Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production
Abstract
:1. Introduction
2. Production of Sphingans
3. Sphingans in EOR
3.1. Molecular Structure
3.2. Gellan Gum
3.3. Welan Gum
3.4. Diutan Gum
3.5. Sanxan
4. Modification of Sphingans
4.1. Chemical Modification
4.2. Composite Polymers
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yabuuchi, E.; Yano, I.; Oyaizu, H.; Hashimoto, Y.; Ezaki, T.; Yamamoto, H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and Two Genospecies of the Genus Sphingomonas. Microbiol. Immunol. 2011, 34, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Pollock, T.J. Gellan-related polysaccharides and the genus Sphingomonas. J. Gen. Microbiol. 1993, 139, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
- Akbar, I.; Zhou, H.; Liu, W.; Qureshi, A.S.; Memon, A.; Muther, T.; Ansari, U.; Usmantahir, M.; Bakhsh, A.; Shaikh, A. Nano-suspension combined effect with polymer gels for enhanced oil recovery in low permeability reservoir. Arab. J. Geosci. 2021, 14, 1473. [Google Scholar] [CrossRef]
- Mota, G.; Pereira, R.G. The influence of concentration and temperature on the rheological behavior of diutan gum aqueous solutions. Int. J. Polym. Anal. Charact. 2021, 26, 735–753. [Google Scholar] [CrossRef]
- Xia, S.X.; Zhang, L.B.; Davletshin, A.; Li, Z.R.; You, J.H.; Tan, S.Y. Application of Polysaccharide Biopolymer in Petroleum Recovery. Polymers 2020, 12, 1860. [Google Scholar] [CrossRef]
- Schmid, J.; Sperl, N.; Sieber, V. A comparison of genes involved in sphingan biosynthesis brought up to date. Appl. Microbiol. Biotechnol. 2014, 98, 7719–7733. [Google Scholar] [CrossRef]
- Ohnmar, O.; Kyaw, M.; Lwin, T. Acute disseminated encephalomyelitis due to Sphingomonas paucimobilis meningitis. Neurol. Clin. Neurosc. 2021, 9, 384–386. [Google Scholar] [CrossRef]
- Kim, H.; Chhetri, G.; Seo, T. Sphingomonas xanthus sp. nov., Isolated from Beach Soil. Curr. Microbiol. 2021, 78, 403–410. [Google Scholar] [CrossRef]
- Jogler, M.; Chen, H.; Simon, J.; Rohde, M.; Busse, H.J.; Klenk, H.P.; Tindall, B.J.; Overnann, J. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int. J. Syst. Evolut. Microbiol. 2013, 63, 1342–1349. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hamana, K.; Hiraishi, A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 2001, 51, 1405–1417. [Google Scholar] [CrossRef]
- Bahl, M.A.; Schultheis, E.; Hempel, D.C.; Nortemann, B.; Franco-Lara, E. Recovery and purification of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa DSM 13101. Carbohydr. Polym. 2010, 80, 1037–1041. [Google Scholar] [CrossRef]
- Huang, H.D.; Wang, W.; Ma, T.; Li, G.Q.; Liang, F.L.; Liu, R.L. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int. J. Syst. Evolut. Microbiol. 2009, 59, 719–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tala, A.; Lenucci, M.; Gaballo, A.; Durante, M.; Tredici, S.M.; Debowles, D.A. Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int. J. Syst. Evol. Microbiol. 2013, 63, 72–79. [Google Scholar] [CrossRef]
- Seo, E.J.; Yoo, S.H.; Oh, K.W.; Cha, J.; Lee, H.G.; Park, C.S. Isolation of an Exopolysaccharide-producing Bacterium, Sphingomonas sp. CS101, Which Forms an Unusual Type of Sphingan. J. Agric. Chem. Soc. Jpn. 2004, 68, 1146–1148. [Google Scholar]
- Hashimoto, W.; Murata, K. alpha-L-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Biosci. Biotechnol. Biochem. 1998, 62, 1068–1074. [Google Scholar] [CrossRef]
- Li, H.; Jiao, X.; Sun, Y.J.; Sun, S.W.; Feng, Z.M.; Zhou, W.L.; Zhu, H. The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp WG. Sci. Rep. 2016, 6, 37899. [Google Scholar] [CrossRef]
- Berwanger, A.; Domingues, N.M.; Vanzo, L.T.; di Luccio, M.; Treichel, H.; Padilha, F.F.; Scamparini, A.R.P. Production and rheological characterization of biopolymer of Sphingomonas capsulata ATCC 14666 using conventional and industrial media. Appl. Biochem. Biotechnol. 2006, 132, 942–950. [Google Scholar]
- Aylan, K.M.; Cristiane, M.; Tereza, C.L.C.; Lúcia, M.C.A. Production, Characterization and Bioemulsifying Activity of an Exopolysaccharide Produced by Sphingomonas sp. Isolated from Freshwater. J. Polym. Environ. 2016, 25, 1080–1086. [Google Scholar]
- Kamer, D.D.A.; Gumus, T.; Palabiyik, I.; Demirci, A.S.; Oksuz, O. Grape pomace as a promising source for gellan gum production. Food Hydrocoll. 2021, 114, 106584. [Google Scholar] [CrossRef]
