The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Ring-Opening Polymerization (eROP) of L-lactide
2.3. Characterizations
3. Results and Discussion
3.1. The Ability of Candida rugosa Lipase (CRL) to Catalyze Enzymatic Ring-Opening Polymerization (eROP) of L-lactide
3.2. The Effect of Solvents
3.2.1. The Effect of Solvents’ Hydrophilicity
3.2.2. The Effect of Monomer-to-Solvent Ratio
3.3. CRL-Catalyzed eROP in Bulk vs. in [BMIM][PF6]
3.4. The CRL-Catalyzed eROP Mediated by [BMIM][PF6]
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Douka, A.; Vouyiouka, S.; Papaspyridi, L.-M.; Papaspyrides, C.D. A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 2018, 79, 1–25. [Google Scholar]
- Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem. Rev. 2004, 104, 6147–6176. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Saini, P.; Arora, M.; Kumar, M.N.V.R. Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 2016, 107, 47–59. [Google Scholar] [CrossRef]
- Matsumura, S.; Mabuchi, K.; Toshima, K. Novel ring-opening polymerization of lactide by lipase. Macromol. Symp. 1998, 130, 285–304. [Google Scholar] [CrossRef]
- Fujioka, M.; Hosoda, N.; Nishiyama, S.; Noguchi, H.; Shoji, A.; Kumar, D.S.; Katsuraya, K.; Ishii, S.; Yoshida, Y. One-pot enzymatic synthesis of poly (L, L-lactide) by immobilized lipase catalyst. Sen’i Gakkaishi 2006, 62, 63–65. [Google Scholar] [CrossRef]
- Yoshizawa-Fujita, M.; Saito, C.; Takeoka, Y.; Rikukawa, M. Lipase-catalyzed polymerization of L-lactide in ionic liquids. Polym. Adv. Technol. 2008, 19, 1396–1400. [Google Scholar] [CrossRef]
- Hans, M.; Keul, H.; Moeller, M. Ring-opening polymerization of DD-lactide catalyzed by novozyme 435. Macromol. Biosci. 2009, 9, 239–247. [Google Scholar] [CrossRef]
- García-Arrazola, R.; López-Guerrero, D.A.; Gimeno, M.; Bárzana, E. Lipase-catalyzed synthesis of poly-l-lactide using supercritical carbon dioxide. J. Supercrit. Fluids 2009, 51, 197–201. [Google Scholar] [CrossRef]
- Chanfreau, S.; Mena, M.; Porras-Domínguez, J.R.; Ramírez-Gilly, M.; Gimeno, M.; Roquero, P.; Tecante, A.; Bárzana, E. Enzymatic synthesis of poly-l-lactide and poly-l-lactide-co-glycolide in an ionic liquid. Bioprocess Biosyst. Eng. 2010, 33, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Målberg, S.; Finne-Wistrand, A.; Albertsson, A.-C. The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion. Polymer 2010, 51, 5318–5322. [Google Scholar] [CrossRef]
- Guzmán-Lagunes, F.; López-Luna, A.; Gimeno, M.; Bárzana, E. Enzymatic synthesis of poly-l-lactide in supercritical R134a. J. Supercrit. Fluids 2012, 72, 186–190. [Google Scholar] [CrossRef]
- Duchiron, S.; Pollet, E.; Givry, S.; Avérous, L. Mixed systems to assist enzymatic ring opening polymerization of lactide stereoisomers. RSC Adv. 2015, 5, 84627–84635. [Google Scholar]
- Zhao, H.; Nathaniel, G.A.; Merenini, P.C. Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: Digging the controlling factors. RSC Adv. 2017, 7, 48639–48648. [Google Scholar] [CrossRef]
- Mena, M.; Chanfreau, S.; Gimeno, M.; Bárzana, E. Enzymatic synthesis of poly-l-lactide-co-glycolide in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Bioprocess Biosyst. Eng. 2010, 33, 1095–1101. [Google Scholar] [CrossRef]
- Mena, M.; Shirai, K.; Tecante, A.; Bárzana, E.; Gimeno, M. Enzymatic syntheses of linear and hyperbranched poly-l-lactide using compressed R134a–ionic liquid media. J. Supercrit. Fluids 2015, 103, 77–82. [Google Scholar] [CrossRef]
- Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 1987, 30, 81–87. [Google Scholar] [CrossRef]
- Dong, H.; Cao, S.G.; Li, Z.Q.; Han, S.P.; You, D.L.; Shen, J.C. Study on the enzymatic polymerization mechanism of lactone and the strategy for improving the degree of polymerization. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 1265–1275. [Google Scholar] [CrossRef]
- Kumar, A.; Gross, R.A. Candida a ntartica lipase B catalyzed polycaprolactone synthesis: Effects of organic media and temperature. Biomacromolecules 2000, 1, 133–138. [Google Scholar] [CrossRef]
- Düşkünkorur, H.Ö.; Bégué, A.; Pollet, E.; Phalip, V.; Güvenilir, Y.; Avérous, L. Enzymatic ring-opening (co) polymerization of lactide stereoisomers catalyzed by lipases. Toward the in situ synthesis of organic/inorganic nanohybrids. J. Mol. Catal. B Enzym. 2015, 115, 20–28. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 31374, N,N-Dimethylacetamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N_N-Dimethylacetamide#section=LogP (accessed on 11 June 2021).
