Berberine-Coated Biomimetic Composite Microspheres for Simultaneously Hemostatic and Antibacterial Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization
2.2.1. Preparation
2.2.2. Surface Morphology Characterization by Scanning Electron Microscopy
2.2.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.4. Swelling
2.2.5. Degradation
2.3. Hemostatic Performance
2.3.1. Blood Collection
2.3.2. Whole Blood Coagulation In Vitro
2.3.3. Rat Tail Amputation Model
2.3.4. Platelet Aggregation
2.3.5. Platelet Adhesion
2.4. Antibacterial Activity
2.5. Biocompatibility
2.5.1. Cytotoxicity Evaluation
2.5.2. Hemolysis Test
3. Results
3.1. Characterization
3.1.1. Scanning Electron Microscopy
3.1.2. Fourier Transform Infrared Spectroscopy (FT-IR)
3.1.3. Swelling
3.1.4. Degradation
3.2. Hemostatic Performance
3.2.1. Whole Blood Coagulation In Vitro
3.2.2. Rat Tail Amputation Model
3.2.3. Platelet Aggregation and Adhesion Test
3.3. Antibacterial Activity
3.4. Biocompatibility
3.4.1. Cytotoxicity Evaluation
3.4.2. Hemolysis Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SA | Sodium alginate |
SCC | Sodium carboxymethyl cellulose |
B | Berberine |
BACG | Biomimetic alginate/carboxymethylcellulose/gelatin |
BACG-B | Biomimetic alginate/carboxymethylcellulose/gelatin coated with Berberine |
CMPHP | Compound microporous polysaccharide hemostatic powder |
SEM | Scanning electron microscope |
FT-IR | Fourier transform infrared |
SR | Swelling ratio |
DR | Degradation ratio |
AGR | Aggregation ratio |
ADR | Adhesion ratio |
CV | Cell viability |
HR | Hemolysis ratio |
BA | Before aggregation |
AA | After aggregation |
BP | Before perfusion |
AP | After perfusion |
RBC | Red blood cell |
RES | Rabbit erythrocyte suspension |
PRP | Platelet-rich plasma |
SD | Sprague Dawley |
PBS | Phosphate-buffered saline |
TS | Test sample |
NC | Negative control |
BC | Blank control |
PC | Positive control |
References
- Alam, H.B.; Koustova, E.; Rhee, P. Combat casualty care research: From bench to the battlefield. World J. Surg. 2005, 29, S7–S11. [Google Scholar] [CrossRef]
- Kelly, J.F.; Ritenour, A.E.; McLaughlin, D.F.; Bagg, K.A.; Apodaca, A.N.; Mallak, C.T.; Pearse, L.; Lawnick, M.M.; Champion, H.R.; Holcomb, J.B. Injury severity and causes of death from operation Iraqi freedom and operation enduring freedom: 2003–2004 versus 2006. J. Trauma Inj. Infect. Crit. Care 2008, 64, S21–S26. [Google Scholar] [CrossRef] [Green Version]
- Katzenell, U.; Ash, N.; Tapia, A.L.; Campino, G.A.; Glassberg, E. Analysis of the Causes of Death of Casualties in Field Military Setting. Mil. Med. 2012, 177, 1065–1068. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.B.; Hagerman, S.R.; Jamieson, K.; Castleberry, S.A.; Wang, W.; Holler, E.; Ljubimova, J.Y.; Hammond, P.T. Multifunctional Self-Assembled Films for Rapid Hemostat and Sustained Anti-infective Delivery. ACS Biomater. Sci. Eng. 2015, 1, 148–156. [Google Scholar] [CrossRef]
- Dowling, M.B.; MacIntire, I.C.; White, J.C.; Narayan, M.; Duggan, M.J.; King, D.R.; Raghavan, S.R. Sprayable Foams Based on an Amphiphilic Biopolymer for Control of Hemorrhage Without Compression. ACS Biomater. Sci. Eng. 2015, 1, 440–447. [Google Scholar] [CrossRef]
- Alam, H.B.; Burris, D.; DaCorta, J.A.; Rhee, P. Hemorrhage control in the battlefield: Role of new hemostatic agents. Mil. Med. 2005, 170, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.Y.; Wu, J.; Moochhala, S.M.; Tan, M.H.; Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 2008, 29, 4323–4332. [Google Scholar] [CrossRef]
- Meng, X.; Tian, F.; Yang, J.; He, C.N.; Xing, N.; Li, F. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J. Mater. Sci. Mater. Med. 2010, 21, 1751–1759. [Google Scholar] [CrossRef]
- Rinaudo, M. Biomaterials based on a natural polysaccharide: Alginate. TIP. Revista Espec. Cienc. Químico Biológicas 2014, 17, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623–633. [Google Scholar] [CrossRef]
- Wang, C.; Luo, W.F.; Li, P.W.; Li, S.D.; Yang, Z.M.; Hu, Z.; Liu, Y.Y.; Ao, N.J. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr. Polym. 2017, 174, 432–442. [Google Scholar] [CrossRef]
