Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. General Experimental Conditions
2.3. Dynamic Mechanical Analysis (DMA)
2.4. Thermomechanical Analysis (TMA)
2.4.1. Creep Recovery Tests
2.4.2. Stress-Relaxation Tests
2.5. Thermogravimetric Analysis (TGA)
2.6. Mechanical Properties
3. Results
3.1. DMA Tests
3.1.1. Displacement Sweep Test
3.1.2. DMA Experiments
3.2. Thermomechanical Analysis (TMA)
3.2.1. Creep Recovery Tests
3.2.2. Stress-Relaxation Tests
3.3. Flexural Experiments
3.4. Tension Experiments
3.5. TGA
3.6. Calculation of the Fibers’ Volume Fraction (Vf) and Volume of the Matrix (Vm)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin, A. Introduction of Fibre-Reinforced Polymers—Polymers and Composites: Concepts, Properties and Processes. In Fiber Reinforced Polymers; IntechOpen: Rijeka, Croatia, 2013; Available online: https://www.intechopen.com/books/fiber-reinforced-polymers-the-technology-applied-for-concrete-repair/introduction-of-fibre-reinforced-polymers-polymers-and-composites-concepts-properties-and-processes (accessed on 1 May 2020). [CrossRef] [Green Version]
- Cao, S.; Wu, Z. Tensile Properties of FRP Composites at Elevated and High Temperatures. J. Appl. Mech. 2008, 11, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Vikas, G.; Sudheer, M. A Review on Properties of Basalt Fiber Reinforced Polymer Composites. Am. J. Mater. Sci. 2017, 7, 156–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Chu, P.K.; Lv, F.; Zhang, C.; Ji, J.; Zhang, R.; Wang, H. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites. Mater. Chem. Phys. 2012, 133, 845–849. [Google Scholar] [CrossRef]
- Maxineasa, S.G.; Taranu, N. Life cycle analysis of strengthening concrete beams with FRP. In Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures; Woodhead Publishing: Sawston Cambridge, UK, 2018; pp. 673–721. ISBN 9780081021811. [Google Scholar] [CrossRef]
- Fiore, V.; di Bella, G.; Valenza, A. Glass–basalt/epoxy hybrid composites for marine applications. Mater. Des. 2011, 32, 2091–2099, ISSN 0261-3069. [Google Scholar] [CrossRef]
- Tamas, D.; Tibor, C. Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials Manufacturing and Design, 3rd ed.; Mallick, P.K., Ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Papanicolaou, G.C.; Zaoutsos, S.P. Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. In Creep and Fatigue in Polymer Matrix Composites; Woodhead Publishing: Sawston Cambridge, UK, 2011; pp. 3–47. [Google Scholar] [CrossRef]
- Tang, T.; Felicelli, S.D. Computational evaluation of effective stress relaxation behavior of polymer composites. Int. J. Eng. Sci. 2015, 90, 76–85. [Google Scholar] [CrossRef]
- Epaarachchi, J.; Guedes, R.; Eparachchi, J.A. The effect of viscoelasticity on fatigue behaviour of polymer matrix composites. In Creep and Fatigue in Polymer Matrix Composites; Guedes, R.M., Ed.; Woodhead Publishing: Sawston Cambridge, UK, 2011; pp. 4913–4925. [Google Scholar]
- Roy, S.; Reddy, J. Computational Modeling of Polymer Composites: A Study of Creep and Environmental Effects; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Daver, F.; Kajtaz, M.; Brandt, M.; Shanks, R.A. Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing. Polymers 2016, 8, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Yao, Y.; Zhu, D.; Mobasher, B.; Huang, L. Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures. Polym. Test. 2016, 51, 29–39. [Google Scholar] [CrossRef]
- Colombo, C.; Vergani, L.; Burman, M. Static and fatigue characterisation of new basalt fibre reinforced composites. Compos. Struct. 2012, 94, 1165–1174. [Google Scholar] [CrossRef]
