Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials Used
2.2. Sample Preparation
2.3. XRD
2.4. Nanoindentation
2.5. Melt Flow Index
2.6. TEM
3. Results and Discussion
3.1. X-ray Diffraction
3.2. Nanoindentation
3.3. Melt Flow Index
3.4. TEM
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Okada, A.; Kawasumi, M.; Usuki, A.; Kojima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of nylon-6/clay hybrids. In Polymer Based Molecular Composites, Proceedings of Materials Research Society Symposium, Pittsburgh, PA, USA; Schaefer, D.W., Mark, J.E., Eds.; Cambridge University Press: New York, NY, USA, 1990; Volume 171, p. 45. [Google Scholar]
- Ahmadi, S.; Huang, Y.; Li, W. Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites. J. Mater Sci. 2004, 39, 1919. [Google Scholar] [CrossRef]
- Chen, B. Polymer-clay nanocomposites: An overview with emphasis on interaction mechanisms. Br. Ceram. Trans. 2004, 103, 241. [Google Scholar] [CrossRef]
- Giannelis, E.P. Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 1998, 12, 675. [Google Scholar] [CrossRef]
- LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 1999, 15, 11. [Google Scholar] [CrossRef]
- Abdel Gawad, A.; Esawi, A.; Ramadan, A. Structure and properties of nylon 6–clay nanocomposites: Effect of temperature and reprocessing. J. Mater Sci. 2010, 45, 6677. [Google Scholar] [CrossRef]
- Bhat, A.H.; Rangreez, T.A.; Inamuddin; Chisti, H.-T.-N. Wastewater Treatment and Biomedical Applications of Montmorillonite Based Nanocomposites: A Review. Curr. Anal. Chem. 2022, 18, 269–287. [Google Scholar] [CrossRef]
- Das, P.; Manna, S.; Behera, A.K.; Shee, M.; Basak, P.; Sharma, A.K. Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environ. Res. 2022, 212, 113534. [Google Scholar] [CrossRef]
- Zhu, T.T.; Zhou, C.H.; Kabwe, F.B.; Wu, Q.Q.; Li, C.S.; Zhang, J.R. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl. Clay Sci. 2019, 169, 48–66. [Google Scholar] [CrossRef]
- Martinez-Colunga, J.G.; Sanchez-Valdes, S.; Blanco-Cardenas, A.; Ramírez-Vargas, E.; Ramos-De Valle, L.F.; Benavides-Cantu, R.; Espinoza-Martinez, A.B.; Sanchez-Lopez, S.; Lafleur, P.G.; Karami, S.; et al. Dispersion and exfoliation of nanoclays in itaconic acid funcionalized LDPE by ultrasound treatment. J. Appl. Polym. Sci. 2018, 135, 46260. [Google Scholar] [CrossRef]
- Asgari, M.; Abouelmagd, A.; Sundararaj, U. Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Appl. Clay Sci. 2017, 146, 439–448. [Google Scholar] [CrossRef]
- Wu, H.; Krifa, M.; Koo, J.H. Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Text. Res. J. 2014, 84, 1106–1118. [Google Scholar] [CrossRef]
- Fereydoon, M.; Tabatabaei, S.H.; Ajji, A. Rheological, crystal structure, barrier, and mechanical properties of PA6 and MXD6 nanocomposite films. Polym. Eng. Sci. 2014, 54, 2617–2631. [Google Scholar]
- Briesenick, D.; Bremser, W. Synthesis of polyamide-imide-montmorillonite-nanocomposites via new approach of in situ, polymerization and solvent casting. Prog. Org. Coat. 2015, 82, 26–32. [Google Scholar] [CrossRef]
- Osman, A.F.; Kalo, H.; Hassan, M.S.; Hong, T.W.; Azmi, F. Pre–dispersing of montmorillonite nanofiller: Impact on morphology and performance of melt compounded ethyl vinyl acetate nanocomposites. J. Appl. Polym. Sci. 2016, 133, 43204. [Google Scholar] [CrossRef]
