Influence of the Conditions of Corotating Twin-Screw Extrusion for Talc-Filled Polypropylene on Selected Properties of the Extrudate
Abstract
:1. Introduction
2. Experimental
2.1. Test Stand
2.2. Research Programme and Methodology
3. Test Results and Discussion
3.1. Melt Flow Rate
3.2. Tensile Strength
3.3. Elongation at Tensile Strength
3.4. Structure of the Extrudate
3.5. DSC Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karian, H.G. Handbook of Polypropylene and Polypropylene Composites, 2nd ed.; revised and expanded; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Karger-Kocsis, J. Polypropylene: Structure, Blends and Composites; Chapman and Hall: London, UK, 1995; Volume 3. [Google Scholar]
- Katz, H.; Milewski, J. Handbook of Fillers for Plastics; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Wang, K.; Bahlouli, N.; Addiego, F.; Ahzi, S.; Remond, Y.; Ruch, D.; Muller, R. Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym. Degrad. Stab. 2013, 98, 1275–1286. [Google Scholar] [CrossRef]
- Xanthos, M. Functional Fillers for Plastics; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T.C. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 2001, 13, 3516–3523. [Google Scholar] [CrossRef]
- Metin, D.; Tihminlioglu, F.; Balkose, D.; Ulku, S. The effect of international interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 23–32. [Google Scholar] [CrossRef]
- Jahani, Y. Comparison of the effect of mica and talc and chemical coupling agent on the rheology, morphology, and mechanical properties of polypropylene composites. Polym. Adv. Technol. 2011, 22, 942–950. [Google Scholar] [CrossRef]
- Tor-Świątek, A.; Garbacz, T.; Jachowicz, T. Quantitative assessment of the microscopic structure of extruded and injected low-density polyethylene modified with microspheres by image analysis. Cell. Polym. 2016, 35, 67–84. [Google Scholar] [CrossRef]
- Klepka, T. Construction of axial-symmetric polymeric extrudates of complex forms. Polimery-W 2008, 53, 390–395. [Google Scholar] [CrossRef]
- Tajvidi, M.; Ebrahimi, G. Water uptake and mechanical characteristics of natural filler-polypropylene composites. J. Appl. Polym. Sci. 2003, 88, 941–946. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock Forming Minerals. Volume 3B: Layered Silicates Excluding Micas and Clay Minerals; The Geological Society: London, UK, 2009. [Google Scholar]
- Lapcik, L.; Jindrova, P.; Lapcikova, B. Effect of talc filler content on poly(propylene) composite mechanical properties. In Engineering Against Fracture; Pantelakis, S., Rodopoulos, C., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Castillo, L.A.; Barbosa, S.E.; Capiati, N.J. Influence of talc morphology on the mechanical properties of talc filled polypropylene. J. Polym. Res. 2013, 20, 152. [Google Scholar] [CrossRef]
- Abu Bakar, M.B.; Leong, Y.W.; Ariffin, A.; MohdIshak, Z.A. Mechanical, flow, and morphological properties of talc- and kaolin-filled polypropylene hybrid composites. J. Appl. Polym. Sci. 2007, 104, 434–441. [Google Scholar] [CrossRef]
- Lapcik, L.; Jindrova, P.; Lapcikowa, B.; Tamblyn, R.; Greenwood, R.; Rowson, N. Effect of the talc filler content on the mechanical properties of polypropylene composites. J. Appl. Polym. Sci. 2008, 110, 2742–2747. [Google Scholar] [CrossRef]
- Douillard, J.M.; Salles, F.; Henry, M.; Malandrini, H.; Clauss, F. Surface energy of talc and chlorite: Comparison between electronegativity calculation and immersion results. J. Colloid Interface Sci. 2007, 305, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Wah, C.A.; Choong, L.Y.; Neon, G.S. Effects of titanate coupling agent on rheological behavior, dispersion characteristics and mechanical properties of talc filled polypropylene. Eur. Polym. J. 2000, 36, 789–801. [Google Scholar] [CrossRef]
