Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films
Abstract
:1. Introduction
2. Experimental Techniques
2.1. Preparation of Photoselective PMMA Greenhouse Films
2.2. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, I.; Hamid, H. Plastics in agriculture. In Plastics and the Environment; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hammam, M.; El-Mansy, M.; El-Bashir, S.; El-Shaarawy, M. Performance evaluation of thin-film solar concentrators for greenhouse applications. Desalination 2007, 209, 244–250. [Google Scholar] [CrossRef]
- Giacomelli, G.A.; Roberts, W.J. Greenhouse covering systems. HortTechnology 1993, 3, 50–58. [Google Scholar] [CrossRef] [Green Version]
- El-Bashir, S.; Al-Harbi, F.; Elburaih, H.; Al-Faifi, F.; Yahia, I. Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. Renew. Energy 2016, 85, 928–938. [Google Scholar] [CrossRef]
- El-Bashir, S.; Al-Jaghwani, A. Perylene-doped polycarbonate coatings for acrylic active greenhouse luminescent solar concentrator dryers. Results Phys. 2020, 16, 102920. [Google Scholar] [CrossRef]
- Waaijenberg, D. Design, construction and maintenance of greenhouse structures. In Proceedings of the International Symposium on Greenhouses, Environmental Controls and In-House Mechanization for Crop Production in the Tropics 710, Pahang, Malaysia, 15–17 June 2004; pp. 31–42. [Google Scholar]
- Hiscott, D.; Cvetkovska, M.; Mumin, M.A.; Charpentier, P.A. Light Downshifting ZnO-EVA Nanocomposite Greenhouse Films and Their Influence on Photosynthetic Green Algae Growth. ACS Appl. Polym. Mater. 2021, 3, 3800–3810. [Google Scholar] [CrossRef]
- Sánchez-Lanuza, M.B.; Menéndez-Velázquez, A.; Peñas-Sanjuan, A.; Navas-Martos, F.J.; Lillo-Bravo, I.; Delgado-Sánchez, J.M. Advanced Photonic Thin Films for Solar Irradiation Tuneability Oriented to Greenhouse Applications. Materials 2021, 14, 2357. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bari, A.; Papaioannou, C. Plant responses to UV blocking greenhouse covering materials: A review. Agronomy 2020, 10, 1021. [Google Scholar] [CrossRef]
- Hemming, S.; van Os, E.; Hemming, J.; Dieleman, J. The effect of new developed fluorescent greenhouse films on the growth of Fragaria x ananassa ‘Elsanta’. Eur. J. Hortic. Sci. 2006, 71, 145–154. [Google Scholar]
- Pearson, S.; Wheldon, A.; Hadley, P. Radiation transmission and fluorescence of nine greenhouse cladding materials. J. Agric. Eng. Res. 1995, 62, 61–69. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials. Renew. Sustain. Energy Rev. 2013, 27, 175–190. [Google Scholar] [CrossRef]
- Kumar, M.; Haillot, D.; Gibout, S. Survey and evaluation of solar technologies for agricultural greenhouse application. Sol. Energy 2022, 232, 18–34. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Portnoi, M.; Debije, M.G. The hidden potential of luminescent solar concentrators. Adv. Energy Mater. 2021, 11, 2002883. [Google Scholar] [CrossRef]
- Meinardi, F.; Colombo, A.; Velizhanin, K.A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V.I.; Brovelli, S. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399. [Google Scholar] [CrossRef]
- Weber, W.; Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15, 2299. [Google Scholar] [CrossRef] [PubMed]
- Swartz, B.; Cole, T.; Zewail, A. Photon trapping and energy transfer in multiple-dye plastic matrices: An efficient solar-energy concentrator. Opt. Lett. 1977, 1, 73–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetzberger, A.; Wittwer, V. Fluorescent planar collector-concentrators for solar energy conversion. In Festkörperprobleme 19; Springer: Berlin/Heidelberg, Germany, 1979; pp. 427–451. [Google Scholar]
- Batchelder, J.; Zewail, A.; Cole, T. Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. Appl. Opt. 1981, 20, 3733–3754. [Google Scholar] [CrossRef] [Green Version]
- Hermann, A.M. Luminescent solar concentrators—A review. Sol. Energy 1982, 29, 323–329. [Google Scholar] [CrossRef]
- Friedman, P.; Parent, C. Luminescent Solar Concentrator Development; Final Subcontract Report; Solar Energy Research Inst.: Golden, CO, USA, 1987. [Google Scholar]
- Seybold, G.; Wagenblast, G. New perylene and violanthrone dyestuffs for fluorescent collectors. Dye. Pigment. 1989, 11, 303–317. [Google Scholar] [CrossRef]
- Ivri, J.; Burshtein, Z.; Miron, E.; Reisfeld, R.; Eyal, M. The perylene derivative BASF-241 solution as a new tunable dye laser in the visible. IEEE J. Quantum Electron. 1990, 26, 1516–1520. [Google Scholar] [CrossRef]
- Johansson, L.; Langhals, H. Spectroscopic studies of fluorescent perylene dyes. Spectrochim. Acta Part A Mol. Spectrosc. 1991, 7, 857–861. [Google Scholar] [CrossRef] [Green Version]