- Liu, X.L.; Nielsen, L.H.; Klodziliska, S.N.; Nielsen, H.M.; Qu, H.Y.; Christensen, L.P.; Rantanen, J.; Yang, M.S. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur. J. Pharm. Biopharm. 2018, 123, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Lin, X.; Chen, L.; Huang, L.; Cao, S.; Wang, H. Preparation of Microfibrillated Cellulose/Chitosan–Benzalkonium Chloride Biocomposite for Enhancing Antibacterium and Strength of Sodium Alginate Films. J. Agric. Food Chem. 2013, 61, 6562–6567. [Google Scholar] [CrossRef]
- Zhang, S.H.; Li, J.W.; Chen, S.J.; Zhang, X.Y.; Ma, J.W.; He, J.M. Oxidized cellulose-based hemostatic materials. Carbohydr. Pol. 2020, 230, 115585. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Qiu, L.Y.; Cui, J.; Wei, Q.F. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 303–309. [Google Scholar] [CrossRef]
- Lin, S.P.; Calvar, I.L.; Catchmark, J.M.; Liu, J.R.; Demirci, A.; Cheng, K.C. Biosynthesis, production and applications of bacterial cellulose. Cellulose 2013, 20, 2191–2219. [Google Scholar] [CrossRef]
- Li, C.P.; Mu, C.D.; Lin, W.; Ngai, T. Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels. ACS Appl. Mater. Interfaces 2015, 7, 18732–18741. [Google Scholar] [CrossRef]
- Deng, L.L.; Zhang, X.; Li, Y.; Que, F.; Kang, X.F.; Liu, Y.Y.; Feng, F.Q.; Zhang, H. Characterization of gelatin/zein nanofibers by hybrid electrospinning. Food Hydrocoll. 2018, 75, 72–80. [Google Scholar] [CrossRef]
- Kim, S.E.; Heo, D.N.; Lee, J.B.; Kim, J.R.; Park, S.H.; Jeon, S.; Kwon, I.K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009, 4, 11. [Google Scholar] [CrossRef]
- Kang, H.W.; Tabata, Y.; Ikada, Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 1999, 20, 1339–1344. [Google Scholar] [CrossRef]
- Liu, Y.X.; Chan-Park, M.B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 2009, 30, 196–207. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Lovskaya, D.; Menshutina, N.; Mochalova, M.; Nosov, A.; Grebenyuk, A. Chitosan-Based Aerogel Particles as Highly Effective Local Hemostatic Agents. Production Process and In Vivo Evaluations. Polymers 2020, 12, 2055. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, C.Y.; Wei, X.J.; Yan, T.S.; Li, H.B.; He, J.M.; Huang, Y.D. Preparation and Characterization of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)-Oxidized Cellulose Nanocrystal/Alginate Biodegradable Composite Dressing for Hemostasis Applications. ACS Sustain. Chem. Eng. 2017, 5, 3819–3828. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, G.; Song, G.; Liu, T.; Cao, C.; Yang, Y.; Zhang, Y.; Hong, W. Incorporation of ZnO/Bioactive Glass Nanoparticles into Alginate/Chitosan Composite Hydrogels for Wound Closure. ACS Appl. Bio Mater. 2019, 2, 5042–5052. [Google Scholar] [CrossRef]
- Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsa-Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Hytonen, V.P. 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 21959–21970. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Li, F.X.; Wang, X.L.; Yu, J.Y.; Wu, D.Q. Hyaluronic Acid and Polyethylene Glycol Hybrid Hydrogel Encapsulating Nanogel with Hemostasis and Sustainable Antibacterial Property for Wound Healing. ACS Appl. Mater. Interfaces 2018, 10, 13304–13316. [Google Scholar] [CrossRef]
- Spotnitz, W.D.; Burks, S. Hemostats, sealants, and adhesives: Components of the surgical toolbox. Transfusion 2008, 48, 1502–1516. [Google Scholar] [CrossRef]
- Iwasa, K.; Lee, D.U.; Kang, S.I.; Wiegrebe, W. Antimicrobial activity of 8-alkyl- and 8-phenyl-substituted berberines and their 12-bromo derivatives. J. Nat. Prod. 1998, 61, 1150–1153. [Google Scholar] [CrossRef]
- Amin, A.H.; Subbaiah, T.V.; Abbasi, K.M. Berberine sulfate: Antimicrobial activity, bioassay, and mode of action. Can. J. Microbiol. 1969, 15, 1067–1076. [Google Scholar] [CrossRef]
- Merschjohann, K.; Sporer, F.; Steverding, D.; Wink, M. In Vitro Effect of Alkaloids on Bloodstream Forms of Trypanosoma brucei and T. congolense. Planta Med. 2001, 67, 623–627. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Zhang, J.-J.; Zhao, G.-C.; Chen, H.-Y. Study of Interaction of Berberine With Dna in the Presence of β-Cyclodextrin. Spectrosc. Lett. 1998, 31, 1705–1718. [Google Scholar] [CrossRef]