- Jaziri, M.; Mnif, N.; Massardier-Nageotte, V.; Perier-Camby, H. Rheological, thermal, and morphological properties of blends based on poly(propylene), ethylene propylene rubber, and ethylene-1-octene copolymer that could result from end of life vehicles: Effect of maleic anhydride grafted poly(propylene). Polym. Eng. Sci. 2007, 47, 1009–1015. [Google Scholar] [CrossRef]
- Rothon, R. Mineral fillers in thermoplastics: Filler manufacture and characterization. Adv. Polym. Sci. 1999, 136, 67–107. [Google Scholar]
- Mareri, P.; Bastide, S.; Binda, N.; Crespy, A. Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment. Compos. Sci. Technol. 1998, 58, 747–752. [Google Scholar] [CrossRef]
- Rothon, R. Particulate-Filled Polymer Composites, 2nd ed.; Rapra Technology Limited: Shawbury, UK, 2003. [Google Scholar]
- White, J.L.; Potente, H. Screw Extrusion—Science and Technology; Hanser Publishers: Munich, Germany, 2003. [Google Scholar]
- Sakai, T. Screw extrusion technology—past, present and future. Polimery-W 2013, 58, 847–857. [Google Scholar] [CrossRef]
- Wang, Y. Compounding in Co-Rotating Twin-Screw Extruders; Rapra Review Reports. Report 116, 10,8; Rapra Technology Limited: Shawbury, UK, 2000. [Google Scholar]
- Canevarolo, S.V.; Babetto, A.C. Effect of screw element type in degradation of polypropyelene upon multiple extrusions. Adv. Polym. Technol. 2002, 21, 243–249. [Google Scholar] [CrossRef]
- Sasimowski, E.; Majewski, Ł. Effect of the intensive plasticizing zone design on the effectiveness of corotaing twin-screw extrusion. Adv. Polym. Technol. 2019. [Google Scholar] [CrossRef]
- Treece, M.A.; Zhang, W.; Moffitt, R.D.; Oberhauser, J.P. Twin-screw extrusion of polypropylene-clay nanocomposites: Influence of masterbatch processing, screw rotation mode and sequence. Polym. Eng. Sci. 2007, 47, 898–911. [Google Scholar] [CrossRef]
- Lertwimolnum, W.; Vergnes, B. Influence of screw profile and extrusion conditions on the microstructure of polypropylene/organoclay nanocomposites. Polym. Eng. Sci. 2007, 47, 2100–2109. [Google Scholar] [CrossRef]
- Rauwendaal, C. Mixing in Polymer Processing; Marcel Dekker Inc.: New York, NY, USA, 1991. [Google Scholar]
- White, J.L.; Montes, S.; Kim, J.M. Experimental Study and Practical Engineering Analysis of Flow Mechanisms and Starvation in Modular Intermeshing Co-rotating Twin-screw Extruder. Kautsch. Gummi Kunstst. 1990, 43, 20–25. [Google Scholar]
- White, J.L.; Chen, Z. Simulation of Non-isothermal Flow in Modular Co-rotating Twin-screw Extrusion. Polym. Eng. Sci. 1994, 34, 229–237. [Google Scholar] [CrossRef]
- Huneault, M.A.; Champagne, M.F.; Luciani, A. Polymer Blend Mixing and Dispersion in the Kneading Section of a Twin-screw Extruder. Polym. Eng. Sci. 1996, 36, 161–181. [Google Scholar] [CrossRef]
- Stasiek, A. Badania Procesu Współbieżnego Dwuślimakowego Wytłaczania Modyfikowanego Polipropylenu Przy Zmiennej Geometrii Ślimaków. Ph.D. Thesis, UTP University of Science and Technology, Bydgoszcz, Poland, 2015. [Google Scholar]
- Stasiek, J. Method for Manufacture of Polymer Composite Material Using Multi-Screw Extrusion Moulding and Multi-Screw Extruder for Manufacturing Polymer Composite Material. Polish Patent PL207893, 28 February 2011. [Google Scholar]
- Data Sheet of Polypropylene Moplen EP440G. Available online: http://www.basellorlen.pl/assets/produkty/produkty/Moplen_EP440G_201410_PL.pdf (accessed on 1 March 2018).
