Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
3. Results and Discussion
- (i)
- The sensor response of ZnO and ZnO/Pd nanofibers when detecting CO, NH3 and H2 weakly depends on the oxygen content in the background gas in the concentration range of 20–5% O2.
- (ii)
- Lowering the oxygen concentration down to 0.0005% does not significantly affect the magnitude of the sensor response of ZnO and ZnO/Pd nanofibers toward CO. However, when NH3 and H2 are detected, the sensor response of ZnO/Pd nanofibers increases by three orders of magnitude.
- (iii)
- Such a sharp increase in the sensor response is mainly determined by a sharp decrease in the resistance of ZnO/Pd nanofibers in the presence of 100 ppm ammonia and hydrogen. Moreover, the temperature intervals for such a decrease in resistance differ significantly for these gases: 350–500 °C in NH3 and 100–500 °C in H2 (Figure 5).
- (iv)
- The resistance of ZnO/Pd nanofibers in the background gas containing 20% O2, which is achieved within 15 min after interaction with 100 ppm of reducing gases CO, NH3 or H2, turned out to be quite close in the entire temperature range (Figure 6a). However, in the background gas containing 0.0005% O2 (Figure 6b), the resistance values after interaction with NH3 and H2 in the low temperature range of 100–300 °C are several orders of magnitude less than in the case of CO.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malyshev, V.V.; Pislyakov, A.V.; Krestnikov, I.F.; Krutov, V.A.; Zaitsev, S.N. Sensitivity of Semiconductor Gas Sensors to Hydrogen and Oxygen in an Inert Gas Atmosphere. J. Anal. Chem. 2001, 56, 864–870. [Google Scholar] [CrossRef]
- Chang, C.M.; Hon, M.H.; Leu, I.C. Outstanding H2 Sensing Performance of Pd Nanoparticle-Decorated ZnO Nanorod Arrays and the Temperature-Dependent Sensing Mechanisms. ACS Appl. Mater. Interfaces 2013, 5, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wong, M.H.; Man, H.C.; Ong, C.W. Resistive hydrogen sensing response of Pd-decorated ZnO “nanosponge” film. Sens. Actuators B 2017, 249, 624–631. [Google Scholar] [CrossRef]
- Kumar, M.; Bhati, V.S.; Ranwa, S.; Singh, J.; Kumar, M. Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen. Sci. Rep. 2017, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Lupan, O.; Postica, V.; Hoppe, M.; Wolff, N.; Polonskyi, O.; Pauporté, T.; Viana, B.; Majérus, O.; Kienle, L.; Faupel, F.; et al. PdO/PdO2 nanocluster–functionalized ZnO:Pd films for lower operating temperature hydrogen gas sensing. Nanoscale 2018, 10, 14107–14127. [Google Scholar] [CrossRef] [PubMed]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporté, T.; Adelung, R. Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B 2018, 254, 1259–1270. [Google Scholar] [CrossRef]
- Kim, H.; Pak, Y.; Jeong, Y.; Kim, W.; Kim, J.; Jung, G.Y. Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability. Sens. Actuators B 2018, 262, 460–468. [Google Scholar] [CrossRef]
- Weber, M.; Kim, J.; Lee, J.; Kim, J.; Iatsunskyi, I.; Coy, E.; Miele, P.; Bechelany, M.; Kim, S.S. Highly Efficient Hydrogen Sensors Based on Pd Nanoparticles Supported on Boron Nitride Coated ZnO Nanowires. J. Mater. Chem. A 2019, 7, 8107–8116. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Combination of Pd loading and electron beam irradiation for superior hydrogen sensing of electrospun ZnO nanofibers. Sens. Actuators B 2019, 284, 628–637. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Pd functionalization on ZnO nanowires for enhanced sensitivity and selectivity to hydrogen gas. Sens. Actuators B 2019, 297, 126693. [Google Scholar] [CrossRef]
- Lupan, C.; Khaledialidusti, R.; Mishra, A.K.; Postica, V.; Terasa, M.-I.; Magariu, N.; Pauporté, T.; Viana, B.; Drewes, J.; Vahl, A.; et al. Pd-Functionalized ZnO:Eu Columnar Films for Room-Temperature Hydrogen Gas Sensing: A Combined Experimental and Computational Approach. ACS Appl. Mater. Interfaces 2020, 12, 24951–24964. [Google Scholar] [CrossRef] [PubMed]
- Le, H.J.; Dao, D.V.; Yu, Y.T. Superfast and efficient hydrogen gas sensor by using PdAualloy@ZnO core-shell nanoparticles. J. Mater. Chem. A 2020, 8, 12968–12974. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B.; Cao, C.; Zhan, Z.; Ma, W.; Wang, X. Unraveling the Dynamic Evolution of Pd Species on Pd-Loaded ZnO Nanorods for Different Hydrogen Sensing Behaviors. ACS Sustain. Chem. Eng. 2021, 9, 6370–6379. [Google Scholar] [CrossRef]
