reis, Janice Izabel Druzian, and Bruna Aparecida Souza Machado. 2019. "Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films" Polymers 11, no. 4: 658. https://doi.org/10.3390/polym11040658
APA Stylede Andrade, M. R., Nery, T. B. R., de Santana e Santana, T. I., Leal, I. L., Rodrigues, L. A. P., de Oliveira Reis, J. H., Druzian, J. I., & Machado, B. A. S. (2019). Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers, 11(4), 658. https://doi.org/10.3390/polym11040658