Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Synthesis of PS-b-PGL Copolymers
2.2. Methods
2.2.1. Formation of Micelles in Dioxane and CMC Measurements
2.2.2. Formation of Aggregates in Water/Dioxane and CWC Measurements
2.2.3. Characterization by Dynamic Light Scattering
2.2.4. Transmission Electron Microscopy
3. Results and Discussion
3.1. Critical Micelle Concentration of PS-b-PGL in Dioxane
3.2. Aggregation of PS-b-PGL Copolymers in Water/Dioxane Mixtures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Bahadur, P. Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Adv. Colloid Interface Sci. 2006, 123, 75–96. [Google Scholar] [CrossRef]
- Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 2007, 65, 259–269. [Google Scholar] [CrossRef]
- Alexandridis, P.; Lindman, B. Amphiphilic Block Copolymers: Self-Assemblty and Applications; Elsevier: New York, NY, USA, 2000; ISBN 9780080527109. [Google Scholar]
- Zhang, L.; Eisenberg, A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol. 1998, 9, 677–699. [Google Scholar] [CrossRef]
- Attia, A.B.E.; Ong, Z.Y.; Hedrick, J.L.; Lee, P.P.; Ee, P.L.R.; Hammond, P.T.; Yang, Y.-Y. Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interface Sci. 2011, 16, 182–194. [Google Scholar] [CrossRef]
- Reddy, B.P.K.; Yadav, H.K.S.; Nagesha, D.K.; Raizaday, A.; Karim, A. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs; Review. J. Nanosci. Nanotechnol. 2015, 15, 4009–4018. [Google Scholar] [CrossRef]
- Bronstein, L.; Krämer, E.; Berton, B.; Burger, C.; Förster, S.; Antonietti, M. Successive Use of Amphiphilic Block Copolymers as Nanoreactors and Templates: Preparation of Porous Silica with Metal Nanoparticles. Chem. Mater. 1999, 11, 1402–1405. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Amphiphilic Diblock Copolymers. Macromolecules. 1998, 31, 1144–1154. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, H.; Eisenberg, A. Phase Separation Behavior and Crew-Cut Micelle Formation of Polystyrene-b-poly(acrylic acid) Copolymers in Solutions. Macromolecules 1997, 30, 1001–1011. [Google Scholar] [CrossRef]
- Shen, H.; Eisenberg, A. Block Length Dependence of Morphological Phase Diagrams of the Ternary System of PS-b-PAA/Dioxane/H2O. Macromolecules 2000, 33, 2561–2572. [Google Scholar] [CrossRef]
- Jada, A.; Hurtrez, G.; Siffert, B.; Riess, G. Structure of polystyrene-block-poly(ethylene oxide) diblock copolymer micelles in water. Macromol. Chem. Phys. 1996, 197, 3697–3710. [Google Scholar] [CrossRef]
- Hurtrez, G.; Dumas, P.; Riess, G. Polystyrene-poly(etylene oxide) diblock copolymers micelles in water. Polym. Bul. 1998, 40, 203–210. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Wang, G. Synthesis and characterization of copolymers with the same proportions of polystyrene and poly(ethylene oxide) compositions but different connection sequence by the efficient Williamson reaction. Polym. Int. 2015, 64, 1202–1208. [Google Scholar] [CrossRef]
- Wilhelm, M.; Zhao, C.L.; Wang, Y.; Xu, R.; Winnik, M.A.; Mura, J.L.; Riess, G.; Croucher, M.D. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: A fluorescence probe study. Macromolecules 1991, 24, 1033–1040. [Google Scholar] [CrossRef]
- Xu, R.; Winnik, M.A.; Hallett, F.R.; Riess, G.; Croucher, M.D. Light-scattering study of the association behavior of styrene-ethylene oxide block copolymers in aqueous solution. Macromolecules 1991, 24, 87–93. [Google Scholar] [CrossRef]
- Nawaz, M.; Baloch, M.K.; Price, G.J.; Ud-Din, I.; El-Mossalamy, E.-S.E.-B. Synthesis, association and surface morphology of poly(ethylene oxide)-polystyrene block copolymer. J. Polym. Res. 2013, 20, 180. [Google Scholar] [CrossRef]