- Griffini, G. Host matrix materials for luminescent solar concentrators: Recent achievements and forthcoming challenges. Front. Mater. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- El-Bashir, S.; AlSalhi, M.; Al-Faifi, F.; Alenazi, W. Spectral properties of PMMA films doped by perylene dyestuffs for photoselective greenhouse cladding applications. Polymers 2019, 11, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeisossadati, M.; Moheimani, N.R.; Parlevliet, D. Red luminescent solar concentrators to enhance Scenedesmus sp. biomass productivity. Algal Res. 2020, 45, 101771. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Moheimani, N.R.; Parlevliet, D. Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds. Bioresour. Technol. 2019, 291, 121801. [Google Scholar] [CrossRef]
- Cambié, D.; Dobbelaar, J.; Riente, P.; Vanderspikken, J.; Shen, C.; Seeberger, P.H.; Gilmore, K.; Debije, M.G.; Noël, T. Energy—Efficient solar photochemistry with luminescent solar concentrator based photomicroreactors. Angew. Chem. 2019, 131, 14512–14516. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Y.; Zhang, Y. Luminescent solar concentrators performing under different light conditions. Sol. Energy 2019, 188, 1248–1255. [Google Scholar] [CrossRef]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Morandin, L.; Laverty, T.; Kevan, P.; Khosla, S.; Shipp, L. Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses. Can. Entomol. 2001, 133, 883–893. [Google Scholar] [CrossRef]
- Costa, H.S.; Robb, K.L. Effects of ultraviolet-absorbing greenhouse plastic films on flight behavior of Bemisia argentifolii (Homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J. Econ. Entomol. 1999, 92, 557–562. [Google Scholar] [CrossRef]
- Díaz, B.M.; Biurrún, R.; Moreno, A.; Nebreda, M.; Fereres, A. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. HortScience 2006, 41, 711–716. [Google Scholar] [CrossRef] [Green Version]
- Lamnatou, C.; Chemisana, D. Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials. Renew. Sustain. Energy Rev. 2013, 18, 271–287. [Google Scholar] [CrossRef]
- Raviv, M. The use of photoselective cladding materials as modifiers of morphogenesis of plants and pathogens. Int. Symp. Prot. Cultiv. Ornam. Mild Winter Clim. 1988, 246, 275–284. [Google Scholar] [CrossRef]
- Espi, E.; Salmeron, A.; Fontecha, A.; García, Y.A. Real, Plastic films for agricultural applications. J. Plast. Film. Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Garcia-Alonso, Y.; Espi, E.; Salmeron, A.; Fontecha, A.; Gonzalez, A.; Lopez, J. New cool plastic films for greenhouse covering in tropical and subtropical areas. Int. Symp. Greenh. Cool. 2006, 719, 131–138. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- El-Bashir, S.; Alenazi, W.; AlSalhi, M. Optical dispersion parameters and stability of poly (9, 9′-di-n-octylfluorenyl-2.7-diyl)/ZnO nanohybrid films: Towards organic photovoltaic applications. Mater. Res. Express 2017, 4, 025503. [Google Scholar] [CrossRef]
- El-Bashir, S.; Yahia, I.; Binhussain, M.; AlSalhi, M. Designing of PVA/Rose Bengal long-pass optical window applications. Results Phys. 2017, 7, 1238–1244. [Google Scholar] [CrossRef]
- El-Bashir, S.; Yahia, I.; Binhussain, M.; AlSalhi, M. Design of Rose Bengal/FTO optical thin film system as a novel nonlinear media for infrared blocking windows. Results Phys. 2017, 7, 1852–1858. [Google Scholar] [CrossRef]
- Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties of amorphous semiconductors. In Amorphous and Liquid Semiconductors; Springer: Berlin/Heidelberg, Germany, 1974; pp. 159–220. [Google Scholar]
- El-Bashir, S. Photophysical properties of fluorescent PMMA/SiO2 nanohybrids for solar energy applications. J. Lumin. 2012, 132, 1786–1791. [Google Scholar] [CrossRef]
Concentration wt% | Tcut-off (%) | ηIR (%) | ||
---|---|---|---|---|
KREMER 94720 | KREMER 94739 | KREMER 94720 | KREMER 94739 | |
10−5 | 98.31 | 96.67 | 68.53 | 61.17 |
10−4 | 94.79 | 92.22 | 70.32 | 64.24 |
10−3 | 64.34 | 71.95 | 72.17 | 67.28 |
10−2 | 4.02 | 11.55 | 75.46 | 70.83 |
10−1 | 0.19 | 0.38 | 77.81 | 72.18 |
Concentration wt% | Eg (eV) | λf (nm) | ||
---|---|---|---|---|
KREMER 94720 | KREMER 94739 | KREMER 94720 | KREMER 94739 | |
10−5 | 5.32 | 5.34 | 583.84 | 569.81 |
10−4 | 5.29 | 5.32 | 604.32 | 574.30 |
10−3 | 5.12 | 5.30 | 649.17 | 577.92 |
10−2 | 5.22 | 5.27 | 607.68 | 628.84 |
10−1 | 5.27 | 5.24 | 613.10 | 644.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alwadai, N.; El-Bashir, S. Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers 2022, 14, 531. https://doi.org/10.3390/polym14030531
Alwadai N, El-Bashir S. Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers. 2022; 14(3):531. https://doi.org/10.3390/polym14030531
Chicago/Turabian StyleAlwadai, Norah, and Samah El-Bashir. 2022. "Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films" Polymers 14, no. 3: 531. https://doi.org/10.3390/polym14030531
APA StyleAlwadai, N., & El-Bashir, S. (2022). Infrared Efficiency and Ultraviolet Management of Red-Pigmented Polymethylmethacrylate Photoselective Greenhouse Films. Polymers, 14(3), 531. https://doi.org/10.3390/polym14030531