Low-Temperature Processed TiOx/Zn1−xCdxS Nanocomposite for Efficient MAPbIxCl1−x Perovskite and PCDTBT:PC70BM Polymer Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Preparation
2.1.1. Zn1−xCdxS Nanoparticles Synthesis
2.1.2. TiOx Synthesis
2.1.3. Polymer (PCDTBT:PC70BM) Ink Formulation
2.1.4. Perovskite (MAPbIxCl3-x) Ink Formulation
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, W.; Xiao, Y.; Han, G.; Lin, J.-Y. The Applications of Polymers in Solar Cells: A Review. Polymers 2019, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Biniek, L.; Nielsen, C.B. Organic Photovoltaics: More than Ever, an Interdisciplinary Field. Polymers 2016, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Malinkiewicz, O.; Yella, A.; Lee, Y.H.; Espallargas, G.M.; Graetzel, M.; Nazeeruddin, M.K.; Bolink, H.J. Perovskite solar cells employing organic charge-transport layers. Nature Photonics 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Sai-Anand, G.; Gopalan, A.-I.; Lee, K.-P.; Venkatesan, S.; Qiao, Q.; Kang, B.-H.; Lee, S.-W.; Lee, J.-S.; Kang, S.-W. Electrostatic nanoassembly of contact interfacial layer for enhanced photovoltaic performance in polymer solar cells. Solar Energy Mater. Solar Cells 2016, 153, 148–163. [Google Scholar] [CrossRef]
- Sai-Anand, G.; Gopalan, A.-I.; Lee, K.-P.; Venkatesan, S.; Kang, B.-H.; Lee, S.-W.; Lee, J.-S.; Qiao, Q.; Kwon, D.-H.; Kang, S.-W. A futuristic strategy to influence the solar cell performance using fixed and mobile dopants incorporated sulfonated polyaniline based buffer layer. Solar Energy Mater. Solar Cells 2015, 141, 275–290. [Google Scholar] [CrossRef]
- Gopalan, S.-A.; Gopalan, A.-I.; Vinu, A.; Lee, K.-P.; Kang, S.-W. A new optical-electrical integrated buffer layer design based on gold nanoparticles tethered thiol containing sulfonated polyaniline towards enhancement of solar cell performance. Solar Energy Mater. Solar Cells 2018, 174, 112–123. [Google Scholar] [CrossRef]
- Bella, F.; Lamberti, A.; Bianco, S.; Tresso, E.; Gerbaldi, C.; Pirri, C.F. Floating Photovoltaics: Floating, Flexible Polymeric Dye-Sensitized Solar-Cell Architecture: The Way of Near-Future Photovoltaics (Adv. Mater. Technol. 2/2016). Adv. Mater. Technol. 2016, 1. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Deng, K.; Zhang, W.; Song, J.; Wu, J.; Lan, Z. Influence of Polymer Additives on the Efficiency and Stability of Ambient-Air Solution-Processed Planar Perovskite Solar Cells. Energy Technol. 2018, 6, 2380–2386. [Google Scholar] [CrossRef]
- Abate, A.; Correa-Baena, J.-P.; Saliba, M.; Su’ait, M.S.; Bella, F. Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chem. A Eur. J. 2018, 24, 3083–3100. [Google Scholar] [CrossRef]
- Imperiyka, M.; Ahmad, A.; Hanifah, S.A.; Bella, F. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells. Phys. B Condens. Matter 2014, 450, 151–154. [Google Scholar] [CrossRef]
- Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 2019, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Meng, X.; Yang, S. Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Ferreira, S.R.; Lu, P.; Lee, Y.-J.; Davis, R.J.; Hsu, J.W.P. Effect of Zinc Oxide Electron Transport Layers on Performance and Shelf Life of Organic Bulk Heterojunction Devices. J. Phys. Chem. C 2011, 115, 13471–13475. [Google Scholar] [CrossRef]
- Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 2016, 4, 3970–3990. [Google Scholar] [CrossRef]
- Zhao, X.; Tao, L.; Li, H.; Huang, W.; Sun, P.; Liu, J.; Liu, S.; Sun, Q.; Cui, Z.; Sun, L.; et al. Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Lett. 2018, 18, 2442–2449. [Google Scholar] [CrossRef]
- Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Ding, J.; Yuan, N. Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 2015, 3, 5360–5367. [Google Scholar] [CrossRef]
- Sun, Y.; Takacs, C.J.; Cowan, S.R.; Seo, J.H.; Gong, X.; Roy, A.; Heeger, A.J. Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Adv. Mater. 2011, 23, 2226–2230. [Google Scholar] [CrossRef]
- Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Mahmood, K.; Yoo, J.S.; Park, N.-G.; Lee, J.H.; et al. Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J. Mater. Chem. A 2015, 3, 9160–9164. [Google Scholar] [CrossRef]
- Seo, J.; Park, S.; Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Yoon, S.C.; Seok, S.I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 2014, 7, 2642–2646. [Google Scholar] [CrossRef]
- Jiang, M.; Niu, Q.; Tang, X.; Zhang, H.; Xu, H.; Huang, W.; Yao, J.; Yan, B.; Xia, R. Improving the Performances of Perovskite Solar Cells via Modification of Electron Transport Layer. Polymers 2019, 11, 147. [Google Scholar] [CrossRef]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef]
- Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energy Environ. Sci. 2011, 4, 285–310. [Google Scholar] [CrossRef]
- Qin, P.; Domanski, A.L.; Chandiran, A.K.; Berger, R.; Butt, H.-J.; Dar, M.I.; Moehl, T.; Tetreault, N.; Gao, P.; Ahmad, S.; et al. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale 2014, 6, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.C.; Wang, L.Y.; Hsieh, H.C.; Lin, K.F. Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3NH3PbI3 heterojunction interface with amino acid. J. Mater. Chem. A 2015, 3, 9133–9136. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, Z.; Bai, S.; Xia, Z.; Xu, W.; Song, T.; Wu, H.; Xu, L.; Si, J.; Jin, Y.; et al. Hot-Electron Injection in a Sandwiched TiOx–Au–TiOx Structure for High-Performance Planar Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1500038. [Google Scholar] [CrossRef]
- Abrusci, A.; Stranks, S.D.; Docampo, P.; Yip, H.-L.; Jen, A.K.Y.; Snaith, H.J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124–3128. [Google Scholar] [CrossRef]
- Sarkar, A.; Jeon, N.J.; Noh, J.H.; Seok, S.I. Well-Organized Mesoporous TiO2 Photoelectrodes by Block Copolymer-Induced Sol–Gel Assembly for Inorganic–Organic Hybrid Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16688–16693. [Google Scholar] [CrossRef]
- Okamoto, Y.; Fukui, R.; Fukazawa, M.; Suzuki, Y. SrTiO3/TiO2 composite electron transport layer for perovskite solar cells. Mater. Lett. 2017, 187, 111–113. [Google Scholar] [CrossRef]
- Okamoto, Y.; Suzuki, Y. Mesoporous BaTiO3/TiO2 Double Layer for Electron Transport in Perovskite Solar Cells. J. Phys. Chem. C 2016, 120, 13995–14000. [Google Scholar] [CrossRef]
- Apostolopoulou, A.; Sygkridou, D.; Rapsomanikis, A.; Kalarakis, A.N.; Stathatos, E. Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Solar Energy Mater. Solar Cells 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, D.H.; Lee, Y.-Y.; Shin, H.-W.; Han, G.S.; Hong, J.S.; Mahmood, K.; Ahn, T.K.; Joo, Y.-C.; Hong, K.S.; et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ. Sci. 2015, 8, 916–921. [Google Scholar] [CrossRef]
- Kim, H.; Ou, K.-L.; Wu, X.; Ndione, P.F.; Berry, J.; Lambert, Y.; Mélin, T.; Armstrong, N.R.; Graham, S. Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics. J. Mater. Chem. A 2015, 3, 17332–17343. [Google Scholar] [CrossRef]
- Deng, X.; Wilkes, G.C.; Chen, A.Z.; Prasad, N.S.; Gupta, M.C.; Choi, J.J. Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells. J. Phys. Chem. Lett. 2017, 8, 3206–3210. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.-W.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; et al. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, Y.; Ren, Y.; Liu, E.; Fan, J.; Hu, X. Zn/Cd ratio-dependent synthetic conditions in ternary ZnCdS quantum dots. J. Alloys Compod. 2018, 752, 260–266. [Google Scholar] [CrossRef]
- Poormohammadi-Ahandani, Z.; Habibi-Yangjeh, A. Fast, green and template-free method for preparation of Zn1−xCdxS nanoparticles using microwave irradiation and their photocatalytic activities. Phys. E Low-Dimens. Sys. Nanostruct. 2010, 43, 216–223. [Google Scholar] [CrossRef]
- Gregory, D.G.; Lu, L.; Kiely, C.J.; Snyder, M.A. Interfacial Stabilization of Metastable TiO2 Films. J. Phys. Chem. C 2017, 121, 4434–4442. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xing, Y.; Li, Y.; Dong, Q.; Wang, K.; Du, Y.; Bai, X.; Wang, S.; Chen, Z.; Ma, T. CH3NH3PbI3 and CH3NH3PbI3–xClx in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture. J. Phys. Chem. C 2015, 119, 15868–15873. [Google Scholar] [CrossRef]
