Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ion Beam Treatment and Copper Sputtering Deposition
2.3. Field-Emission Scanning Electron Microscopy
2.4. Adhesion of Deposited Copper Thin Film
2.5. Filtration and Pressure Drop
2.6. Antiviral Effect against SARS-CoV-2 Virus
2.7. Real-Time Polymerase Chain Reaction
2.8. Immunochemical Staining
2.9. X-ray Photoelectron Spectroscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SARS-COV-2 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2021. Available online: https://coronavirus.jhu.edu/map.html (accessed on 20 February 2021).
- Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; et al. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med. 2020, 8, 506–517. [Google Scholar] [CrossRef]
- Wang, J.; Du, G. COVID-19 may transmit through aerosol. Ir. J. Med. Sci. 2020, 189, 1143–1144. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D. Aerodynamic characteristics and RNA concentration of SARS-CoV-2 aerosol in Wuhan hospitals during COVID-19 outbreak. BioRxiv 2020. [Google Scholar] [CrossRef]
- Ge, Z.; Yang, L.; Xia, J.; Fu, X.; Zhang, Y. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J. Zhejiang Univ. B 2020, 21, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ji, Z.; Yue, Y.; Liu, H.; Wang, J. Infection risk assessment of COVID-19 through aerosol transmission: A case study of south china seafood market. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.L.; Turnham, P.; Griffin, J.R.; Clarke, C.C. Consideration of the aerosol transmission for COVID-19 and public health. Risk Anal. 2020, 40, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.K.; Lam, T.H.; Leung, C.C. Wearing face masks in the community during the COVID-19 pandemic: Altruism and solidarity. Lancet 2020. [Google Scholar] [CrossRef]
- Dexter, F.; Parra, M.C.; Brown, J.R.; Loftus, R.W. Perioperative COVID-19 defense: An evidence-based approach for optimization of infection control and operating room management. Anesth. Analg. 2020, 131, 37–42. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, H.; Wang, J. Strategy of using personal protective equipment during aerosol generating medical procedures with COVID-19. J. Clin. Anesth. 2020, 66, 109911. [Google Scholar] [CrossRef] [PubMed]
- Ranney, M.L.; Griffeth, V.; Jha, A.K. Critical supply shortages—the need for ventilators and personal protective equipment during the Covid-19 pandemic. N. Engl. J. Med. 2020, 382, e41. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, M.; Liu, F. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. J. Hosp. Infect. 2020, 105, 100–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, D.E.; Peters, G.A.; Ivers, L.C.; Freeman, E.E. Global resource shortages during COVID-19: Bad news for low-income countries. PLoS Negl. Trop. Dis. 2020, 14, e0008412. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased Plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2020, 405, 126683. [Google Scholar] [CrossRef] [PubMed]
- Lustig, S.R.; Biswakarma, J.J.H.; Rana, D.; Tilford, S.H.; Hu, W.; Su, M.; Rosenblatt, M.S. Effectiveness of common fabrics to block aqueous aerosols of virus-like nanoparticles. ACS Nano 2020, 14, 7651–7658. [Google Scholar] [CrossRef]
- Zangmeister, C.D.; Radney, J.G.; Vicenzi, E.P.; Weaver, J.L. Filtration efficiencies of nanoscale aerosol by cloth mask materials used to slow the spread of SARS-CoV-2. ACS Nano 2020, 14, 9188–9200. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Xiao, W.; Zhao, M.; Yu, X.; Wang, H.; Wang, Q.; Chu, S.; Cui, Y. Can N95 respirators be reused after disinfection? How many times? ACS Nano 2020, 14, 6348–6356. [Google Scholar] [CrossRef] [PubMed]
- Konda, A.; Prakash, A.; Moss, G.A.; Schmoldt, M.; Grant, G.D.; Guha, S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 2020, 14, 6339–6347. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhu, Z.; You, P.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.Y.; Li, G. Plasmonic and superhydrophobic self-decontaminating N95 respirators. ACS Nano 2020, 14, 8846–8854. [Google Scholar] [CrossRef]
- Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.Y.; Li, G. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221. [Google Scholar] [CrossRef] [PubMed]
