Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of the Phosphorus-Silicon Flame Retardant (P5PSQ)
2.3. Preparation of the Flame-Retardant PLA Composites
2.4. Measurement and Characterization
3. Results and Discussion
3.1. The Characterization of P5PSQ
3.2. Flame Retardant and Thermal Stability Performance of PLA
3.3. Morphology and Composition of Carbonaceous Foam
3.3.1. Morphology of Carbon Layer
3.3.2. Component and Structure Analysis of Residue Char
3.4. Gas Phase Flame Retardant Mechanism
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabi, T.; Tamas, P.; Kovacs, J.G. Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources. Express Polym. Lett. 2013, 7, 107–119. [Google Scholar] [CrossRef]
- Bocz, K.; Szolnoki, B.; Marosi, A.; Tábi, T.; Wladyka-Przybylak, M.; Marosi, G. Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym. Degrad. Stab. 2014, 106, 63–73. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Q.; Zheng, W.; Zhai, W. Improved Flame-Retardant Properties of Poly(lactic acid) Foams Using Starch as a Natural Charring Agent. Ind. Eng. Chem. Res. 2014, 53, 1422–1430. [Google Scholar] [CrossRef]
- Lin, H.J.; Liu, S.R.; Han, L.J.; Wang, X.M.; Bian, Y.J.; Dong, L.S. Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly(lactic acid). Polym. Degrad. Stab. 2013, 98, 1389–1396. [Google Scholar] [CrossRef]
- Lim, L.T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Guo, D.; Bai, S.B.; Wang, Q. A novel halogen-free flame retardant poly(vinyl alcohol) foam with intrinsic flame retardant characteristics prepared through continuous extrusion. J. Cell. Plast. 2015, 51, 145–163. [Google Scholar] [CrossRef]
- Li, Y.L.; Kuan, C.F.; Hsu, S.W.; Chen, C.H.; Kuan, H.C.; Lee, F.M.; Yip, M.C.; Chiang, C.L. Preparation, thermal stability and flame-retardant properties of halogen-free polypropylene composites. High Perform. Polym. 2012, 24, 478–487. [Google Scholar] [CrossRef]
- Mariappan, T.; Zhou, Y.; Hao, J.; Wilkie, C.A. Influence of oxidation state of phosphorus on the thermal and flammability of polyurea and epoxy resin. Eur. Polym. J. 2013, 49, 3171–3180. [Google Scholar] [CrossRef]
- Dasari, A.; Yu, Z.Z.; Cai, G.P.; Mai, Y.W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357–1387. [Google Scholar] [CrossRef]
- Réti, C.; Casetta, M.; Duquesne, S.; Bourbigot, S.; Delobel, R. Flammability properties of intumescent PLA including starch and lignin. Polym. Adv. Technol. 2008, 19, 628–635. [Google Scholar] [CrossRef]
- Ke, C.H.; Li, J.; Fang, K.Y.; Zhu, Q.L.; Zhu, J.; Yan, Q.; Wang, Y.Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym. Degrad. Stab. 2010, 95, 763–770. [Google Scholar] [CrossRef]
- Yang, S.; Lv, G.; Liu, Y.; Wang, Q. Synergism of polysiloxane and zinc borate flame retardant polycarbonate. Polym. Degrad. Stab. 2013, 98, 2795–2800. [Google Scholar] [CrossRef]
- Bourbigot, S.; Turf, T.; Séverine, B.; Duquesne, S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab. 2009, 94, 1230–1237. [Google Scholar] [CrossRef]
- Didane, N.; Giraud, S.; Devaux, E.; Lemort, G. A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy. Polym. Degrad. Stab. 2012, 97, 383–391. [Google Scholar] [CrossRef]
- Fox, D.M.; Jieun, L.; Citro, C.J.; Novy, M. Flame retarded poly(lactic acid) using POSS-modified cellulose. 1.; Thermal and combustion properties of intumescing composites. Polym. Degrad. Stab. 2013, 98, 590–596. [Google Scholar] [CrossRef]
- Wang, J.B.; Xin, Z. Preparation, Characterization and Flame Retardant Properties and Mechanism of Polysiloxane Microspheres in Polycarbonate. Ph.D. Thesis, East China University of Science and Technology, Shanghai, China, 2009. [Google Scholar]
