Preparation of Thermosensitive Fluorescent Polyacrylamide Nanofiber Membrane and Visual Temperature Sensing
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of AuNCs@PAM NFs
2.2. Characterization
3. Results and Discussion
3.1. AuNCs
3.2. AuNCs@PAM NFs
3.3. Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, M.H.; Wang, X.C.; Xu, W.X.; Ma, Y.; Yu, J.Y. Electro-Thermochromic Luminescent Fibers Controlled by Self-Crystallinity Phase Change for Advanced Smart Textiles. ACS Appl. Mater. Interfaces 2021, 13, 57943–57951. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.M.; Zhou, P.; Liu, W.; Leng, J.Y.; Xiao, H.; Ma, P.F.; Wu, J.; Zhang, H.W.; Chen, J.B.; Liu, Z.J. Exploration in Performance Scaling and New Application Avenues of Superfluorescent Fiber Source. IEEE J. Sel. Top. Quantum 2018, 24, 0900710. [Google Scholar] [CrossRef]
- Song, L.; Yu, J.K.; Fang, K.J.; Shi, F.R.; Wan, W.M.; Hao, L.Y.; Zhao, Z.H.; Chen, W.C.; Xia, Y.Z. Organometallic Magnesium Complex with Aggregation Induced Emission Properties: Synthesis, Characterization, and Fluorescent Fibers Applications. Chemphyschem 2022, 23, e202100888. [Google Scholar] [CrossRef]
- Xue, H.L.; He, Z.Z.; Shen, X.Y.; Zhu, Y.A.; Ge, M.Q. Luminous properties of skin-core structure new luminous fiber: SrAl2O4:Eu2+Dy3+-PET/light conversion agent-PET. J. Mater. Sci.-Mater. Electron. 2018, 29, 18045–18050. [Google Scholar] [CrossRef]
- Zhu, Y.N.; Ge, M.Q.; Chen, Z. Preparation and properties of rare earth luminous fiber containing red organic fluorescent pigment. J. Rare Earth 2013, 31, 1043–1048. [Google Scholar] [CrossRef]
- Lu, H.W.; Zou, L.M.; Xu, Y.J.; Sun, H.; Li, Y.V. Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning. Mater. Res. Express 2018, 5, 025102. [Google Scholar] [CrossRef]
- He, Y.; Du, E.H.; Zhou, X.; Zhou, J.; He, Y.; Ye, Y.; Wang, J.F.; Tang, B.; Wang, X.G. Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. Spectrochim. Acta A 2020, 230, 118031. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Wang, W.; Long, P.; He, B.Q.; Li, F.W.; Liu, Q.Q. Synthesis of fluorescent carbon nanoparticles grafted with polystyrene and their fluorescent fibers processed by electrospinning. RSC Adv. 2014, 4, 57683–57690. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Wang, Z.; Hong, W.Z.; Zhang, Y.N.; Guo, J.D.; Wang, Y.C.; Miao, Y.Q.; Jia, H.S.; Wang, H.; Xu, B.S. Synthesis, characterization and the fluorescent enhancement mechanism of bonded poly(Eu(TTA)(2)(phen)MAA-co-VA) nanofibers by electrospinning. Opt. Mater. 2020, 106, 110007. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mishra, P.; Verma, K.; Mondal, A.; Chaudhary, R.G.; Abolhasani, M.M.; Loganathan, S. Electrospinning production of nanofibrous membranes. Environ. Chem. Lett. 2019, 17, 767–800. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S. Electrospun Nanofibrous Membranes with Essential Oils for Wound Dressing Applications. Fiber Polym. 2020, 21, 999–1012. [Google Scholar] [CrossRef]