- Giavasis, I.; Harvey, L.M.; McNeil, B. The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme Microb. Technol. 2006, 38, 101–108. [Google Scholar] [CrossRef]
- Bajaj, I.B.; Saudagar, P.S.; Singhal, R.S.; Pandey, A. Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J. Biosci. Bioeng. 2006, 102, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Arsénio, M.F.; Lígia, O.M.; Donval, M.L.; Jorge, H.L.; Ridout, M.J.; Jay, A.J. Structures and properties of gellan polymers produced by sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl. Environ. Microbiol. 1999, 65, 2485–2491. [Google Scholar]
- Liu, X.; Lin, L.; Xu, X.; Zhang, H.; Xu, H. Two-step economical welan gum production by Sphingomonas sp. HT-1 from sugar industrial by-products. Carbohydr. Polym. 2017, 181, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, H.; Li, S.; Feng, X.H.; Ouyang, P.K. Optimization of exopolysaccharide welan gum production by Alcaligenes sp. CGMCC2428 with Tween-40 using response surface methodology. Carbohydr. Polym. 2012, 87, 1363–1368. [Google Scholar] [CrossRef]
- Dong, Y.C.; Fan, L.L.; Jiao, Z.H.; Chen, Q.H. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydr. Polym. 2015, 115, 694–700. [Google Scholar]
- Arockiasamy, S.; Banik, R.M. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 2008, 105, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhao, X.; Shen, Y.; Shi, Z.; Li, G.; Ma, T. Efficient simultaneous utilization of glucose and xylose from corn straw by Sphingomonas sanxanigenens NX02 to produce microbial exopolysaccharide. Bioresour. Technol. 2021, 319, 124126. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhu, P.; Li, S.; Chen, X.Y.; Jiang, X.H.; Xu, H. Rhamsan gum production by Sphingomonas sp. CGMCC 6833 using a two-stage agitation speed control strategy. Biotechnol. Appl. Biochem. 2014, 61, 453–458. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhu, P.; Jiang, R.F.; Wu, L.T.; Feng, X.H.; Li, S.; Xu, H. Enhancement of welan gum production in Sphingomonas sp. HT-1 via heterologous expression of Vitreoscilla hemoglobin gene. Carbohydr. Polym. 2017, 156, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Soumiya, S.; Santhiagu, A.; Chemmattu, M.M. Optimization of cultural conditions of gellan gum production from recombinant Sphingomonas paucimobilis ATCC 31461 and its characterization. J. Appl. Biol. Biotechnol. 2021, 9, 58–67. [Google Scholar] [CrossRef]
- Wu, X.; Ou, L.; Chen, Y.; Liang, Z.; Qian, C.; Yi, T.; Tao, X. A carotenoid-free mutant strain of Sphingomonas paucimobilis ATCC 31461 for the commercial production of gellan. Carbohydr. Polym. 2011, 84, 1201–1207. [Google Scholar] [CrossRef]
- Li, A.; Hu, T.; Luo, H.; Alam, N.U.; Li, O. A Carotenoid- and Poly-β-Hydroxybutyrate-Free Mutant Strain of Sphingomonas elodea ATCC 31461 for the Commercial Production of Gellan. mSphere 2019, 4, e00668-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.W.; Chen, Z.H.; Wu, M.M.; Shi, Z.; Zhu, F.; Li, G.Q.; Ma, T. Improved production of carotenoid-free welan gum in a genetic-engineered Alcaligenes sp. ATCC31555. Biotechnol. Lett. 2016, 38, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Manjusha, C.M.; Soumiya, S.; Santhiagu, A. Cloning and expression of gellan gum biosynthetic genes gelQ, gelB, gelL and gelK of Sphingomonas paucimobilis, production and characterization of the recombinant gellan gum. Biocatal. Agric. Biotechnol. 2021, 30, 101850. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, M.; Xu, Z.; Xu, H.; Li, S. Construction of a Robust Sphingomonas sp. Strain for Welan Gum Production via the Expression of Global Transcriptional Regulator IrrE. Front. Bioeng. Biotechnol. 2020, 8, 00674. [Google Scholar] [CrossRef] [PubMed]
- Sá-Correia, I.; Fialho, A.M.; Videira, P.; Moreira, L.M.; Albano, H. Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: Genes, enzymes and exopolysaccharide production engineering. J. Ind. Microbiol. Biotechnol. 2002, 29, 170–176. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Xu, X.; Li, S.; Xu, H. A strategy for the synthesis of low-molecular-weight welan gum by eliminating capsule form of Sphingomonas strains. Int. J. Biol. Macromol. 2021, 178, 11–18. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.C.; Chang, J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2020, 251, 117006. [Google Scholar] [CrossRef]