- Tang, G.; Wang, X.; Xing, W.Y.; Zhang, P.; Wang, B.; Hong, N.; Wei, Y.; Yuan, H.; Lei, S. Thermal Degradation and Flame Retardance of Biobased Polylactide Composites Based on Aluminum Hypophosphite. Ind. Eng. Chem. Res. 2012, 51, 12009–12016. [Google Scholar] [CrossRef]
- Tang, G.; Huang, X.; Ding, H.; Wang, X.; Jiang, S.; Zhou, K.; Wang, B.; Yang, W.; Hu, Y. Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite. RSC Adv. 2014, 4, 8985–8993. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, P.; Gui, H.; Wang, X.; Ding, Y. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos. Part A: Appl. Sci. Manuf. 2015, 77, 147–153. [Google Scholar] [CrossRef]
- Liao, F.; Zhou, L.; Ju, Y.; Yang, Y.; Wang, X. Synthesis of A Novel Phosphorus–Nitrogen-Silicon Polymeric Flame Retardant and Its Application in Poly(lactic acid). Ind. Eng. Chem. Res. 2014, 53, 10015–10023. [Google Scholar] [CrossRef]
- Huang, Y.W.; Song, M.L.; Ma, J.J.; Lu, Z.Y.; Yang, J.X.; Cao, K. Synthesis of a phosphorus/silicon hybrid and its synergistic effect with melamine polyphosphates on flame retardant polypropylene system. J. Appl. Polym. Sci. 2013, 129, 316–323. [Google Scholar] [CrossRef]
- Qian, Y.; Wei, P.; Jiang, P.K.; Hao, J.W.; Du, J.X. Preparation of hybrid phosphamide containing polysilsesquioxane and its effect on flame retardancy and mechanical properties of polypropylene composites. Compos. Part B-Eng. 2013, 45, 1541–1547. [Google Scholar] [CrossRef]
- Vasiljevic, J.; Hadzic, S.; Jerman, I.; Cerne, L.; Tomsic, B.; Medved, J.; Godec, M.; Orel, B.; Simoncic, B. Study of flame-retardant finishing of cellulose fibres: Organic-inorganic hybrid versus conventional organophosphonate. Polym. Degrad. Stab. 2013, 98, 2602–2608. [Google Scholar] [CrossRef]
- Dong, C.H.; Lu, Z.; Zhang, F.J. Preparation and properties of cotton fabrics treated with a novel guanidyl- and phosphorus-containing polysiloxane antimicrobial and flame retardant. Mater. Lett. 2015, 142, 35–37. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, R.; Pan, F.; Jia, X.; Sun, C.; Ji, C.; Zhang, Y.; An, K.; Mu, Y. Preparation and characterization of thiol- and amino-functionalized polysilsesquioxane coated poly(p-phenylenetherephthal amide) fibers and their adsorption properties towards Hg(II). Chem. Eng. J. 2017, 317, 187–203. [Google Scholar] [CrossRef]
- Lu, M.; Liu, P.; Zhang, S.; Yuan, W.; Ding, S.; Wang, F.; Ding, Y.; Yang, M. Anti-aging behavior of amino-containing co-condensed nanosilica in polyethylene. Polym. Degrad. Stab. 2018, 154, 137–148. [Google Scholar] [CrossRef]
- Rubio, J.; Mazo, M.A.; Martín-Ilana, A.; Tamayo, A. FT-IR study of the hydrolysis and condensation of 3-(2-amino-ethylamino)propyl-trimethoxy silane. Boletín de la Sociedad Española de Cerámica y Vidrio. 2018, 57, 160–168. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Huang, G.Q.; Xu, W.B.; Ren, F.M. Chain extension and branching of poly(l-lactic acid) produced by reaction with a DGEBA-based epoxy resin. Express Polym. Lett. 2007, 1, 734–739. [Google Scholar] [CrossRef]
- Vothi, H.; Halm, S.; Nguyen, C.; Bae, I.; Kim, J. Thermal stabilities and flame retardancies of phloroglucinol-based organo phosphates when applied to polycarbonate. Fire Mater. 2014, 38, 36–45. [Google Scholar] [CrossRef]
- Wang, Z.M. Practical Infrared Spectroscopy; Petroleum Industry Press: Beijing, China, 2001; p. 263. [Google Scholar]