- Pemmada, R.; Zhu, X.; Dash, M.; Zhou, Y.; Ramakrishna, S.; Peng, X.; Thomas, V.; Jain, S.; Nanda, H.S. Science-based strategies of antiviral coatings with viricidal properties for the COVID-19 like pandemics. Materials 2020, 13, 4041. [Google Scholar] [CrossRef]
- Fujimori, Y.; Sato, T.; Hayata, T.; Nagao, T.; Nakayama, M.; Nakayama, T.; Sugamata, R.; Suzuki, K. Novel antiviral characteristics of nanosized copper (I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl. Environ. Microbiol. 2012, 78, 951–955. [Google Scholar] [CrossRef] [Green Version]
- Vincent, M.; Hartemann, P.; Engels-Deutsch, M. Antimicrobial applications of copper. Int. J. Hyg. Environ. Health 2016, 219, 585–591. [Google Scholar] [CrossRef]
- Sachan, D. COVID-19 pandemic has spurred materials researchers to develop antiviral masks. Chem. Eng. News 2020, 98, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, M.; Lu, Y.; Kimura, T.; Nakano, R.; Ishiguro, H.; Kubota, Y.; Hashimoto, K.; Sunada, K. Comparison of the antiviral effect of solid-state copper and silver compounds. J. Hazard. Mater. 2016, 312, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hu, Z.; Zabihi, F.; Chen, Z.; Zhu, M. Progress and perspective of antiviral protective material. Adv. Fiber Mater. 2020, 2, 123–139. [Google Scholar] [CrossRef]
- Wuerz, R.; Eicke, A.; Kessler, F.; Rogin, P.; Yazdani-Assl, O. Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates. Thin Solid Films 2011, 519, 7268–7271. [Google Scholar] [CrossRef]
- Morrison, N.A.; Stolley, T.; Hermanns, U.; Reus, A.; Deppisch, T.; Kim, H.J.; Elder, R.; de la Fuente, A. Roll-to-roll processing for flexible display applications. Web Coat. Handl. Conf. 2013, 2, 889–915. [Google Scholar]
- Lee, S.; Kim, D.G. Linear ion beam applications for roll-to-roll metal thin film coatings on PET substrates. Appl. Sci. Converg. Technol. 2015, 24, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Akduman, C.; Akçakoca Kumbasar, E.P. Nanofibers in face masks and respirators to provide better protection. IOP Conf. Ser. Mater. Sci. Eng. 2018, 460, 012013. [Google Scholar] [CrossRef]
- Borkow, G.; Zhou, S.S.; Page, T.; Gabbay, J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS ONE. 2010, 5, e11295. [Google Scholar] [CrossRef] [Green Version]
- Hanagata, N.; Zhuang, F.; Connolly, S.; Li, J.; Ogawa, N.; Xu, M. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS Nano 2011, 5, 9326–9338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assadian, E.; Zarei, M.H.; Gilani, A.G.; Farshin, M.; Degampanah, H.; Pourahmad, J. Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biol. Trace Elem. Res. 2018, 184, 350–357. [Google Scholar] [CrossRef]
KF94 (Copper Coated) | KF94 (Reference) | ||||||
---|---|---|---|---|---|---|---|
Sample No. | NaCl | Sample No. | Paraffin Oil | Sample No. | NaCl | Sample No. | Paraffin Oil |
1 | 94.0 | 6 | 91.6 | 11 | 99.9 | 16 | 99.6 |
2 | 96.2 | 7 | 91.7 | 12 | 99.9 | 17 | 99.6 |
3 | 94.1 | 8 | 92.9 | 13 | 99.9 | 18 | 98.7 |
4 | 96.9 | 9 | 90.6 | 14 | 99.9 | 19 | 99.0 |
5 | 94.5 | 10 | 91.3 | 15 | 99.9 | 20 | 99.6 |
Average | 95.1 | 91.6 | 99.9 | 99.3 | |||
Standard Deviation | 1.3 | 0.8 | 0 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.; Yang, J.-Y.; Byeon, E.-Y.; Kim, D.-G.; Lee, D.-G.; Ryoo, S.; Lee, S.; Shin, C.-W.; Jang, H.W.; Kim, H.J.; et al. Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Polymers 2021, 13, 1367. https://doi.org/10.3390/polym13091367
Jung S, Yang J-Y, Byeon E-Y, Kim D-G, Lee D-G, Ryoo S, Lee S, Shin C-W, Jang HW, Kim HJ, et al. Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Polymers. 2021; 13(9):1367. https://doi.org/10.3390/polym13091367
Chicago/Turabian StyleJung, Sunghoon, Jun-Yeoung Yang, Eun-Yeon Byeon, Do-Geun Kim, Da-Gyum Lee, Sungweon Ryoo, Sanggu Lee, Cheol-Woong Shin, Ho Won Jang, Hyo Jung Kim, and et al. 2021. "Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability" Polymers 13, no. 9: 1367. https://doi.org/10.3390/polym13091367
APA StyleJung, S., Yang, J.-Y., Byeon, E.-Y., Kim, D.-G., Lee, D.-G., Ryoo, S., Lee, S., Shin, C.-W., Jang, H. W., Kim, H. J., & Lee, S. (2021). Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Polymers, 13(9), 1367. https://doi.org/10.3390/polym13091367