Pulsed Laser Deposition of SWCNTs on Carbon Fibres: Effect of Deposition Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
2.3.1. Micro-Raman and STEM Characterization
2.3.2. Surface Microstructure by SEM
2.3.3. Contact Angle and Surface Free Energy
2.3.4. Micro-Droplet Pull-Out Test
2.3.5. Tensile Test
3. Results
3.1. SWCNTs Characterization
- ω—frequency of vibrations in the radial direction [cm−1]
- c1, c2—constants [cm−1];
- c1 = 215 [cm−1]
- c2 = 18 [cm−1]
- d—the diameter of the nanotubes [nm]
3.2. Fibres Covered by SWCNTs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, P.; Feng, Y.; Zhang, P.; Chen, H.; Zhao, N.; Feng, W. Increasing the interfacial strength in carbon fibre/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibres. Carbon 2011, 49, 4665–4673. [Google Scholar] [CrossRef]
- Song, W.; Gu, A.; Liang, G.; Yuan, L. Effect of the surface roughness on interfacial properties of carbon fibres reinforced epoxy resin composites. Appl. Surf. Sci. 2011, 257, 4069–4074. [Google Scholar] [CrossRef]
- Servinis, L.; Henderson, L.C.; Gengenbach, T.R.; Kafi, A.A.; Huson, M.G.; Fox, B.L. Surface functionalization of unsized carbon fibre using nitrenes derived from organic azides. Carbon 2013, 54, 378–388. [Google Scholar] [CrossRef]
- Shiba, K.; Tagaya, M.; Samitsu, S.; Motozuka, S. Effective surface functionalization of carbon fibres for fibre/polymer composites with tailor-made interfaces. ChemPlusChem 2014, 79, 197–210. [Google Scholar] [CrossRef]
- Vautard, F.; Fioux, P.; Vidal, L.; Dentzer, J.; Schultz, J.; Nardin, M.; Defoort, B. Influence of an oxidation of the carbon fibre surface by boiling nitric acid on the adhesion strength in carbon fibre-acrylate composites cured by electron beam. Surf. Interface Anal. 2013, 45, 722–741. [Google Scholar] [CrossRef]
- Rafique, I.; Kausar, A.; Anwar, Z.; Muhammad, B. Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review. Polym. Plast. Technol. Eng. 2016, 55, 312–333. [Google Scholar] [CrossRef]
- Naveh, N.; Shepelev, O.; Kenig, S. Enhancement of mechanical and electrical properties of continuous fibre reinforced epoxy composites with stacked graphene. Beilstein J. Nanotechnol. 2017, 8, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Corujeira Gallo, S.; Charitidis, C.; Dong, H. Surface functionalization of carbon fibres with active screen plasma. J. Vac. Sci. Technol. A Vac. Surf. Film. 2017, 35, 021404. [Google Scholar] [CrossRef] [Green Version]
- Farrow, G.J.; Atkinson, K.E.; Fluck, N.; Jones, C. Effect of low-power air plasma treatment on the mechanical properties of carbon fibres and the interfacial shear strength of carbon fibre-epoxy composites. Surf. Interface Anal. 1995, 23, 313–318. [Google Scholar] [CrossRef]
- Wicks, S.S.; de Villoria, R.G.; Wardle, B.L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos. Sci. Technol. 2010, 70, 20–28. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, X.; Yan, C.; Li, H.; Zhu, Y.; Xiaotuo, L.; Yu, L. Interfacial microstructure and properties of carbon fibre composites modified with graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 1543–1552. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Wang, C.G.; Wang, Y.X. In situ growth of CNTs on carbon fiber by chemical vapor deposition. Earth Environ. Sci. 2019, 354, 012075. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, J.; Sager, R.; Dai, L.; Baur, J. Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties. Compo. Sci. Technol. 2009, 69, 594–601. [Google Scholar] [CrossRef]
- Bota, P.-M.; Dorobantu, D.; Boerasu, I.; Bojin, D.; Enachescu, M. Synthesis of Single Wall Carbon Nanotubes by Excimer Laser Ablation. Surface Eng. Appl. Electrochem. 2014, 50, 294–299. [Google Scholar] [CrossRef]