- Bhat, T.; Kandare, E.; Gibson, A.; Di Modica, P.; Mouritz, A. Compressive softening and failure of basalt fibre composites in fire: Modelling and experimentation. Compos. Struct. 2017, 165, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Xian, G.; Li, H. Effects of elevated temperatures on the mechanical properties of basalt fibers and BFRP plates. Constr. Build. Mater. 2016, 127, 1029–1036. [Google Scholar] [CrossRef]
- LoPresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Manikandan, V.; Jappes, J.W.; Kumar, S.S.; Amuthakkannan, P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos. Part B 2012, 43, 812–818. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Yang, Y.; Xian, G. Flexural fatigue behavior of a pultruded basalt fiber reinforced epoxy plate subjected to elevated temperatures exposure. Polym. Compos. 2016, 39, 1731–1741. [Google Scholar] [CrossRef]
- Shishevan, F.A.; Akbulut, H.; Mohtadi-Bonab, M.A. Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites. J. Mater. Eng. Perform. 2017, 26, 2890–2900. [Google Scholar] [CrossRef]
- Carmisciano, S.; De Rosa, I.M.; Sarasini, F.; Tamburrano, A.; Valente, M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011, 32, 337–342. [Google Scholar] [CrossRef]
- Amuthakkannan, P.; Manikandan, V. Free vibration and dynamic mechanical properties of basalt fiber reinforced polymer composites. Indian J. Eng. Mater. Sci. 2018, 25, 265–270. Available online: http://nopr.niscair.res.in/handle/123456789/44932 (accessed on 30 September 2018).
- Wagner, M. Thermal Analysis in Practice-Fundamental Aspects; Carl Hanser Verlag GmbH Co KG: Munich, Germany, 2018. [Google Scholar]
- Zhang, D.; He, M.; Qin, S.; Yu, J.; Guo, J.; Xu, G. Study on dynamic mechanical, thermal, and mechanical properties of long glass fiber reinforced thermoplastic polyurethane/poly(butylene terephthalate) composites. Polym. Compos. 2018, 39, 63–72. [Google Scholar] [CrossRef]
- Takase, K.; Watanabe, I.; Kurogi, T.; Murata, H. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins. Dent. Mater. J. 2015, 34, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Sheikh-Ahmad, J.Y. Machining of Polymer Composites; Springer: New York, NY, USA, 2009; ISBN 978-0-387-35539-9. [Google Scholar] [CrossRef]
Frequency | 1 Hz | 5 Hz | 10 Hz |
---|---|---|---|
Tg (peak of tanδ) | 67.1 °C | 72.1 °C | 75.4 °C |
F at 0.2% Plastic Deformation [N] | Upper Yield Point [N] | σfsmax [MPa] | |
---|---|---|---|
BFRP composite | 187.75 | 195 | 282 |
F at 0.2% Plastic Strain [N] | σtsmax [MPa] | Strain at Breakage [%] | |
---|---|---|---|
BFRP composite | 2580 | 494.4 | 4.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karvanis, K.; Rusnáková, S.; Krejčí, O.; Žaludek, M. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites. Polymers 2020, 12, 1785. https://doi.org/10.3390/polym12081785
Karvanis K, Rusnáková S, Krejčí O, Žaludek M. Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites. Polymers. 2020; 12(8):1785. https://doi.org/10.3390/polym12081785
Chicago/Turabian StyleKarvanis, Konstantinos, Soňa Rusnáková, Ondřej Krejčí, and Milan Žaludek. 2020. "Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites" Polymers 12, no. 8: 1785. https://doi.org/10.3390/polym12081785
APA StyleKarvanis, K., Rusnáková, S., Krejčí, O., & Žaludek, M. (2020). Preparation, Thermal Analysis, and Mechanical Properties of Basalt Fiber/Epoxy Composites. Polymers, 12(8), 1785. https://doi.org/10.3390/polym12081785