Multi Response Optimization of ECDM Process for Generating Micro Holes in CFRP Composite Using TOPSIS Methodology
Abstract
:1. Introduction
2. Motivation and Problem Formulation
3. Experimentation Strategy
4. Results and Discussion
4.1. Material Removal Rate (MRR)
4.2. Overcut
4.3. Process Evaluation Using TOPSIS
Trial No. | Decision Matrix | Normalized Matrix Nij | Weighted Normalized Matrix Vij | |||
---|---|---|---|---|---|---|
MRR | Overcut | MRR | Overcut | MRR | Overcut | |
1 | 2.1150 | 49 | 0.3219 | 0.1573 | 0.1287 | 0.0944 |
2 | 2.1650 | 69 | 0.3295 | 0.2215 | 0.1318 | 0.1329 |
3 | 2.1765 | 61 | 0.3313 | 0.1958 | 0.1325 | 0.1175 |
4 | 2.1560 | 88 | 0.3281 | 0.2825 | 0.1312 | 0.1695 |
5 | 2.2210 | 80 | 0.3380 | 0.2569 | 0.1352 | 0.1541 |
6 | 2.2320 | 121 | 0.3397 | 0.3885 | 0.1359 | 0.2331 |
7 | 2.1456 | 110 | 0.3266 | 0.3532 | 0.1306 | 0.2119 |
8 | 2.2450 | 160 | 0.3417 | 0.5138 | 0.1366 | 0.3082 |
9 | 2.2478 | 140 | 0.3421 | 0.4495 | 0.1368 | 0.2697 |
Trial No. | Separation Measures | Relative Closeness Index Ci* | Rank | |
---|---|---|---|---|
V+ | V− | |||
1 | 0.0080 | 0.2138 | 0.9635 | 1 |
2 | 0.0388 | 0.1753 | 0.8185 | 3 |
3 | 0.0235 | 0.1907 | 0.8902 | 2 |
4 | 0.0753 | 0.1387 | 0.6480 | 5 |
5 | 0.0597 | 0.1542 | 0.7208 | 4 |
6 | 0.1387 | 0.0754 | 0.3523 | 7 |
7 | 0.1176 | 0.0963 | 0.4501 | 6 |
8 | 0.2138 | 0.0079 | 0.0356 | 9 |
9 | 0.1753 | 0.0393 | 0.1833 | 8 |
4.4. Confirmatory Test and Morphology of Drilled Hole
5. Conclusions
- Using the TOPSIS approach, the optimal parameters for creating micro holes in CFRP composite were determined to be: voltage 45 V, electrolyte concentration 10%, and inter-electrode spacing 60 mm.
- When compared to electrolyte concentration, the voltage and inter-electrode gap were found to be the most important process parameters that influence the output quality characteristics.
- Increases in applied voltage and electrolyte concentration, while decreases in inter-electrode gap, both have a direct and positive effect on MRR. The ratio of overcut to input values is also roughly the same.
- According to Taguchi’s analysis, the best input process parameters for MRR and overcut are A3B3C1 and A1B1C3, which stand for an applied voltage of 65 V and 45 V, an electrolyte concentration of 30% and an inter-electrode gap of 40 mm and 60 mm, respectively.
- Uneven fibre cutting, microcracks, and minute debris were all visible on the micrograph taken by the SEM across the boundary walls of the machined surface.
- SEM micrograph of machined sample shows improved surface quality and reduced imperfections because of TOPSIS.
- The comparative analysis shows integrated Taguchi-TOPSIS methodology can be effectively used for generating micro holes in fibrous and electrically semi-conductive materials.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, R.; Kumar, A.; Singh, I. Electric discharge drilling of micro holes in CFRP laminates. J. Mater. Processing Technol. 2018, 259, 150–158. [Google Scholar] [CrossRef]
- Bhawal, P.; Das, T.K.; Ganguly, S.; Mondal, S.; Ravindren, R.; Das, N.C. Fabrication of light weight mechanically robust short carbon fiber/ethylene methyl acrylate polymeric nanocomposite for effective electromagnetic interference shielding. J. Polym. Sci. Appl. 2017, 1, 2. [Google Scholar]
- Das, T.K.; Ghosh, P.; Das, N.C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review. Adv. Compos. Hybrid Mater. 2019, 2, 214–233. [Google Scholar] [CrossRef]
- Geier, N.; Davim, J.P.; Szalay, T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Compos. Part A: Appl. Sci. Manuf. 2019, 125, 105552. [Google Scholar] [CrossRef]
- Ming, W.; Guo, X.; Xu, Y.; Zhang, G.; Jiang, Z.; Li, Y.; Li, X. Progress in non-traditional machining of amorphous alloys. Ceram. Int. 2022. [Google Scholar] [CrossRef]
- Mazarbhuiya, R.M.; Dutta, H.; Debnath, K.; Rahang, M. Surface modification of CFRP composite using reverse-EDM method. Surf. Interfaces 2020, 18, 100457. [Google Scholar] [CrossRef]