- Data Sheet of Talc Filler Finntalc M15. Available online: http://www.mondominerals.com/product-details/?tx_drivemondoproducts_pi1%5Bitem%5D=25&cHash=fc248dd5ad8a74129206aef20eb01e0d (accessed on 1 March 2018).
- Stasiek, J. The effects of constructional solutions of plasticizing screw configurations and extrusion conditions on polypropylene composite properties. Polimery-W 2005, 50, 881–889. [Google Scholar] [CrossRef]
- Stasiek, A.; Łubkowski, D. Investigations of the influence of construction of segments of the screws of co-rotating twin-screw extruders and technological parameters on the extrusion process of polypropylene modified with talc. Przetwórstwo Tworzyw 2010, 16, 8–15. [Google Scholar]
- Stasiek, A.; Łubkowski, D.; Bogucki, M. Study on extrusion of talc-filled polypropylene. Przem. Chem. 2012, 91, 1625–1629. [Google Scholar]
- Stasiek, J.; Bajer, K.; Stasiek, A.; Bogucki, M. Co-rotation twin-screw extruders for polymer material. A method for experimental studying the extrusion process. Przem. Chem. 2012, 91, 224–230. [Google Scholar]
- La Mantia, F.P.; Morreale, M.; Ceraulo, M.; Mistretta, M.C. Effect of stress and temperature on the thermomechanical degradation of a PE-LD/OMMT nanocomposites. Polimery-W 2014, 59, 667–672. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Mistretta, M.C.; Morreale, M. Recycling and Thermomechanical Degradation of LDPE/Modified Clay Nanocomposites. Macromol. Mater. Eng. 2014, 299, 96–103. [Google Scholar] [CrossRef]
- Mistretta, M.C.; Morreale, M.; La Mantia, F.P. Thermomechanical degradation of polyethylene/polyamide 6 blend-clay nanocomposites. Polym. Degrad. Stab. 2014, 99, 61–97. [Google Scholar] [CrossRef]
- Stasiek, J. Design features optimize twin screw plasticizing system for polypropylene extrusion. Plast. Addit. Compd. 2004, 6, 44–49. [Google Scholar]
Experimental Design Layout | α/o | d/mm | n/min−1 | u/% | MFR/(g/10min) | σ/MPa | ε/% |
---|---|---|---|---|---|---|---|
1 | 0 | 0.5 | 100 | 10 | 1.24 ± 0.03 | 22.04 ± 0.63 | 6.50 ± 0.50 |
2 | 0 | 0.5 | 100 | 16 | 1.38 ± 0.04 | 20.14 ± 0.74 | 5.15 ± 0.20 |
3 | 0 | 0.5 | 400 | 10 | 1.50 ± 0.04 | 19.40 ± 0.31 | 5.38 ± 0.05 |
4 | 0 | 0.5 | 400 | 16 | 1.37 ± 0.02 | 19.26 ± 0.46 | 4.79 ± 0.20 |
5 | 0 | 4.5 | 100 | 10 | 1.28 ± 0.02 | 21.98 ± 0.35 | 6.86 ± 0.10 |
6 | 0 | 4.5 | 100 | 16 | 1.35 ± 0.02 | 21.40 ± 0.49 | 6.05 ± 0.19 |