- Moise, C.; Enachescu, M. High-Quality Carbon Nanomaterials Synthesized by Excimer Laser Ablation. In Applications of Laser Ablation—Thin Film Deposition, Nanomaterial Synthesis and Surface Modification; Yang, D., Ed.; IntechOpen Limited: London, UK, 2016; pp. 287–310. [Google Scholar]
- AL-Zanganawee, J.; AL-Timimi, M.; Pantazi, A.; Brîncoveanu, O.; Moise, C.; Mesterca, R.; Balan, D.; Iftimie, S.; Enachescu, M. Morphological and optical properties of functionalized SWCNTs:P3OT nanocomposite thin films, prepared by spincoating. J. Ovonic Res. 2016, 12, 201–207. [Google Scholar]
- Al-Zanganawee, J.; Iftimie, S.; Pantazi, A.; Mesterca, R.; Jderu, A.; Antohe, S.; Enachescu, M. On the physical properties of inverted photovoltaic structures based on P3OT: F-SWCNTs active layer. J. Ovonic Res. 2018, 14, 287–292. [Google Scholar]
- Roy, A.; Gupta, K.K.; Naskar, S.; Mukhopadhyay, T.; Dey, S. Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs. Mater. Today Commun. 2021, 26, 102021. [Google Scholar] [CrossRef]
- Al-Zanganawee, J.; Katona, A.; Moise, C.; Bojin, D.; Enachescu, M. Krypton Gas for High Quality Single Wall Carbon Nanotubes Synthesis by KrF Excimer Laser Ablation. J. Nanomater. 2015, 2015, 909072. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Maultzsch, J.; Telg, H.; Reich, S.; Thomsen, C. Radial breathing mode of singlewalled carbon nano tubes: Optical transition energies and chiralindex assignment. Phys. Rev. B 2005, 72, 205438. [Google Scholar] [CrossRef] [Green Version]
- AL-Zanganawee, J.; Mubarak, T.; Katona, A.; Moise, C.; Balan, D.; Dorobantu, D.; Bojin, D.; Enachescu, M. Raman spectroscopy and morphology characterizations of SWCNTs synthesized by KrF excimer laser ablation under neon gas atmosphere. Dig. J. Nanomater. Biostruct. 2016, 11, 525–536. [Google Scholar]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London 1805, 95, 65. [Google Scholar]
- Naveh, N.; Caron, A.; Rahmani, L.; Kaully, T. Method and Experimental Characterization of the Surface Free Energy of Carbon Fibres used in Composite Systems. Polym. Compos. 2021. (under review). [Google Scholar]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 38, 988. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
Scheme 1. | Spectrum 1 | Spectrum 2 | Spectrum 3 | Spectrum 4 | ||
---|---|---|---|---|---|---|
C | 96.23 | 95.70 | 96.05 | 97.67 | ||
O | 3.77 | 4.30 | 3.95 | 2.33 | ||
Total | 100 | 100 | 100 | 100 | ||
Statistics | C | O | ||||
Max | 97.67 | 4.30 | ||||
Min | 95.70 | 2.33 | ||||
Average | 96.41 | 3.59 | ||||
Standard Deviation | 0.87 | 0.87 |
Sample Name | Temperature (°C) |
---|---|
Sample #1 | 565 |
Sample #2 | 390 |
Sample #3 | 290 |
Sample #4 | 200 |
Sample #5 | 100 |
Sample #6 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moise, C.; Rachmani, L.; Mihai, G.; Lazar, O.; Enăchescu, M.; Naveh, N. Pulsed Laser Deposition of SWCNTs on Carbon Fibres: Effect of Deposition Temperature. Polymers 2021, 13, 1138. https://doi.org/10.3390/polym13071138
Moise C, Rachmani L, Mihai G, Lazar O, Enăchescu M, Naveh N. Pulsed Laser Deposition of SWCNTs on Carbon Fibres: Effect of Deposition Temperature. Polymers. 2021; 13(7):1138. https://doi.org/10.3390/polym13071138
Chicago/Turabian StyleMoise, Călin, Lidar Rachmani, Geanina Mihai, Oana Lazar, Marius Enăchescu, and Naum Naveh. 2021. "Pulsed Laser Deposition of SWCNTs on Carbon Fibres: Effect of Deposition Temperature" Polymers 13, no. 7: 1138. https://doi.org/10.3390/polym13071138
APA StyleMoise, C., Rachmani, L., Mihai, G., Lazar, O., Enăchescu, M., & Naveh, N. (2021). Pulsed Laser Deposition of SWCNTs on Carbon Fibres: Effect of Deposition Temperature. Polymers, 13(7), 1138. https://doi.org/10.3390/polym13071138