- Roldan-Jimenez, L.; Bañon, F.; Valerga, A.P.; Fernandez-Vidal, S.R. Design and Analysis of CFRP Drilling by Electrical Discharge Machining. Polymers 2020, 14, 1340. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Kumar, S. Investigating the impact of LASER assistance on the accuracy of micro-holes generated in carbon fiber reinforced polymer composite by electrochemical discharge machining. J. Manuf. Processes 2020, 60, 586–595. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Kumar, S. Environmental aspects of various electrolytes used in electrochemical discharge machining process. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–10. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S. Electrochemical discharge machining: Fumes generations, properties and biological effects. Int. J. Adv. Manuf. Technol. 2020, 106, 357–370. [Google Scholar] [CrossRef]
- Vaishya, R.; Sharma, V.; Gupta, A.; Pathania, J.; Oza, A.; Dixit, A.K.; Patel, A. Finite element modeling of quartz material for analyzing material removal rate in ECDM process. Int. J. Interact. Des. Manuf. 2022; 1–7. [Google Scholar] [CrossRef]
- Saxena, R.; Mandal, A.; Chattopdhya, S.; Oza, A.D.; Kumar, A.; Ramesh, R. Experimental investigation of electrochemical discharge drilling (ECDM-D) performance characteristics for N-BK7 glass material. Int. J. Interact. Des. Manuf. 2022, 1–12. [Google Scholar] [CrossRef]
- Wuthrich, R.; Hof, L.A.; Lal, A.; Fujisaki, K.; Bleuler, H.; Mandin, P.; Picard, G. Physical principles and miniaturization of spark assisted chemical engraving (SACE). J. Micromech. Micro Eng. 2005, 15, S268. [Google Scholar] [CrossRef]
- Sarkar, B.R.; Doloi, B.; Bhattacharyya, B. Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int. J. Adv. Manuf. Technol. 2006, 28, 873–881. [Google Scholar] [CrossRef]
- Huang, S.F.; Liu, Y.; Li, J.; Hu, H.X.; Sun, L.Y. Electrochemical discharge machining micro-hole in stainless steel with tool electrode high-speed rotating. Mater. Manuf. Processes 2014, 29, 634–637. [Google Scholar] [CrossRef]
- Liu, J.W.; Yue, T.M.; Guo, Z.N. An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int. J. Mach. Tools Manuf. 2010, 50, 86–96. [Google Scholar] [CrossRef]
- Jha, N.K.; Singh, T.; Dvivedi, A.; Rajesha, S. Experimental investigations into triplex hybrid process of GA-RDECDM during subtractive processing of MMC’s. Mater. Manuf. Processes 2019, 34, 243–255. [Google Scholar] [CrossRef]
- Antil, P.; Singh, S.; Manna, A. Electrochemical Discharge Drilling of SiC Reinforced Polymer Matrix Composite Using Taguchi’s Grey Relational Analysis. Arab. J. Sci. Eng. 2018, 43, 1257–1266. [Google Scholar] [CrossRef]
- Antil, P. Modelling and multi-objective optimization during ECDM of silicon carbide reinforced epoxy composites. Silicon 2020, 12, 275–288. [Google Scholar] [CrossRef]
- Singh, Y.P.; Jain, V.K.; Kumar, P.; Agrawal, D.C. Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process. J. Mater. Processing Technol. 1996, 58, 24–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Xing, J.; Zhu, D. Effect of tube-electrode inner diameter on electrochemical discharge machining of nickel-based superalloy. Chin. J. Aeronautics 2016, 29, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Nayak, B.B.; Mahapatra, S.S. Multi-response optimization of WEDM process parameters using the AHP and TOPSIS method. Int. J. Theor. Appl. Res. Mech. Eng. 2013, 2, 109–215. [Google Scholar]
- Nguyen, P.; Banh, L.; Bui, V.; Hoang, D. Multi-response optimization of process parameters for powder mixed electro-discharge machining according to the surface roughness and surface micro-hardness using Taguchi-TOPSIS. Int. J. Data Netw. Sci. 2018, 2, 109–119. [Google Scholar] [CrossRef]
- Parthiban, K.; Duraiselvam, M.; Manivannan, R. TOPSIS based parametric optimization of laser micro-drilling of TBC coated nickel based superalloy. Opt. Laser Technol. 2018, 102, 32–39. [Google Scholar] [CrossRef]
- Ladeesh, V.G.; Manu, R. Machining of fluidic channels on borosilicate glass using grinding-aided electrochemical discharge engraving (G-ECDE) and process optimization. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–19. [Google Scholar] [CrossRef]