7 | 0 | 4.5 | 400 | 10 | 1.37 ± 0.02 | 20.20 ± 0.66 | 5.80 ± 0.30 |
8 | 0 | 4.5 | 400 | 16 | 1.38 ± 0.02 | 19.92 ± 0.65 | 4.91 ± 0.11 |
9 | 60 | 0.5 | 100 | 10 | 1.31 ± 0.03 | 23.02 ± 0.91 | 6.36 ± 0.18 |
10 | 60 | 0.5 | 100 | 16 | 1.36 ± 0.03 | 22.36 ± 0.87 | 5.95 ± 0.41 |
11 | 60 | 0.5 | 400 | 10 | 1.37 ± 0.04 | 20.34 ± 0.32 | 5.72 ± 0.63 |
12 | 60 | 0.5 | 400 | 16 | 1.49 ± 0.02 | 18.58 ± 0.43 | 5.31 ± 0.23 |
13 | 60 | 4.5 | 100 | 10 | 1.32 ± 0.02 | 22.40 ± 1.06 | 6.21 ± 0.36 |
14 | 60 | 4.5 | 100 | 16 | 1.25 ± 0.02 | 23.54 ± 0.78 | 5.85 ± 0.68 |
15 | 60 | 4.5 | 400 | 10 | 1.44 ± 0.01 | 20.78 ± 0.65 | 6.25 ± 0.19 |
16 | 60 | 4.5 | 400 | 16 | 1.37 ± 0.03 | 20.20 ± 0.20 | 5.81 ± 0.14 |
17 (C) | 30 | 2.5 | 250 | 13 | 1.36 ± 0.02 | 18.56 ± 0.48 | 6.54 ± 0.37 |
Source of Variation | SS | df | MS | F | p |
---|---|---|---|---|---|
α | 0.0003 | 1 | 0.0003 | 0.28 | 0.59730 |
d | 0.0205 | 1 | 0.0205 | 18.03 | 0.00007 |
n | 0.2000 | 1 | 0.2000 | 176.03 | 0.00000 |
u | 0.0045 | 1 | 0.0045 | 3.96 | 0.05048 |
αd | 0.0010 | 1 | 0.0010 | 0.86 | 0.35621 |
αn | 0.0010 | 1 | 0.0010 | 0.86 | 0.35621 |
αu | 0.0007 | 1 | 0.0007 | 0.63 | 0.42869 |
dn | 0.0024 | 1 | 0.0024 | 2.13 | 0.14891 |
du | 0.0180 | 1 | 0.0180 | 15.84 | 0.00017 |
nu | 0.0205 | 1 | 0.0205 | 18.03 | 0.00007 |
αdn | 0.0115 | 1 | 0.0115 | 10.14 | 0.00217 |
αdu | 0.0442 | 1 | 0.0442 | 38.89 | 0.00000 |
αnu | 0.0480 | 1 | 0.0480 | 42.27 | 0.00000 |
dnu | 0.0045 | 1 | 0.0045 | 3.96 | 0.05048 |
Error | 0.0795 | 70 | 0.0011 | ||
Total SS | 0.4566 | 84 |
Source of Variation | SS | df | MS | F | p |
---|---|---|---|---|---|
curvature | 27.2745 | 1 | 27.2745 | 69.16 | 0.000000 |
α | 13.9219 | 1 | 13.9219 | 35.30 | 0.000000 |
d | 8.1291 | 1 | 8.1291 | 20.61 | 0.000025 |
n | 97.2402 | 1 | 97.2402 | 246.56 | 0.000000 |
u | 6.6640 | 1 | 6.6640 | 16.90 | 0.000113 |
αd | 0.0009 | 1 | 0.0009 | 0.002 | 0.962247 |
αn | 6.2968 | 1 | 6.2968 | 15.97 | 0.000167 |
αu | 0.3443 | 1 | 0.3443 | 0.87 | 0.353622 |
dn | 0.9214 | 1 | 0.9214 | 2.34 | 0.131237 |
du | 5.0576 | 1 | 5.0576 | 12.82 | 0.000654 |
nu | 0.1634 | 1 | 0.1634 | 0.41 | 0.522076 |
αdn | 0.4522 | 1 | 0.4522 | 1.15 | 0.288209 |
αdu | 0.9804 | 1 | 0.9804 | 2.49 | 0.119721 |
αnu | 7.0823 | 1 | 7.0823 | 17.96 | 0.000073 |
dnu | 1.2725 | 1 | 1.2725 | 3.23 | 0.077107 |
Error | 25.6355 | 65 | 0.3944 | ||
Total SS | 201.8958 | 80 |
Source of Variation | SS | df | MS | F | p |