- Jeon, J.-Y.; Park, S.-J.; Ha, T.-J. Functionalization of Zinc Oxide Nanoflowers with Palladium Nanoparticles via Microwave Absorption for Room Temperature- Operating Hydrogen Gas Sensors in the ppb Level. ACS Appl. Mater. Interfaces 2021, 13, 25082–25091. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.D.; Dao, D.V.; Kim, D.-S.; Lee, H.-J.; Ohe, S.-Y.; Lee, I.-H.; Yu, Y.-T. Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanoparticles. J. Colloid Interface Sci. 2021, 587, 252–259. [Google Scholar] [CrossRef]
- Kim, J.-H.; Mirzaei, A.; Osada, M.; Kim, H.W.; Kim, S.S. Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets. Sens. Actuators B 2021, 329, 129222. [Google Scholar] [CrossRef]
- Nguyen, T.T.D.; Dao, D.V.; Lee, I.-H.; Yu, Y.-T.; Oh, S.-Y. High response and selectivity toward hydrogen gas detection by In2O3 doped Pd@ZnO core-shell nanoparticles. J. Alloys Compd. 2021, 854, 157280. [Google Scholar] [CrossRef]
- Nguyen, T.T.D.; Dao, D.V.; Ha, N.T.T.; Tran, T.V.; Kim, D.-S.; Yoon, J.-W.; Ha, N.N.; Lee, I.-H.; Yu, Y.-T. Superhigh sensing response and selectivity for hydrogen gas using PdPt@ZnO core-shell nanoparticles: Unique effect of alloyed ingredient from experimental and theoretical investigations. Sens. Actuators B 2022, 354, 131083. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, T.; Chen, Y.; Xu, P.; Zheng, D.; Li, X. Area-Selective, In-Situ Growth of Pd-Modified ZnO Nanowires on MEMS Hydrogen Sensors. Nanomaterials 2022, 12, 1001. [Google Scholar] [CrossRef]
- Tournier, G.; Pijolat, C. Influence of oxygen concentration in the carrier gas on the response of tin dioxide sensor under hydrogen and methane. Sens. Actuators B 1999, 61, 43–50. [Google Scholar] [CrossRef]
- Wurzinger, O.; Reinhardt, G. CO-sensing properties of doped SnO2 sensors in H2-rich gases. Sens. Actuators B 2004, 103, 104–110. [Google Scholar] [CrossRef]
- Hübner, M.; Pavelko, R.G.; Barsan, N.; Weimar, U. Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials. Sens. Actuators B 2011, 154, 264–269. [Google Scholar] [CrossRef]
- Barsan, N.; Hübner, M.; Weimar, U. Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sens. Actuators B 2011, 157, 510–517. [Google Scholar] [CrossRef]
- Safonova, O.; Bezverkhy, I.; Fabrichnyi, P.; Rumyantseva, M.; Gaskov, A. Mechanism of sensing CO in nitrogen by nanocrystalline SnO2 and SnO2(Pd) studied by Mössbauer spectroscopy and conductance measurements. J. Mater. Chem. 2002, 12, 1174–1178. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Korotcenkov, G. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming. Nanomaterials 2021, 11, 1544. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Q.; Li, M.; Chen, K.; Zhou, W.; Luo, Y.; Li, Z.; Wang, L.; Zhao, L.; The, K.S.; et al. A flexible electrostatic nanogenerator and self-powered capacitive sensor based on electrospun polystyrene mats and graphene oxide films. Nanotechnology 2021, 32, 405402. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, Y.; Wang, Z.; Wang, Z.; Yang, J.; Chen, M.; Qi, M.; Ur Rehman, S.; Shum, P.P.; Zhu, L.; et al. Ultrasensitive Exhaled Breath Sensors Based on Anti-Resonant Hollow Core Fiber with In Situ Grown ZnO-Bi2O3 Nanosheets. Adv. Mater. Interfaces 2021, 8, 2001978. [Google Scholar] [CrossRef]
- Chen, Z.; He, X.; Ge, J.; Fan, G.; Zhang, L.; Parvez, A.M.; Wang, G. Controllable fabrication of nanofibrillated cellulose supported HKUST-1 hierarchically porous membranes for highly efficient removal of formaldehyde in air. Ind. Crops Prod. 2022, 186, 115269. [Google Scholar] [CrossRef]
- Wang, W.; Huang, H.; Li, Z.; Zhang, H.; Wang, Y.; Zheng, W.; Wang, C. Zinc Oxide Nanofiber Gas Sensors Via Electrospinning. J. Am. Ceram. Soc. 2008, 91, 3817–3819. [Google Scholar] [CrossRef]
- Imran, M.; Motta, N.; Shafiei, M. Electrospun one-dimensional nanostructures: A new horizon for gas sensing materials. Beilstein J. Nanotechnol. 2018, 9, 2128–2170. [Google Scholar] [CrossRef] [PubMed]
- Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa, D.S. Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing. ACS Appl. Nano Mater. 2019, 2, 4026–4042. [Google Scholar] [CrossRef]