- Gao, W.-W.; Zhang, F.-X.; Zhang, G.-X.; Zhou, C.-H. Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem. Eng. J. 2015, 99, 67–84. [Google Scholar] [CrossRef]
- Van Rantwijk, F.; Sheldon, R.A. Biocatalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2757–2785. [Google Scholar] [CrossRef] [PubMed]
- Elgharbawy, A.A.; Riyadi, F.A.; Alam, M.Z.; Moniruzzaman, M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J. Mol. Liq. 2018, 251, 150–166. [Google Scholar] [CrossRef]
- Kaar, J.L.; Jesionowski, A.M.; Berberich, J.A.; Moulton, R.; Russell, A.J. Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability. J. Am. Chem. Soc. 2003, 125, 4125–4131. [Google Scholar] [CrossRef]
- Ulbert, O.; Bélafi-Bakó, K.; Tonova, K.; Gubicza, L. Thermal stability enhancement of Candida rugosa lipase using ionic liquids. Biocatal. Biotransform. 2005, 23, 177–183. [Google Scholar] [CrossRef]
- Masutani, K.; Kimura, Y. PLA synthesis. From the monomer to the polymer. In Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications; The Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Ding, L.; Jin, W.; Chu, Z.; Chen, L.; Lü, X.; Yuan, G.; Song, J.; Fan, D.; Bao, F. Bulk solvent-free melt ring-opening polymerization (ROP) of L-lactide catalyzed by Ni(II) and Ni(II)–Ln(III) complexes based on the acyclic Salen-type Schiff-base ligand. Inorg. Chem. Commun. 2011, 14, 1274–1278. [Google Scholar] [CrossRef]
- Rahmayetty; Whulanza, Y.; Sukirno; Rahman, S.F.; Suyono, E.A.; Yohda, M.; Gozan, M. Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal. Agric. Biotechnol. 2018, 16, 683–691. [Google Scholar] [CrossRef]
- Rahmayetty; Sukirno; Prasetya, B.; Gozan, M. Effect of temperature and concentration of SnCl2 on depolymerization process of L-lactide synthesis from L-lactic acid via short polycondensation. Int. J. Appl. Eng. Res. 2015, 10, 41942–41946. [Google Scholar]
- Turner, N.A.; Duchateau, D.B.; Vulfson, E.N. Effect of hydration on thermostability. Biotechnol. Lett. 1995, 17, 371–376. [Google Scholar] [CrossRef]
- Turner, N.A.; Vulfson, E.N. At what temperature can enzymes maintain their catalytic activity? Enzym. Microb. Technol. 2000, 27, 108–113. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 7043, 1,2-Dimethoxybenzene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/7043#section=LogP (accessed on 11 June 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 9016, 1,4-Dimethoxybenzene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/9016#section=LogP (accessed on 11 June 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 7583, Diphenyl Ether. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/7583#section=LogP (accessed on 11 June 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8182, Dodecane. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/8182#section=LogP (accessed on 11 June 2021).
- Lee, S.H.; Lee, S.B. Octanol/water partition coefficients of ionic liquids. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2009, 84, 202–207. [Google Scholar] [CrossRef]
- Uyama, H.; Takeya, K.; Kobayashi, S. Enzymatic ring-opening polymerization of lactones to polyesters by lipase catalyst: Unusually high reactivity of macrolides. Bull. Chem. Soc. Jpn. 1995, 68, 56–61. [Google Scholar] [CrossRef]
- Albertsson, A.-C.; Srivastava, R.K. Recent developments in enzyme-catalyzed ring-opening polymerization. Adv. Drug Deliv. Rev. 2008, 60, 1077–1093. [Google Scholar] [CrossRef]
- Cho, C.-W.; Preiss, U.; Jungnickel, C.; Stolte, S.; Arning, J.; Ranke, J.; Klamt, A.; Krossing, I.; Thöming, J. Ionic Liquids: Predictions of Physicochemical Properties with Experimental and/or DFT-Calculated LFER Parameters To Understand Molecular Interactions in Solution. J. Phys. Chem. B 2011, 115, 6040–6050. [Google Scholar] [CrossRef]
- Panova, A.A.; Kaplan, D.L. Mechanistic limitations in the synthesis of polyesters by lipase-catalyzed ring-opening polymerization. Biotechnol. Bioeng. 2003, 84, 103–113. [Google Scholar] [CrossRef]