- Moreira, J.F.M.; Alves, T.S.; Barbosa, R.; De Carvalho, É.M.; Carvalho, L.H. Effect of cis–13–docosenamide in the properties of compatibilized polypropylene/clay nanocomposites. Macromol. Symp. 2016, 367, 68–75. [Google Scholar] [CrossRef]
- Zabihi, O.; Ahmadi, M.; Naebe, M. Self-assembly of quaternized chitosan nano-particles within nanoclay layers for enhancement of interfacial properties in toughened polymer nanocomposites. Mater. Des. 2017, 119, 277–289. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Wu, T.; Lin, W.Y.; Tan, Y.B.; Chen, R.Y.; Huang, Z.X.; Yin, X.C.; Qu, J.P. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos. Sci. Technol. 2017, 145, 157–164. [Google Scholar] [CrossRef]
- Ammar, A.; Elzatahry, A.; Al-Maadeed, M.; Alenizi, A.M.; Huq, A.F.; Karim, A. Nanoclay compatibilization of phase separated polysulfone/polyimide films for oxygen barrier. Appl. Clay Sci. 2017, 137, 123–134. [Google Scholar] [CrossRef]
- Filippi, S.; Marazzato, C.; Magagnini, P.; Famulari, A.; Arosio, P.; Meille, S.V. Structure and morphology of HDPE-g-MA/organoclay nanocomposites: Effects of the preparation procedures. Eur. Polym. J. 2008, 44, 987–1002. [Google Scholar] [CrossRef]
- Vaia, R.A.; Giannelis, E.P. Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 1997, 30, 7990. [Google Scholar] [CrossRef]
- Paci, M.; Filippi, S.; Magagnini, P. Nanostructure development in nylon 6-Cloisite® 30B composites. Effects of the preparation conditions. Eur. Polym. J. 2010, 46, 838. [Google Scholar]
- Dennis, H.; Hunter, D.; Chang, D.; Kim, S.; White, J.; Cho, J.; Paul, D. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 2001, 42, 9513. [Google Scholar] [CrossRef]
- Shen, Z.; Simon, G.P.; Cheng, Y.-B. Comparison of solution intercalation and melt intercalation of polymer ± clay nanocomposites. Polymer 2002, 43, 4251–4260. [Google Scholar] [CrossRef]
- Strawhecker, K.; Manias, E. Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem. Mater. 2000, 12, 2943. [Google Scholar] [CrossRef]
- Aranda, P.; Ruiz-Hitzky, E. Poly (ethylene oxide)-silicate intercalation materials. Chem. Mater. 1992, 4, 1395. [Google Scholar] [CrossRef]
- Wu, J.; Lerner, M.M. Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chem. Mater. 1993, 5, 835. [Google Scholar] [CrossRef]
- Ogata, N.; Jimenez, G.; Kawai, H.; Ogihara, T. Structure and thermal/mechanical properties of poly (L-lactide)–clay blend. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 389. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 2493. [Google Scholar] [CrossRef]
- Magaraphan, R.; Lilayuthalert, W.; Sirivat, A.; Schwank, J.W. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Compos. Sci. Technol. 2001, 61, 1253. [Google Scholar] [CrossRef]
- Jeon, H.; Jung, H.T.; Lee, S.; Hudson, S. Morphology of polymer/silicate nanocomposites High density polyethylene and a nitrile copolymer. Polym. Bull. 1998, 41, 107. [Google Scholar] [CrossRef]
- Burnside, S.D.; Giannelis, E.P. Synthesis and properties of new poly (dimethylsiloxane) nanocomposites. Chem. Mater. 1995, 7, 1597. [Google Scholar] [CrossRef]
- Hammersley, A.P.; Svensson, S.O.; Thomson, A. Calibration and correction of spatial distortions in 2D detector systems. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 346, 312–321. [Google Scholar] [CrossRef]