- Sanglee, K.; Chuangchote, S.; Chaiwiwatworakul, P.; Kumnorkaew, P. PEDOT:PSS Nanofilms Fabricated by a Nonconventional Coating Method for Uses as Transparent Conducting Electrodes in Flexible Electrochromic Devices. J. Nanomater. 2017, 2017, 8. [Google Scholar] [CrossRef]
- Levine, I.; Nayak, P.K.; Wang, J.T.-W.; Sakai, N.; Van Reenen, S.; Brenner, T.M.; Mukhopadhyay, S.; Snaith, H.J.; Hodes, G.; Cahen, D. Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI3 Solar Cells. J. Phys. Chem. C 2016, 120, 16399–16411. [Google Scholar] [CrossRef]
- Heo, J.H.; Han, H.J.; Kim, D.; Ahn, T.K.; Im, S.H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602–1608. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Noel, N.K.; Snaith, H.J. Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 2472–2476. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Barman, A.R.; Dhar, S.; Annadi, A.; Motapothula, M.; Wang, J.; Su, H.; Breese, M.; Venkatesan, T.; Wang, Q. Scaling of flat band potential and dielectric constant as a function of Ta concentration in Ta-TiO2 epitaxial films. AIP Adv. 2011, 1, 022151. [Google Scholar] [CrossRef] [Green Version]
- Demiryont, H.; Nietering, K.E.; Surowiec, R.; Brown, F.I.; Platts, D.R. Optical properties of spray-deposited tin oxide films. Appl. Opt. 1987, 26, 3803–3810. [Google Scholar] [CrossRef] [PubMed]
- Kahn, A. Fermi level, work function and vacuum level. Mater. Horiz. 2015, 3, 7–10. [Google Scholar] [CrossRef]
TiOx: ZnCdS Conc. (%) | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) |
---|---|---|---|---|
T100 | 0.879 (0.869 ± 0.008) | 8.79 (8.67 ± 0.484) | 0.55 (0.52 ± 0.028) | 4.22 (3.94 ± 0.280) |
T75:Z25 | 0.869 (0.867 ± 0.002) | 10.59 (10.18 ± 0.465) | 0.48 (0.47 ± 0.007) | 4.40 (4.18 ± 0.245) |
T50:Z50 | 0.910 (0.896 ± 0.012) | 10.35 (10.25 ± 0.191) | 0.53 (0.52 ± 0.013) | 4.95 (4.77 ± 0.138) |
T25:Z75 | 0.849 (0.844 ± 0.005) | 8.55 (8.48 ± 0.214) | 0.50 (0.50 ± 0.009) | 3.63 (3.56 ± 0.086) |
Z100 | 0.869 (0.863 ± 0.004) | 8.69 (8.81 ± 0.166) | 0.39 (0.38 ± 0.010) | 2.93 (2.90 ± 0.030) |
TiOx: ZnCdS Conc. (%) | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) |
---|---|---|---|---|
T100 | 0.859 (0.848 ± 0.007) | 15.14 (15.72 ± 0.391) | 0.60 (0.57 ± 0.015) | 7.74 (7.65 ± 0.09) |
T75:Z25 | 0.879 (0.880 ± 0.003) | 17.31 (16.22 ± 1.922) | 0.62 (0.62 ± 0.009) | 9.47 (8.79 ± 1.024) |
T50:Z50 | 0.889 (0.884 ± 0.003) | 17.99 (17.82 ± 0.139) | 0.61 (0.61 ± 0.001) | 9.79 (9.67 ± 0.090) |
T25:Z75 | 0.879 (0.875 ± 0.009) | 15.19 (15.13 ± 1.177) | 0.60 (0.57 ± 0.042) | 8.07 (7.58 ± 0.590) |
Z100 | 0.849 (0.844 ± 0.007) | 15.19 (13.61 ± 3.159) | 0.52 (0.50 ± 0.050) | 6.74 (5.81 ± 1.796) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, B.; Lohawet, K.; Muangnapoh, T.; Nakajima, H.; Chanlek, N.; Sharma, A.; Lewis, D.A.; Kumnorkaew, P. Low-Temperature Processed TiOx/Zn1−xCdxS Nanocomposite for Efficient MAPbIxCl1−x Perovskite and PCDTBT:PC70BM Polymer Solar Cells. Polymers 2019, 11, 980. https://doi.org/10.3390/polym11060980
Duong B, Lohawet K, Muangnapoh T, Nakajima H, Chanlek N, Sharma A, Lewis DA, Kumnorkaew P. Low-Temperature Processed TiOx/Zn1−xCdxS Nanocomposite for Efficient MAPbIxCl1−x Perovskite and PCDTBT:PC70BM Polymer Solar Cells. Polymers. 2019; 11(6):980. https://doi.org/10.3390/polym11060980
Chicago/Turabian StyleDuong, Binh, Khathawut Lohawet, Tanyakorn Muangnapoh, Hideki Nakajima, Narong Chanlek, Anirudh Sharma, David A. Lewis, and Pisist Kumnorkaew. 2019. "Low-Temperature Processed TiOx/Zn1−xCdxS Nanocomposite for Efficient MAPbIxCl1−x Perovskite and PCDTBT:PC70BM Polymer Solar Cells" Polymers 11, no. 6: 980. https://doi.org/10.3390/polym11060980
APA StyleDuong, B., Lohawet, K., Muangnapoh, T., Nakajima, H., Chanlek, N., Sharma, A., Lewis, D. A., & Kumnorkaew, P. (2019). Low-Temperature Processed TiOx/Zn1−xCdxS Nanocomposite for Efficient MAPbIxCl1−x Perovskite and PCDTBT:PC70BM Polymer Solar Cells. Polymers, 11(6), 980. https://doi.org/10.3390/polym11060980