- Zhu, J.; Hayward, R.C. Spontaneous Generation of Amphiphilic Block Copolymer Micelles with Multiple Morphologies through Interfacial Instabilities. J. Am. Chem. Soc. 2008, 130, 7496–7502. [Google Scholar] [CrossRef]
- Yu, K.; Eisenberg, A. Multiple Morphologies in Aqueous Solutions of Aggregates of Polystyrene-block-poly(ethylene oxide) Diblock Copolymers. Macromolecules 1996, 29, 6359–6361. [Google Scholar] [CrossRef]
- Bhargava, P.; Tu, Y.; Joseph, X.Z.; Xiong, H.; Quirk, R.P.; Cheng, S.Z.D. Temperature-Induced Reversible Morphological Changes of Polystyrene-block-Poly(ethylene Oxide) Micelles in Solution. J. Am. Chem. Soc. 2007, 129, 1113–1121. [Google Scholar] [CrossRef]
- Zheng, P.B.X.; Li, P.; Harris, R.P.Q.F.W.; Cheng, S.Z.D. Self-Assembled Polystyrene-block-poly(ethylene oxide) Micelle Morphologies in Solution. Macromolecules 2006, 39, 4880–4888. [Google Scholar]
- Yang, S.; Yu, X.; Wang, L.; Tu, Y.; Zheng, J.X.; Xu, J.; van Horn, R.M.; Cheng, S.Z.D. Hydrogen-Bonding-Driven Complexation of Polystyrene-block-poly(ethylene oxide) Micelles with Poly (acrylic acid). Macromolecules 2010, 43, 3018–3026. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Yang, S.; Zheng, J.X.; van Horn, R.M.; Zhang, W.-B.; Xu, J.; Cheng, S.Z.D. Polystyrene-block-poly(ethylene oxide) Reverse Micelles and Their Temperature-Driven Morphological Transitions in Organic Solvents. Macromolecules 2012, 45, 3634–3638. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Gosecka, M.; Lepinay, S.; Turmine, M.; Carbonnier, B.; Basinska, T.; Slomkowski, S.; Millot, M.-C.; Othmane, A.; Hassen-Chehimi, D.B.; et al. Highly Hydrophilic Surfaces from Polyglycidol Grafts with Dual Antifouling and Specific Protein Recognition Properties. Langmuir 2011, 27, 9285–9294. [Google Scholar] [CrossRef]
- Siebert, M.; Keul, H.; Möller, M. Synthesis of Well-Defined Polystyrene-Block-Polyglycidol (PS-b-PG) Block Co-polymers by Anionic Polymerization. Des. Monomers Polym. 2010, 13, 547–563. [Google Scholar] [CrossRef]
- Dimitrov, P.; Rangelov, S.; Dworak, A.; Haraguchi, N.; Hirao, A.; Tsvetanov, C.B. Triblock and radial star-block copolymers comprised of poly(ethoxyethyl glycidyl ether), polyglycidol, poly (propylene oxide) and polystyrene obtained by anionic polymerization initiated by Cs initiators. Macromol. Symp. 2004, 215, 127–140. [Google Scholar] [CrossRef]
- Wilms, D.; Stiriba, S.-E.; Frey, H. Hyperbranched Polyglycerols: From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications. Acc. Chem. Res. 2010, 43, 129–141. [Google Scholar] [CrossRef]
- Walach, W.; Trzebicka, B.; Justynska, J.; Dworak, A. High molecular arborescent polyoxyethylene with hydroxyl containing shell. Polymer 2004, 45, 1755–1762. [Google Scholar] [CrossRef]
- Mendrek, A.; Mendrek, S.; Trzebicka, B.; Kuckling, D.; Walach, W.; Adler, H.-J.; Dworak, A. Polyether Core-Shell Cylinder–Polymerization of Polyglycidol Macromonomers. Macromol. Chem. Phys. 2005, 206, 2018–2026. [Google Scholar] [CrossRef]
- Thomas, A.; Müller, S.S.; Frey, H. Beyond Poly(ethylene glycol): Linear Polyglycerol as a Multifunctional Polyether for Biomedical and Pharmaceutical Applications. Biomacromolecules 2014, 15, 1935–1954. [Google Scholar] [CrossRef]
- Calderón, M.; Quadir, M.A.; Sharma, S.K.; Haag, R. Dendritic Polyglycerols for Biomedical Applications. Adv. Mater. 2010, 22, 190–218. [Google Scholar] [CrossRef]
- Bakardzhiev, P.; Rangelov, S.; Trzebicka, B.; Momekova, D.; Lalev, G.; Garamus, V.M. Nanostructures by self-assembly of polyglycidol-derivatized lipids. RSC Adv. 2014, 4, 37208–37219. [Google Scholar] [CrossRef] [Green Version]