- Xin, J.-Y.; Zhao, Y.-J.; Zhao, G.-L.; Zheng, Y.; Ma, X.-S.; Xia, C.-G.; Li, S.-B. Enzymatic resolution of (R, S)-naproxen in water-saturated ionic liquid. Biocatal. Biotransform. 2005, 23, 353–361. [Google Scholar] [CrossRef]
- Hongwei, Y.; Jinchuan, W.; Chi Bun, C. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality Pharmacol. Biol. Chem. Conseq. Mol. Asymmetry 2005, 17, 16–21. [Google Scholar]
- Gubicza, L.; Nemestóthy, N.; Fráter, T.; Bélafi-Bakó, K. Enzymatic esterification in ionic liquids integrated with pervaporation for water removal. Green Chem. 2003, 5, 236–239. [Google Scholar] [CrossRef]
- Zaks, A.; Klibanov, A.M. The effect of water on enzyme action in organic media. J. Biol. Chem. 1988, 263, 8017–8021. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Ionic liquids are not always green: Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003, 5, 361–363. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.M.S.S.; Marrucho, I.M.; Coutinho, J.A.P.; Fernandes, A.M. Hydrolysis of Tetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids. J. Phys. Chem. A 2010, 114, 3744–3749. [Google Scholar] [CrossRef]
- Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
Data | T [°C] | % Enzyme a | Time [days] | Conv. [%] b | Mw [g/mol] | Mn [g/mol] | PDI | Yield [%] | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 100 | 0 | 3 | 43.4 | 330 | 229 | 1.44 | n.a. (l) c | this study |
2 | 100 | 2 | 3 | 55.4 | 4771 | 3332 | 1.43 | n.a. d | this study |
3 | 100 | 5 | 3 | 59.3 | 5519 | 3649 | 1.51 | 29 | this study |
Other studies e: | |||||||||
Enzyme | |||||||||
LPS/BCL | 100 | 10 | 7 | - | - | 3500 | 1.14 | 22 | [13] |
100 | 3 | 7 | 82 | 48,000 | - | 1.2 | 8 | [6] | |
125 | 10 | 7 | 98 | - | 78,100 | 1.4 | - | [12] | |
N435 | 92 | 10 | 7 | 100 | - | 8800 | - | 7.2 | [11] |
100 | 6 | 10 | - | 2440 | - | 2.6 | 91 | [7] | |
130 | 20 | 7 | 72.2 | 16,900 | - | 1.75 | 14 | [15] | |
CALB | 130 | 10 | - | - | - | 40,000 | 1.13 | 54 | [8] |
CRL | 90 | 2 | 3 | - | 5428 | 2854 | 1.9 | 93 | [30] |
Data | Enzyme | T [°C] | % Enzyme a | Time [days] | Conv. [%] b | Mw [g/mol] | Mn [g/mol] | PDI | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | CRL | 80 | 5 | 3 | 70.9 | 501 | 431 | 1.16 | this study |
2 | CRL | 100 | 5 | 3 | 93.2 | 5126 | 3108 | 1.65 | this study |
3 | CRL | 100 | 0 | 3 | 66.2 | 5441 | 3196 | 1.70 | this study |
Other studies c: | |||||||||
Ionic liquid | |||||||||
[BMIM][PF6] | N435 | 65 | 10 | 11 | - | - | 581 | 1.2 | [16] |
CALB | 120 | 10 | 1 | - | - | 3900 | 1.19 | [8] | |
N435 | 130 | 20 | 7 | 93.5 | 17,000 | - | 1.71 | [15] | |
[HMIM][PF6] | N435 | 90 | 10 | 3 | - | - | 2800 | 1.5 | [11] |
90 | 10 | 7 | - | - | 37,800 | 1.3 | [11] | ||
[BMIM][BF4] | CALB | 110 | 10 | 1 | 96.2 | - | 54,600 | 1.25 | [8] |
N435 | 130 | 20 | 7 | 53.3 | 2700 | - | 1.37 | [15] | |
[BMIM][Tf2N] | CALB | 120 | 10 | 1 | 90.4 | - | 50,100 | 1.42 | [8] |
N435 | 130 | 20 | 7 | 83.7 | 14,100 | - | 1.28 | [15] | |
[CH3(OCH2CH2)3-et-Pip][OAc] | N435 | 130 | 20 | 7 | 62.1 | 30,900 | - | 1.14 | [15] |
[Choline][Tf2N] | N435 | 130 | 20 | 7 | 60.9 | 1400 | - | 1.19 | [15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curie, C.A.; Darmawan, M.A.; Dianursanti, D.; Budhijanto, W.; Gozan, M. The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase. Polymers 2022, 14, 3856. https://doi.org/10.3390/polym14183856
Curie CA, Darmawan MA, Dianursanti D, Budhijanto W, Gozan M. The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase. Polymers. 2022; 14(18):3856. https://doi.org/10.3390/polym14183856
Chicago/Turabian StyleCurie, Catia Angli, Muhammad Arif Darmawan, Dianursanti Dianursanti, Wiratni Budhijanto, and Misri Gozan. 2022. "The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase" Polymers 14, no. 18: 3856. https://doi.org/10.3390/polym14183856
APA StyleCurie, C. A., Darmawan, M. A., Dianursanti, D., Budhijanto, W., & Gozan, M. (2022). The Effect of Solvent Hydrophilicity on the Enzymatic Ring-Opening Polymerization of L-Lactide by Candida rugosa Lipase. Polymers, 14(18), 3856. https://doi.org/10.3390/polym14183856