- Samon, J.M.; Schultz, J.M.; Hsiao, B.S. Study of the cold drawing of nylon 6 fiber by in-situ simultaneous small- and wide-angle X-ray scattering techniques. Polymer 2000, 41, 2169–2182. [Google Scholar] [CrossRef]
- Lee, D.; Char, K. Effect of acidity on the deintercalation of organically modified layered silicates. Langmuir 2002, 18, 6445. [Google Scholar] [CrossRef]
- Filippi, S.; Paci, M.; Polacco, G.; Dintcheva, N.T.; Magagnini, P. On the interlayer spacing collapse of Cloisite 30B organoclay. Polym. Degrad. Stab. 2011, 96, 823–832. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef] [Green Version]
- Kojima, Y.; Matsuoka, T.; Takahashi, H.; Kurauchi, T. Crystallization of nylon 6–clay hybrid by annealing under elevated pressure. J. Appl. Polym. Sci. 1994, 51, 683. [Google Scholar] [CrossRef]
- Aharoni, S.M. n-Nylons: Their Synthesis, Structure, and Properties; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Tidick, P.; Fakirov, S.; Avramova, N.; Zachmann, H. Effect of the melt annealing time on the crystallization of nylon-6 with various molecular weights. Colloid Polym. Sci. 1984, 262, 445. [Google Scholar] [CrossRef]
- Ramadan, A.R.; Esawi, A.M.K.; Gawad, A.A. Effect of ball milling on the structure of Na+-montmorillonite and organo-montmorillonite (Cloisite 30B). Appl. Clay Sci. 2010, 47, 196. [Google Scholar] [CrossRef]
- Mani, G. Size reduction of clay particles in nanometer dimensions. Mater. Res. Soc. Symp. Proc. 2003, 740, I3.23. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C.D. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Shen, L.; Tjiu, W.C.; Liu, T. Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. Polymer 2005, 46, 11969–11977. [Google Scholar] [CrossRef]
- Cho, J.W.; Paul, D.R. Nylon 6 nanocomposites by melt compounding. Polymer 2001, 42, 1083–1094. [Google Scholar] [CrossRef]
- Ranade, A.; D′Souza, N.A.; Gnade, B.; Dharia, A. Nylon-6 and Montmorillonite-Layered Silicate (MLS) Nanocomposites. J. Plast. Film Sheeting 2003, 19, 271–286. [Google Scholar] [CrossRef]
- Fornes, T.D.; Yoon, P.J.; Keskkula, H.; Paul, D.R. Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 2001, 42, 9929–9940. [Google Scholar] [CrossRef]
- Gonzalez, T.V.; Salazar, C.G.; De la Rosa, J.R.; Gonzalez, V.G. Nylon 6/organoclay nanocomposites by extrusion. J. Appl. Polym. Sci. 2008, 108, 2923–2933. [Google Scholar] [CrossRef]
- Tsai, J.-L.; Huang, J.-C. Strain Rate Effect on Mechanical Behaviors of Nylon 6–Clay Nanocomposites. J. Compos. Mater. 2006, 40, 925–938. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, S.; Zhao, B.; Qin, H.; Wang, F.; Yang, M. Tensile fracture morphologies of nylon-6/montmorillonite nanocomposites. Polym. Int. 2005, 54, 1673–1680. [Google Scholar] [CrossRef]
- Okada, A.; Usuki, A. Polymer-layered silicate nanocomposites: An overview. Macromol. Mater. Eng. 2006, 291, 1449–1476. [Google Scholar] [CrossRef]
- Yan, T.; Chen, D.; Zhao, B.; Jiang, X.; Wang, L.; Li, Y. Percolation Network Formation in Nylon 6/Montmorillonite Nanocomposites: A Critical Structural Insight and the Impact on Solidification Process and Mechanical Behavior. Polymers 2022, 14, 3672. [Google Scholar] [CrossRef]