- Libera, M.; Formanek, P.; Schellkopf, L.; Trzebicka, B.; Dworak, A.; Stamm, M. Amphiphilic dendritic copolymers of tert-butyl-glycidylether and glycidol as a nanocontainer for an anticancer ruthenium complex. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 3488–3497. [Google Scholar] [CrossRef]
- Slomkowski, S.; Gadzinowski, M.; Sosnowski, S.; De Vita, C.; Pucci, A.; Ciatdelli, F.; Jakubowski, W.; Matyjaszewski, K. Biodegradable Nano- and Microparticles with Controlled Surface Properties. Macromol. Symp. 2005, 226, 239. [Google Scholar] [CrossRef]
- Jamróz-Piegza, M.; Wałach, W.; Dworak, A.; Trzebicka, B. Polyether nanoparticles from covalently crosslinked copolymer micelles. J. Colloid Interface Sci. 2008, 325, 141–148. [Google Scholar] [CrossRef]
- Utrata-Wesolek, A.; Oleszko, N.; Trzebicka, B.; Aniol, J.; Zagdanska, M.; Lesiak, M.; Sieron, A.; Dworak, A. Modified polyglycidol based nanolayers of switchable philicity and their interactions with skin cells. Eur. Polym. J. 2013, 49, 106–117. [Google Scholar] [CrossRef]
- Utrata-Wesolek, A.; Walach, W.; Aniol, J.; Sieron, A.L.; Dworak, A. Multiple and terminal grafting of linear polyglycidol for surfaces of reduced protein adsorption. Polymer 2016, 97, 44–54. [Google Scholar] [CrossRef]
- Dimitrov, P.; Porjazoska, A.; Novakov, C.P.; Cvetkovska, M.; Tsvetanov, C.B. Functionalized micelles from new ABC polyglycidol-poly(ethylene oxide)-poly(d,l-lactide) terpolymers. Polymer 2005, 46, 6820–6828. [Google Scholar] [CrossRef]
- Toncheva-Moncheva, N.; Bakardzhiev, P.; Rangelov, S.; Trzebicka, B.; Forys, A.; Petrov, P.D. Linear Amphiphilic Polyglycidol/Poly (ε-caprolactone) Block Copolymers Prepared via “Click” Chemistry-Based Concept. Macromolecules 2019, 52, 3435–3447. [Google Scholar] [CrossRef]
- Gadzinowski, M.; Sosnowski, S. Biodegradable/biocompatible ABC triblock copolymer bearing hydroxyl groups in the middle block. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 3750–3760. [Google Scholar] [CrossRef]
- Slomkowski, S.; Gadzinowski, M.; Sosnowski, S.; Radomska-Galant, I.; Pucci, A.; de Vita, C.; Ciardelli, F. Nanoparticles from polylactide and polyether block copolymers: Formation, properties, encapsulation, and release of pyrene—Fluorescent model of hydrophobic drug. J. Nanosci. Nanotechnol. 2006, 6, 3242–3251. [Google Scholar] [CrossRef]
- Siebert, M.; Henke, A.; Eckert, T.; Richtering, W.; Keul, H.; Möller, M. Polystyrene-block-polyglycidol Micelles Cross-Linked with Titanium Tetraisopropoxide. Laser Light and Small-Angle X-ray Scattering Studies on Their Formation in Solution. Langmuir 2010, 26, 16791–16800. [Google Scholar] [CrossRef]
- Otulakowski, L.; Gadzinowski, M.; Slomkowski, S.; Trzebicka, B. Micellisation of polystyrene-b-polyglycidol copolymers in water solution. Eur. Polym. J. 2018, 99, 72–79. [Google Scholar] [CrossRef]
- Fitton, A.O.; Hill, J.; Jane, D.E.; Millar, R. Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis 1987, 1987, 1140–1142. [Google Scholar] [CrossRef]
- Libera, M.; Walach, W.; Trzebicka, B.; Rangelov, S.; Dworak, A. Thermosensitive dendritic stars of tert-butyl-glycidylether and glycidol—Synthesis and encapsulation properties. Polymer 2011, 52, 3526–3536. [Google Scholar] [CrossRef]
- Dimitrov, P.; Utrata-Wesołek, A.; Rangelov, S.; Wałach, W.; Trzebicka, B.; Dworak, A. Synthesis and self-association in aqueous media of poly (ethylene oxide)/poly (ethyl glycidyl carbamate) amphiphilic block copolymers. Polymer 2006, 47, 4905–4915. [Google Scholar] [CrossRef]