- Lyu, C.X.; Zhao, P.; Xie, J.; Dong, S.Y.; Liu, J.W.; Rao, C.C.; Fu, J.Z. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. Nanomaterials 2021, 11, 1501. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Song, J.N.; Yang, C.; Long, Y.Z.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.W.; Zhang, Y.; Wang, S.D.; Li, Y.X.; Yang, Q.B.; Song, Y. Preparation of a multifunctional material with superhydrophobicity, superparamagnetism, mechanical stability and acids-bases resistance by electrospinning. Appl. Surf. Sci. 2013, 279, 150–158. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, Y.C.; Shi, X.Y. Construction of Electrospun Organic/Inorganic Hybrid Nanofibers for Drug Delivery and Tissue Engineering Applications. Adv. Fiber Mater. 2019, 1, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Dunne, F.O.; Fan, X.; Fu, X.W.; Zhong, W.H. A protein-functionalized microfiber/protein nanofiber Bi-layered air filter with synergistically enhanced filtration performance by a viable method. Sep. Purif. Technol. 2019, 229, 115837. [Google Scholar] [CrossRef]
- Jiang, Q.; Yuan, H.L.; Dong, K.; Lin, J.H.; Wu, L.W.; Tang, Y.H. Continuous and scalable manufacture of aggregation induced emission luminogen fibers for anti-counterfeiting and hazardous gas detecting smart textiles. Mater. Design 2021, 205, 109761. [Google Scholar] [CrossRef]
- Fadil, F.; Affandi, N.D.N.; Misnon, M.I.; Bonnia, N.N.; Harun, A.M.; Alam, M.K. Review on Electrospun Nanofiber-Applied Products. Polymers 2021, 13, 2087. [Google Scholar] [CrossRef]
- Shu, D.K.; Xi, P.; Li, S.W.; Li, C.C.; Wang, X.Q.; Cheng, B.W. Morphologies and Properties of PET Nano Porous Luminescence Fiber: Oil Absorption and Fluorescence-Indicating Functions. ACS Appl. Mater. Interfaces 2018, 10, 2828–2836. [Google Scholar] [CrossRef]
- Cai, Y.Q.; Yan, L.; Liu, G.Y.; Yuan, H.Y.; Xiao, D. In-situ synthesis of fluorescent gold nanoclusters with electrospun fibrous membrane and application on Hg (II) sensing. Biosens. Bioelectron. 2013, 41, 875–879. [Google Scholar] [CrossRef]
- Foo, Y.Y.; Periasamy, V.; Kiew, L.V.; Kumar, G.G.; Abd Malek, N. Curcuma mangga-Mediated Synthesis of Gold Nanoparticles: Characterization, Stability, Cytotoxicity, and Blood Compatibility. Nanomaterials 2017, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, H.; Wang, A.J.; Feng, H.; Feng, J.J.; Qian, Z.S. Simple fabrication of eptifibatide stabilized gold nanoclusters with enhanced green fluorescence as biocompatible probe for in vitro cellular imaging. Sens. Actuator B Chem. 2017, 241, 1057–1062. [Google Scholar] [CrossRef]
- Hada, A.M.; Craciun, A.M.; Focsan, M.; Borlan, R.; Soritau, O.; Todea, M.; Astilean, S. Folic acid functionalized gold nanoclusters for enabling targeted fluorescence imaging of human ovarian cancer cells. Talanta 2021, 225, 121960. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Niazi, S.; Yue, L.; Zhang, Y.; Pasha, I.; Khan, M.K.I.; Akhtar, W.; Mohsin, A.; Chughati, M.F.J.; Wang, Z.P. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022, 241, 123228. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Q.; Zheng, Y.K.; Zhou, J.Y.; Fang, D.J.; Jiang, H.; Wang, X.M. Silver-Assisted Thiolate Ligand Exchange Induced Photoluminescent Boost of Gold Nanoclusters for Selective Imaging of Intracellular Glutathione. Chem. Mater. 2018, 30, 1947–1955. [Google Scholar] [CrossRef]
- Govindaraju, S.; Ankireddy, S.R.; Viswanath, B.; Kim, J.; Yun, K. Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Sci. Rep. 2017, 7, 40298. [Google Scholar] [CrossRef] [Green Version]