---|---|---|---|---|---|
curvature | 2.8020 | 1 | 2.8020 | 38.64 | 0.00000 |
α | 0.6732 | 1 | 0.6732 | 9.28 | 0.00330 |
d | 2.0598 | 1 | 2.0597 | 28.41 | 0.00000 |
n | 7.4918 | 1 | 7.4918 | 103.33 | 0.00000 |
u | 8.3347 | 1 | 8.3347 | 114.95 | 0.00000 |
αd | 0.2997 | 1 | 0.2997 | 4.13 | 0.04600 |
αn | 1.7326 | 1 | 1.7326 | 23.90 | 0.00001 |
αu | 1.2498 | 1 | 1.2498 | 17.24 | 0.00010 |
dn | 0.3757 | 1 | 0.3757 | 5.18 | 0.02602 |
du | 0.0233 | 1 | 0.0233 | 0.32 | 0.57240 |
nu | 0.4145 | 1 | 0.4145 | 5.72 | 0.01963 |
αdn | 1.9635 | 1 | 1.9635 | 27.08 | 0.00000 |
αdu | 0.1813 | 1 | 0.1813 | 2.50 | 0.11852 |
αnu | 0.0150 | 1 | 0.0150 | 0.21 | 0.65068 |
dnu | 0.2668 | 1 | 0.2668 | 3.68 | 0.05933 |
Error | 4.8579 | 67 | 0.0725 | ||
Total SS | 33.2901 | 82 |
I Heating | Cooling | II Heating | |||||||
---|---|---|---|---|---|---|---|---|---|
Design Layout | Tm/°C | ΔH/J/g | Xc/% | Tm1/°C | Tm2/°C | Tc/°C | Tm/°C | ΔH/J/g | Xc/% |
PP | 168 | 88 | 42.1 | 124 | 189 | 118 | 167 | 95 | 45.5 |
6 | 173 | 75 | 42.7 | 126 | 187 | 121 | 169 | 84 | 47.8 |
10 | 173 | 94 | 53.5 | 125 | 186 | 127 | 169 | 99 | 56.4 |
12 | 169 | 88 | 50.1 | 125 | 182 | 123 | 168 | 95 | 54.1 |
13 | 170 | 83 | 44.1 | 120 | 180 | 122 | 167 | 93 | 49.4 |
14 | 170 | 70 | 39.9 | 120 | 184 | 121 | 167 | 75 | 42.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasimowski, E.; Majewski, Ł.; Grochowicz, M. Influence of the Conditions of Corotating Twin-Screw Extrusion for Talc-Filled Polypropylene on Selected Properties of the Extrudate. Polymers 2019, 11, 1460. https://doi.org/10.3390/polym11091460
Sasimowski E, Majewski Ł, Grochowicz M. Influence of the Conditions of Corotating Twin-Screw Extrusion for Talc-Filled Polypropylene on Selected Properties of the Extrudate. Polymers. 2019; 11(9):1460. https://doi.org/10.3390/polym11091460
Chicago/Turabian StyleSasimowski, Emil, Łukasz Majewski, and Marta Grochowicz. 2019. "Influence of the Conditions of Corotating Twin-Screw Extrusion for Talc-Filled Polypropylene on Selected Properties of the Extrudate" Polymers 11, no. 9: 1460. https://doi.org/10.3390/polym11091460
APA StyleSasimowski, E., Majewski, Ł., & Grochowicz, M. (2019). Influence of the Conditions of Corotating Twin-Screw Extrusion for Talc-Filled Polypropylene on Selected Properties of the Extrudate. Polymers, 11(9), 1460. https://doi.org/10.3390/polym11091460