- Topel, Ö.; Çakır, B.A.; Budama, L.; Hoda, N. Determination of critical micelle concentration of polybutadiene-block-poly (ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J. Mol. Liq. 2013, 177, 40–43. [Google Scholar] [CrossRef]
- Zhou, Z.; Chu, B. Light-scattering study on the association behavior of triblock polymers of ethylene oxide and propylene oxide in aqueous solution. J. Colloid Interface Sci. 1988, 126, 171–180. [Google Scholar] [CrossRef]
- Patel, T.; Abezgauz, L.; Danino, D.; Aswal, V.; Bahadur, P. Micellar Behavior of Polystyrene-Poly (Ethylene Oxide) Diblock Copolymers in Aqueous Media: Effect of Copolymer Composition, Temperature, Salt, and Surfactants. J. Dispers. Sci. Technol. 2011, 32, 1083–1091. [Google Scholar] [CrossRef]
- Peng, B.; Chu, X.; Li, Y.; Li, D.; Chen, Y.; Zhao, J. Adsorption kinetics and stability of poly (ethylene oxide)-block-polystyrene micelles on polystyrene surface. Polymer 2013, 54, 5779–5789. [Google Scholar] [CrossRef]
- Halacheva, S.; Rangelov, S.; Tsvetanov, C. Poly (glycidol)-Based Analogues to Pluronic Block Copolymers. Synthesis and Aqueous Solution Properties. Macromolecules 2006, 39, 6845–6852. [Google Scholar] [CrossRef]
- Mok, M.M.; Thiagarajan, R.; Flores, M.; Morse, D.C.; Lodge, T.P. Apparent Critical Micelle Concentrations in Block Copolymer/Ionic Liquid Solutions: Remarkably Weak Dependence on Solvophobic Block Molecular Weight. Macromolecules 2012, 45, 4818–4829. [Google Scholar] [CrossRef]
- Weast, R.C. Handbook of Chemistry and Physics, 65th ed.; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Gan, Y.; Wanga, Z.-D.; Lua, Z.-X.; Shia, Y.; Tana, H.-Y.; Yana, C.-F. Control on the Morphology of ABA Amphiphilic Triblock Copolymer Micelles in Dioxane/Water Mixture Solvent. Chin. J. Polym. Sci. 2018, 36, 728–735. [Google Scholar] [CrossRef]
- Azzam, T.; Eisenberg, A. Control of Vesicular Morphologies through Hydrophobic Block Length. Angew. Chem. Int. Ed. 2006, 45, 7443–7447. [Google Scholar] [CrossRef]
(Co)polymer | Mn (GPC) a | DPGPC b | Mw/Mn | CMC in Dioxane [mg/mL] |
---|---|---|---|---|
PS-b-PGL(1) | 4000 | 29–13 | 1.01 | - |
PS-b-PGL(2) | 6100 | 29–42 | 1.03 | 0.6 |
PS-b-PGL(3) | 8100 | 29–69 | 1.04 | 0.45 |
PS-b-PGL(4) | 11,700 | 29–117 | 1.07 | 0.35 |
Copolymer | Contour Length of Glycidol Block [nm] | Contour Length of Copolymer Chain * [nm] | Dh [nm] | PDI |
---|---|---|---|---|
PS-b-PGL(1) | 3.12 | 6.74 | - | - |
PS-b-PGL(2) | 10.33 | 13.95 | 18.4 | 0.06 |
PS-b-PGL(3) | 18.00 | 21.62 | 17.1 | 0.06 |
PS-b-PGL(4) | 33.60 | 37.22 | 14.2 | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otulakowski, L.; Dworak, A.; Forys, A.; Gadzinowski, M.; Slomkowski, S.; Basinska, T.; Trzebicka, B. Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions. Polymers 2020, 12, 200. https://doi.org/10.3390/polym12010200
Otulakowski L, Dworak A, Forys A, Gadzinowski M, Slomkowski S, Basinska T, Trzebicka B. Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions. Polymers. 2020; 12(1):200. https://doi.org/10.3390/polym12010200
Chicago/Turabian StyleOtulakowski, Lukasz, Andrzej Dworak, Aleksander Forys, Mariusz Gadzinowski, Stanislaw Slomkowski, Teresa Basinska, and Barbara Trzebicka. 2020. "Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions" Polymers 12, no. 1: 200. https://doi.org/10.3390/polym12010200
APA StyleOtulakowski, L., Dworak, A., Forys, A., Gadzinowski, M., Slomkowski, S., Basinska, T., & Trzebicka, B. (2020). Micellization of Polystyrene-b-Polyglycidol in Dioxane and Water/Dioxane Solutions. Polymers, 12(1), 200. https://doi.org/10.3390/polym12010200