- Uehara, N.; Numanami, Y. Fabrication of thermoresponsive near-infrared fluorescent gold nanocomposites and their thermal manipulation. Sens. Actuator B Chem. 2017, 247, 188–196. [Google Scholar] [CrossRef]
- Xie, J.P.; Zheng, Y.G.; Ying, J.Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889. [Google Scholar] [CrossRef]
- Qu, X.C.; Li, Y.C.; Li, L.; Wang, Y.R.; Liang, J.N.; Liang, J.M. Fluorescent Gold Nanoclusters: Synthesis and Recent Biological Application. J. Nanomater. 2015, 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Chuang, K.T.; Lin, Y.W. Microwave-Assisted Formation of Gold Nanoclusters Capped in Bovine Serum Albumin and Exhibiting Red or Blue Emission. J. Phys. Chem. C 2017, 121, 26997–27003. [Google Scholar] [CrossRef]
- Song, S.L.; Zhang, Y.P.; Yang, Y.Z.; Wang, C.X.; Zhou, Y.; Zhang, C.; Zhao, Y.Q.; Yang, M.H.; Lin, Q. Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters. Analyst 2018, 143, 3068–3074. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Jaisankar, S.N.; Pathak, M. Effect of new hyperbranched polyester of varying generations on toughening of epoxy resin through interpenetrating polymer networks using urethane linkages. Eur. Polym. J. 2013, 49, 3561–3572. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J. 2020, 84, 1442–1461. [Google Scholar] [CrossRef]
- Limbert, H.; Limbert, D.; Ponta, G.M.L.; Xuan, N.N.; Stoiciu, F.; Mocioiu, A.M. Preliminary hydrogeological observations in Phong Nha-Ke Bang National Park and Tu Lan Karst Area, Quang Binh Province, Vietnam. Carbonate Evaporite 2020, 35, 67. [Google Scholar] [CrossRef]
- Topcu, G.; Guner, T.; Inci, E.; Demir, M.M. Colorimetric and plasmonic pressure sensors based on polyacrylamide/Au nanoparticles. Sens. Actuator A Phys. 2019, 295, 503–511. [Google Scholar] [CrossRef]
- Topcu, G.; Demir, M.M. Effect of chain topology on plasmonic properties of pressure sensor films based on poly(acrylamide) and Au nanoparticles. Sens. Actuator A Phys. 2019, 295, 237–243. [Google Scholar] [CrossRef]
- Valenta, J.; Greben, M.; Pramanik, G.; Kvakova, K.; Cigler, P. Reversible photo- and thermal-effects on the luminescence of gold nanoclusters: Implications for nanothermometry. Phys. Chem. Chem. Phys. 2021, 23, 11954–11960. [Google Scholar] [CrossRef]
- Yue, J.; Yu, L.; Li, L.; Liu, P.; Mei, Q.; Dong, W.F.; Yang, R. One-Step Synthesis of Green Fluorescent Carbon Dots for Chloride Detecting and for Bioimaging. Front. Chem. 2021, 9, 718856. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, X.; Dai, Z.; Ma, Y.; Li, N. Preparation of Thermosensitive Fluorescent Polyacrylamide Nanofiber Membrane and Visual Temperature Sensing. Polymers 2022, 14, 4238. https://doi.org/10.3390/polym14194238
Tao X, Dai Z, Ma Y, Li N. Preparation of Thermosensitive Fluorescent Polyacrylamide Nanofiber Membrane and Visual Temperature Sensing. Polymers. 2022; 14(19):4238. https://doi.org/10.3390/polym14194238
Chicago/Turabian StyleTao, Xuejiao, Zhao Dai, Yue Ma, and Nan Li. 2022. "Preparation of Thermosensitive Fluorescent Polyacrylamide Nanofiber Membrane and Visual Temperature Sensing" Polymers 14, no. 19: 4238. https://doi.org/10.3390/polym14194238
APA StyleTao, X., Dai, Z., Ma, Y., & Li, N. (2022). Preparation of Thermosensitive Fluorescent Polyacrylamide Nanofiber Membrane and Visual Temperature Sensing. Polymers, 14(19), 4238. https://doi.org/10.3390/polym14194238