- Han, T.; Xin, Z.; Shi, Y.Q.; Zhao, S.C.; Meng, X.; Xu, H.; Zhou, S. Control of thermal degradation of poly(lactic acid) using functional polysilsesquioxane microspheres as chain extenders. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Schartel, B.; Hull, T.R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Costes, L.; Fouad, L.; Loïc, D.; José M, L.; Sylvain, B.; Christian, D.; Philippe, D. Metallic Phytates as Efficient Bio-Based Phosphorous Flame Retardant Additives for Poly(Lactic Acid). Polym. Degrad. Stab. 2015, 119, 217–227. [Google Scholar] [CrossRef]
- Guo, Y.; He, S.; Zuo, X.; Xue, Y.; Chen, Z.; Chang, C.C.; Weil, E.; Rafailovich, M. Incorporation of cellulose with adsorbed phosphates into poly(lactic acid) for enhanced mechanical and flame retardant properties. Polym. Degrad. Stab. 2017, 144, 24–32. [Google Scholar] [CrossRef]
- Chipara, D.M.; Macossay, J.; Ybarra, A.V.R.; Chipara, A.C.; Eubanks, T.M.; Chipara, M. Raman spectroscopy of polystyrene nanofibers-Multiwalled carbon nanotubes composites. Appl. Surf. Sci. 2013, 275, 23–27. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cao, X.W.; Lan, G.X. Research developments of Raman scattering of carbon nanotubes. Spectrosc. Spectr. Anal. 2000, 20, 180–184. [Google Scholar] [CrossRef]
- Feng, J.X.; Zhang, X.M.; Ma, S.Q.; Xiong, Z.; Zhang, C.Z.; Jiang, Y.H.; Zhu, J. Syntheses of Metallic Cyclodextrins and Their Use as Synergists in a Poly(Vinyl Alcohol)/Intumescent Flame Retardant System. Ind. Eng. Chem. Res. 2013, 52, 2784–2792. [Google Scholar] [CrossRef]
- Gao, F.; Tong, L.F.; Fang, Z.P. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 2006, 91, 1295–1299. [Google Scholar] [CrossRef]
- Schartel, B. Phosphorus-based Flame Retardancy Mechanisms-Old Hat or a Starting Point for Future Development? Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Z.; Pan, Y.T.; Yáñez, A.P.; Hu, S.; Zhang, X.Q.; Wang, R.; Wang, D.Y. Polydopamine induced natural fiber surface functionalization: A way towards flame retardancy of flax/poly(lactic acid) biocomposites. Compos. Part B 2018, 154, 56–63. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, Y.; Fang, Z.P. Diphenolic acid based biphosphate on the properties of polylactic acid: Synthesis, fire behavior and flame retardant mechanism. Polymer 2017, 108, 29–37. [Google Scholar] [CrossRef]
Samples | N (wt %) | P (wt %) | Si (wt %) |
---|---|---|---|
PSQ | 3.5 | 0 | 14.1 |
P5PSQ | 3.4 | 2.4 | 13.7 |
Sample | LOI (%) | TTI (s) | PHRR (kW·m−2) | THR (MJ·m−2) | Residual Mass (wt %) |
---|---|---|---|---|---|
Neat-PLA | 19.2 | 58 | 461 | 78 | 3.3 |
PSQ-PLA | 22.8 | 54 | 407 | 67 | 4.8 |
P5PSQ-PLA | 24.1 | 47 | 345 | 61 | 9.5 |
Element | P5PSQ-PLA (wt %) | PSQ-PLA (wt %) | ||
---|---|---|---|---|
Surface | Total | Surface | Total | |
C | 16.5 | 58.6 | 38.7 | 59.2 |
O | 32.9 | 19.8 | 28.5 | 18.2 |
Si | 35.8 | 16.0 | 32.7 | 19.3 |
P | 14.7 | 5.3 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Gong, W.; Luo, J.; Meng, X.; Xin, Z.; Wu, J.; Jiang, Z. Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane. Polymers 2019, 11, 1304. https://doi.org/10.3390/polym11081304
Zhu S, Gong W, Luo J, Meng X, Xin Z, Wu J, Jiang Z. Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane. Polymers. 2019; 11(8):1304. https://doi.org/10.3390/polym11081304
Chicago/Turabian StyleZhu, Shengjie, Weiguang Gong, Ji Luo, Xin Meng, Zhong Xin, Jie Wu, and Zewen Jiang. 2019. "Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane" Polymers 11, no. 8: 1304. https://doi.org/10.3390/polym11081304
APA StyleZhu, S., Gong, W., Luo, J., Meng, X., Xin, Z., Wu, J., & Jiang, Z. (2019). Flame Retardancy and Mechanism of Novel Phosphorus-Silicon Flame Retardant Based on Polysilsesquioxane. Polymers, 11(8), 1304. https://doi.org/10.3390/polym11081304