- Ananthakumar, K.; Rajamani, D.; Balasubramanian, E.; Davim, J.P. Measurement and optimization of multi-response characteristics in plasma arc cutting of Monel 400™ using RSM and TOPSIS. Measurement 2019, 135, 725–737. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lin, Y.J.; Lin, Y.C.; Chen, S.L.; Hsu, L.R. Optimization of electrodischarge machining parameters on ZrO2 ceramic using the Taguchi method. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 195–205. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Munda, J. Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. Int. J. Mach. Tools Manuf. 2003, 43, 1301–1310. [Google Scholar]
- Madhavi, J.B.; Hiremath, S.S. Machining and Characterization of Channels and Textures on Quartz Glass Using μ-ECDM Process. Silicon 2019, 11, 2919–2931. [Google Scholar] [CrossRef]
- Ladeesh, V.G.; Manu, R. Grinding-aided electrochemical discharge drilling in the light of electrochemistry. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 1896–1909. [Google Scholar] [CrossRef]
- Bhargav, K.V.J.; Shanthan, P.; Balaji, P.S.; Sahu, R.K.; Sahoo, S.K. Generation of microholes on GFRP composite using ES-µ-ECDM system. CIRP J. Manuf. Sci. Technol. 2022, 38, 695–705. [Google Scholar] [CrossRef]
- Doloi, B.; Bhattacharyya, B.; Sorkhel, S.K. Electrochemical discharge machining of non-conducting ceramics. Def. Sci. J. 1999, 49, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Omashekhar, K.P.; Mathew, J.; Ramachandran, N. Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 1742–1753. [Google Scholar] [CrossRef]
- Tripathy, S.; Tripathy, D.K. Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Eng. Sci. Technol. Int. J. 2016, 19, 62–70. [Google Scholar] [CrossRef] [Green Version]
Symbols | Process Parameters | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
A | Voltage (Volts) | 45 | 55 | 65 |
B | Electrolyte Concentration (wt.%/V) | 10 | 20 | 30 |
C | Inter-Electrode Gap (mm) | 40 | 50 | 60 |
Trial. No. | Voltage | Electrolyte Concentration | Inter Electrode Gap | MRR (mg/min) | Overcut (µm) | ||
---|---|---|---|---|---|---|---|
Mean | S/N Ratio | Mean | S/N Ratio | ||||
1 | 45 | 10 | 40 | 2.1150 | 6.50621 | 49 | −33.8039 |
2 | 45 | 20 | 50 | 2.1650 | 6.70916 | 69 | −36.7770 |
3 | 45 | 30 | 60 | 2.1765 | 6.75517 | 61 | −35.7066 |
4 | 55 | 10 | 50 | 2.1560 | 6.67298 | 88 | −38.8897 |
5 | 55 | 20 | 60 | 2.2210 | 6.93097 | 80 | −38.0618 |
6 | 55 | 30 | 40 | 2.2320 | 6.97388 | 121 | −41.6557 |
7 | 65 | 10 | 60 | 2.1456 | 6.63098 | 110 | −40.8279 |
8 | 65 | 20 | 40 | 2.2450 | 7.02433 | 160 | −44.0824 |
9 | 65 | 30 | 50 | 2.2478 | 7.03515 | 140 | −42.9226 |
Levels | Process Parameters | ||
---|---|---|---|
A | B | C | |
1 | 0.8907 | 0.6872 | 0.4505 |
2 | 0.5737 | 0.5250 | 0.5499 |
3 | 0.2230 | 0.4753 | 0.6870 |
Delta | 0.6677 | 0.2119 | 0.2366 |
Rank | 1 | 3 | 2 |
Source | DF | Adj SS | Adj MS | F Value | p Value |
---|---|---|---|---|---|
A | 2 | 0.66937 | 0.334684 | 40.32 | 0.024 |
B | 2 | 0.07371 | 0.036853 | 4.44 | 0.184 |
C | 2 | 0.08465 | 0.042327 | 5.10 | 0.164 |
Error | 2 | 0.01660 | 0.008300 | ||
Total | 8 | 0.84433 |
Responses | Initial Parametric Condition (A3B2C1) | Optimum Parametric Condition (A1B1C3) |
---|---|---|
MRR (mg/min) | 2.232 | 2.1267 |
Overcut (µm) | 150 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Singh, S.; Arora, J.K.; Antil, P.; Oza, A.D.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Multi Response Optimization of ECDM Process for Generating Micro Holes in CFRP Composite Using TOPSIS Methodology. Polymers 2022, 14, 5291. https://doi.org/10.3390/polym14235291
Singh M, Singh S, Arora JK, Antil P, Oza AD, Burduhos-Nergis DD, Burduhos-Nergis DP. Multi Response Optimization of ECDM Process for Generating Micro Holes in CFRP Composite Using TOPSIS Methodology. Polymers. 2022; 14(23):5291. https://doi.org/10.3390/polym14235291
Chicago/Turabian StyleSingh, Manpreet, Sarbjit Singh, Jatinder Kaur Arora, Parvesh Antil, Ankit D. Oza, Dumitru Doru Burduhos-Nergis, and Diana Petronela Burduhos-Nergis. 2022. "Multi Response Optimization of ECDM Process for Generating Micro Holes in CFRP Composite Using TOPSIS Methodology" Polymers 14, no. 23: 5291. https://doi.org/10.3390/polym14235291
APA StyleSingh, M., Singh, S., Arora, J. K., Antil, P., Oza, A. D., Burduhos-Nergis, D. D., & Burduhos-Nergis, D. P. (2022). Multi Response Optimization of ECDM Process for Generating Micro Holes in CFRP Composite Using TOPSIS Methodology. Polymers, 14(23), 5291. https://doi.org/10.3390/polym14235291