- Bazmara, M.; Silani, M.; Dayyani, I. Effect of functionally-graded interphase on the elasto-plastic behavior of nylon-6/clay nanocomposites; a numerical study. Def. Technol. 2021, 17, 177–184. [Google Scholar] [CrossRef]
- Yao, W.H. The preparation of modified polyamide clay nanocomposite/recycled maleic anhydride polyamide 6 and blending with low density polyethylene for film blowing application. Polym. Polym. Compos. 2021, 29 (Suppl. 9), S631–S643. [Google Scholar] [CrossRef]
Clay | Compatibilizer | Gallery d-Spacing d001 (Å) | Organic Content (% Mass) |
---|---|---|---|
Cloisite Na+ | - | 11.7 | - |
Cloisite 15A | T = (~65% C18; ~30% C16; ~5% C14) | 31.5 | 43% |
Cloisite 30B | T = (~65% C18; ~30% C16; ~5% C14) | 18.5 | 28% |
Sample | Degree of Crystallinity by WAXS, Xc |
---|---|
PA6 orig | 0.36 |
N6-sol | 0.58 |
N6-Na+ | 0.57 |
N6-15A | 0.58 |
N6-30B | 0.58 |
Modulus Enhancement | Hardness Enhancement | |||
---|---|---|---|---|
I ◊ | II * | I ◊ | II * | |
N6-Na+ | 12% | 11% | 10% | 8% |
N6-15A | 17% | 15% | 19% | 15% |
N6-30B | 18% | 16% | 14% | 11% |
Clay Type | Epolymer (GPa) | Ecomposite (GPa) | Preparation Method | Modulus Evaluation Technique | Reference |
---|---|---|---|---|---|
Cloisite 30 B | 3.5 | 4.2 | Solution compounding | nanoindentation | Current study |
Cloisite 15A | 3.5 | 4.15 | Solution compounding | nanoindentation | Current study |
Cloisite Na+ | 3.5 | 3.9 | Solution compounding | nanoindentation | Current study |
Cloisite 30B | 3 | 3.7 (+23%) | Melt compounding | nanoindentation | [7] |
Cloisite 15A | 3 | 3.25 (+8.3%) | Melt compounding | nanoindentation | [7] |
Cloisite Na+ | 3 | 3.2 (+6.7%) | Melt compounding | nanoindentation | [7] |
organically modified clay (Nanomerw I.30TC) | 1.06 | 2 (+88.7%) | Melt compounding | nanoindentation | [44] |
Cloisite Na+ | 2.66 | 3.01 (+13.2%) | Melt compounding | Tensile testing | [45] |
Organoclay SCPX 2004 | 2.66 | 3.66 (+37.6%) | Melt compounding | Tensile testing | [45] |
Cloisite 30B | 1.2 | 1.3 (8.3%) | Melt compounding | Tensile testing | [46] |
MMT | 1.11 | 1.93 (+73.9%) | (in situ polymerization) | [47] | |
MMT | 2.82 | 4.2–4.8 (+59.6%) | Melt intercalation | [47] | |
Orgomodified MMT | 1.99 | 3.12 (+57%) | Melt compounding | Tensile testing | [48] |
Natural MMT | 1.99 | 2.04 (+2.5%) | Melt compounding | Tensile testing | [48] |
Organoclay | 0.73–1.2 | 1.05–1.6 (+43%) | Melt compounding | Compression testing | [49] |
OrganoMMT | 2.9 | 4.1 (+41.4%) | Melt compounding | Tensile testing | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Gawad, A.M.; Ramadan, A.R.; Flores, A.; Esawi, A.M.K. Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding. Polymers 2022, 14, 4471. https://doi.org/10.3390/polym14214471
Abdel-Gawad AM, Ramadan AR, Flores A, Esawi AMK. Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding. Polymers. 2022; 14(21):4471. https://doi.org/10.3390/polym14214471
Chicago/Turabian StyleAbdel-Gawad, Ahmed M., Adham R. Ramadan, Araceli Flores, and Amal M. K. Esawi. 2022. "Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding" Polymers 14, no. 21: 4471. https://doi.org/10.3390/polym14214471
APA StyleAbdel-Gawad, A. M., Ramadan, A. R., Flores, A., & Esawi, A. M. K. (2022). Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding. Polymers, 14(21), 4471. https://doi.org/10.3390/polym14214471