- Jin, J.; Xu, M.; Liu, Y.X.; Ji, Z.X.; Dai, K.L.; Zhang, L.; Wang, L.; Ye, F.; Chen, G.; Lv, Z.B. Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids Surf. B Biointerfaces 2020, 194, 111168. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Kuang, G.Z.; Zong, S.; Liu, S.; Xiao, H.H.; Chen, X.S.; Zhou, D.F.; Huang, Y.B. Sandwich-Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. Adv. Mater. 2018, 30, 1803217. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.X.; Li, Y.; Wang, X.X.; Wei, L.X.; Du, Y.Z. Effects of Yak skin gelatin on platelet activation. Food Funct. 2019, 10, 3379–3385. [Google Scholar] [CrossRef]
- Massaguer, A.; Engel, P.; Tovar, V.; March, S.; Rigol, M.; Solanes, N.; Bosch, J.; Pizcueta, P. Characterization of platelet and soluble-porcine P-selectin (CD62P). Vet. Immunol. Immunopathol. 2003, 96, 169–181. [Google Scholar] [CrossRef]
- Wagner, W.R.; Pachence, J.M.; Ristich, J.; Johnson, P.C. Comparative in vitro analysis of topical hemostatic agents. J. Surg. Res. 1996, 66, 100–108. [Google Scholar] [CrossRef]
- Su, J.H.; Sun, H.P.; Meng, Q.S.; Yin, Q.; Tang, S.; Zhang, P.C.; Chen, Y.; Zhang, Z.W.; Yu, H.J.; Li, Y.P. Long Circulation Red-Blood-Cell-Mimetic Nanoparticles with Peptide-Enhanced Tumor Penetration for Simultaneously Inhibiting Growth and Lung Metastasis of Breast Cancer. Adv. Funct. Mater. 2016, 26, 1243–1252. [Google Scholar] [CrossRef]
- Lan, G.Q.; Lu, B.T.; Wang, T.Y.; Wang, L.J.; Chen, J.H.; Yu, K.; Liu, J.W.; Dai, F.Y.; Wu, D.Y. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids Surf. B Biointerfaces 2015, 136, 1026–1034. [Google Scholar] [CrossRef]
- Wang, A.Y.; Rafalko, J.; Macdonald, M.; Ming, X.; Kocharian, R. Absorbable Hemostatic Aggregates. ACS Biomater. Sci. Eng. 2017, 3, 3675–3686. [Google Scholar] [CrossRef]
- Shenkman, B.; Budnik, I.; Einav, Y.; Hauschner, H.; Andrejchin, M.; Martinowitz, U. Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis, and hypothermia: Impact on blood coagulation and platelet function. J. Trauma Acute Care Surg. 2017, 82, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.Q.; Wang, J.; Yang, C.; Zhu, C.Z.; Guo, G.Y.; Tang, J.; Shen, H. Antimicrobial characteristics of Berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types. BMC Complement. Altern. Med. 2019, 19, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollini, M.; Russo, M.; Licciulli, A.; Sannino, A.; Maffezzoli, A. Characterization of antibacterial silver coated yarns. J. Mater. Sci. Mater. Med. 2009, 20, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
Grade | Performance |
---|---|
Great | Complete hemostasis within 100 s |
Fairly good | Almost complete hemostasis with mild bleeding within 100 s |
Sufficient | Minor bleeding within 200 s and complete hemostasis within 300 s |
Limited | No bleeding within 600 s |
Noneffective | Bleeding over 600 s |
1 mg/mL Ampicillin | 1 mg/mL Berberine | 1 mg/mL BACG-6B | 10 mg/mL BACG-6B | BC | |
---|---|---|---|---|---|
D1/mm | 23.0 | 26.0 | 16.0 | 24.0 | 6.0 |
D2/mm | 28.0 | 29.0 | 17.0 | 22.0 | 6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Dai, K.; Liu, C.; Hu, H.; Luo, F.; Qi, Q.; Wang, L.; Ye, F.; Jin, J.; Tang, J.; et al. Berberine-Coated Biomimetic Composite Microspheres for Simultaneously Hemostatic and Antibacterial Performance. Polymers 2021, 13, 360. https://doi.org/10.3390/polym13030360
Zhang X, Dai K, Liu C, Hu H, Luo F, Qi Q, Wang L, Ye F, Jin J, Tang J, et al. Berberine-Coated Biomimetic Composite Microspheres for Simultaneously Hemostatic and Antibacterial Performance. Polymers. 2021; 13(3):360. https://doi.org/10.3390/polym13030360
Chicago/Turabian StyleZhang, Xiaojian, Kaili Dai, Chenyu Liu, Haofeng Hu, Fulin Luo, Qifan Qi, Lei Wang, Fei Ye, Jia Jin, Jie Tang, and et al. 2021. "Berberine-Coated Biomimetic Composite Microspheres for Simultaneously Hemostatic and Antibacterial Performance" Polymers 13, no. 3: 360. https://doi.org/10.3390/polym13030360
APA StyleZhang, X., Dai, K., Liu, C., Hu, H., Luo, F., Qi, Q., Wang, L., Ye, F., Jin, J., Tang, J., & Yang, F. (2021). Berberine-Coated Biomimetic Composite Microspheres for Simultaneously Hemostatic and Antibacterial Performance. Polymers, 13(3), 360. https://doi.org/10.3390/polym13030360