- Korotcenkov, G. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations. Nanomaterials 2021, 11, 1555. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yin, W.; Gao, S.; Sun, Y.; Xu, P.; Wu, S.; Kong, H.; Yang, G.; Wei, G. The Combination of Two-Dimensional Nanomaterials with Metal Oxide Nanoparticles for Gas Sensors: A Review. Nanomaterials 2022, 12, 982. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Q.; Pan, C.; Song, Y.; Dong, H.; Xie, X.; Li, Y.; Liu, J.; Wang, D.; Chen, X. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review. Talanta 2022, 246, 123527. [Google Scholar] [CrossRef]
- Platonov, V.; Rumyantseva, M.; Khmelevsky, N.; Gaskov, A. Electrospun ZnO/Pd nanofibers: CO sensing and humidity effect. Sensors 2020, 20, 7333. [Google Scholar] [CrossRef] [PubMed]
- Staerz, A.; Weimar, U.; Barsan, N. Current state of knowledge on the metal oxide based gas sensing mechanism. Sens. Actuators B 2022, 358, 131531. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.; Gaskov, A. The key role of active sites in the development of selective metal oxide sensor materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef]
- Sergent, N.; Gélin, P.; Périer-Camby, L.; Praliaud, H.; Thomas, G. FTIR study of low-temperature CO adsorption on high surface area tin(iv) oxide: Probing Lewis and Brønsted acidity. Phys. Chem. Chem. Phys. 2002, 4, 4802–4808. [Google Scholar] [CrossRef]
- Abee, M.W.; Cox, D.F. NH3 chemisorption on stoichiometric and oxygen-deficient SnO2(110) surfaces. Surf. Sci. 2002, 520, 65–77. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I.; Vayssilov, G.N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 2002, 47, 307–511. [Google Scholar] [CrossRef]
- Jimenez, I.; Centeno, M.A.; Scotti, R.; Morazzoni, F.; Cornet, A.; Morante, J.R. NH3 Interaction with Catalytically Modified Nano-WO3 Powders for Gas Sensing Applications. J. Electrochem. Soc. 2003, 150, H72–H80. [Google Scholar] [CrossRef]
- Krivetskiy, V.; Garshev, A.; Marikutsa, A.; Ivanov, V.; Krotova, A.; Filatova, D.; Konstantinova, E.; Naberezhnyi, D.; Khmelevsky, N.; Kots, P.; et al. Enhancement of lewis acidity of Cr-doped nanocrystalline SnO2 and its effect on surface NH3 oxidation and the sensory detection pattern. ChemPhysChem 2019, 20, 1985–1996. [Google Scholar] [CrossRef]
- Schimo, G.; Burgstaller, W.; Hassel, A.W. Influence of atmospheric oxygen on hydrogen detection on Pd using Kelvin probe technique. J. Solid State Electrochem. 2018, 22, 495–504. [Google Scholar] [CrossRef]
- Manchester, F.D.; San-Martin, A.; Pitre, J.M. The H-Pd (hydrogen-palladium) system. J. Phase Equilibria 1994, 15, 62–83. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-H.; Kim, J.-Y.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Ppb-Level Selective Hydrogen Gas Detection of Pd-Functionalized In2O3-Loaded ZnO Nanofiber Gas Sensors. Sensors 2019, 19, 4276. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO. Front. Mater. 2019, 6, 43. [Google Scholar] [CrossRef]
- Matsushita, S.; Nakata, T. Infrared Absorption of Zinc Oxide and of Adsorbed CO2, I. J. Chem. Phys. 1960, 32, 982–987. [Google Scholar] [CrossRef]
- Wang, X.; Lu, B.; Li, L.; Qiu, H. Exploring the interactions of Oxygen with defective ZnO. ChemistryOpen 2018, 7, 491–494. [Google Scholar] [CrossRef]
Sample | Fibers Diameter nm (1) | Phase Composition (2) | Palladium | ZnO Particle Size nm | SBET m2/g | Oads/Olat (6) | R Ohm (7) | |||
---|---|---|---|---|---|---|---|---|---|---|
Content wt% (3) | Oxidation State (4) | Cluster Size nm (5) | dXRD (2) | dSEM (1) | ||||||
ZnO | 200–500 | wurtzite | - | - | - | 13 ± 1 | 20–40 | 10 ± 1 | 0.90 | 3 × 105 |
ZnO/Pd | 150–200 | wurtzite | 1.06 ± 0.07 | Pd(II) | 5–14 | 13 ± 1 | 20–40 | 12 ± 1 | 0.74 | 2 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platonov, V.; Nasriddinov, A.; Rumyantseva, M. Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase. Polymers 2022, 14, 3481. https://doi.org/10.3390/polym14173481
Platonov V, Nasriddinov A, Rumyantseva M. Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase. Polymers. 2022; 14(17):3481. https://doi.org/10.3390/polym14173481
Chicago/Turabian StylePlatonov, Vadim, Abulkosim Nasriddinov, and Marina Rumyantseva. 2022. "Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase" Polymers 14, no. 17: 3481. https://doi.org/10.3390/polym14173481
APA StylePlatonov, V., Nasriddinov, A., & Rumyantseva, M. (2022). Electrospun ZnO/Pd Nanofibers as Extremely Sensitive Material for Hydrogen Detection in Oxygen Free Gas Phase. Polymers, 14(17), 3481. https://doi.org/10.3390/polym14173481