- Zhu, L.N.; Lu, Y.; Sun, Z.; Han, J.; Tan, Z.J. The application of an aqueous two-phase system combined with ultrasonic cell disruption extraction and HPLC in the simultaneous separation and analysis of solanine and Solanum nigrum polysaccharide from Solanum nigrum unripe fruit. Food Chem. 2020, 304, 125383. [Google Scholar] [CrossRef]
- More, V.S.; Ebinesar, A.; Prakruthi, A.; Praveen, P.; More, S. Isolation and Purification of Microbial Exopolysaccharides and Their Industrial Application. In Microbial Polymers; Springer: Singapore, 2021; pp. 69–86. [Google Scholar]
- Liang, K.; Han, P.; Chen, Q.; Su, X.; Feng, Y. Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer. ACS Omega 2019, 4, 10620–10628. [Google Scholar] [CrossRef]
- Kang, K.S.; Pettitt, D.J. Xanthan, Gellan, Welan, and Rhamsan. Industr. Gums 1993, 13, 341–397. [Google Scholar]
- Gansbiller, M.; Schmid, J.; Sieber, V. Rheology of sphingans in EPS-surfactant systems. Carbohydr. Polym. 2020, 248, 116778. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Nie, Z.; Zheng, Z.; Zhu, L.; Zhan, X. Production and Rheological Properties of Welan Gum Produced by Sphingomonas sp. ATCC 31555 with Different Nitrogen Sources. J. Mol. Microbiol. Biotechnol. 2017, 27, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, G.; Long, Y.; Gong, H.; Li, Y. The displacement efficiency and rheology of welan gum for enhanced heavy oil recovery. Polym. Adv. Technol. 2015, 25, 1122–1129. [Google Scholar] [CrossRef]
- Gao, C.H. Potential of Welan gum to enhance oil recovery. J. Petrol. Explor. Prod. Technol. 2014, 5, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.D.; Wu, M.M.; Yang, H.P.; Li, X.Y.; Ren, M.N.; Li, G.Q.; Ma, T. Structural and physical properties of sanxan polysaccharide from Sphingomonas sanxanigenens. Carbohydr. Polym. 2016, 144, 410–418. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, Z.; Wu, M.; Shen, Y.; Ma, T. Fabrication of emulsion gel based on polymer sanxan and its potential as a sustained-release delivery system for β-carotene. Int. J. Biol. Macromol. 2020, 164, 597–605. [Google Scholar] [CrossRef]
- Goh, K.; Haisman, D.R.; Singh, H. Characterisation of a high acyl gellan polysaccharide using light scattering and rheological techniques. Food Hydrocoll. 2006, 20, 176–183. [Google Scholar] [CrossRef]
- Gussenov, I.; Zhappasbayev, B.; Kudabergenov, S.; Akhmedzhanov, T.K. Permeability Reduction of Heterogeneous Oil Reservoirs by Brine-Triggered Gellan Gel. J. Nanosci. Nanotechnol. 2017, 17, 9198–9202. [Google Scholar] [CrossRef]
- Nurakhmetova, Z.; Gussenov, I.; Aseyev, V.; Sigitov, V.; Kudaibergenov, S. Application of sol-gel transition of gellan and xanthan for enhanced oil recovery and as drilling fluids. J. Chem. Technol. Metall. 2018, 53, 68–78. [Google Scholar]
- Lai, N.J.; Wen, Y.P.; Yang, Z.D.; Chen, J.L.; Zhao, X.B.; Wang, D.D.; He, W.; Chen, Y.M. Polymer flooding in high-temperature and high-salinity heterogeneous reservoir by using diutan gum. J. Petrol. Sci. Eng. 2020, 188, 106902. [Google Scholar] [CrossRef]
- Navarrete, R.C.; Seheult, J.M.; Coffey, M. New Biopolymers for Drilling, Drill-In, Completions, Spacer, and Coil-Tubing Fluids, Part II. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 13 February 2001. [Google Scholar]
- Xu, L.; Xu, G.; Liu, T.; Chen, Y.; Gong, H. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydr. Polym. 2013, 92, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Dong, M.; Gong, H.; Sun, M.; Li, Y. Effects of inorganic cations on the rheology of aqueous welan, xanthan, gellan solutions and their mixtures. Carbohydr. Polym. 2015, 121, 147–154. [Google Scholar] [CrossRef]
- Das, M.; Giri, T.K. Hydrogels based on gellan gum in cell delivery and drug delivery. J. Drug Deliv. Sci. Technol. 2020, 56, 101586. [Google Scholar] [CrossRef]
- Yang, N.; Huang, Y.L.; Hou, J.W.; Zhang, Y.Q.; Tian, L.; Chen, Z.Y.; Jin, Z.; Shen, Y.Y.; Guo, S.R. Rheological behaviors and texture properties of semi-interpenetrating networks of hydroxypropyl methylcellulose and gellan. Food Hydrocoll. 2021, 122, 107097. [Google Scholar] [CrossRef]
- Li, X.; Guo, C.; Li, P.; Sun, J.; Guo, Y. Structural characteristics of gluconic acid δ-lactone induced casein gels as regulated by gellan gum incorporation. Food Hydrocoll. 2021, 120, 106897. [Google Scholar] [CrossRef]
- Wu, L.T.; Tsai, I.L.; Ho, Y.C.; Hang, Y.H.; Lin, C.; Tsai, M.L.; Mi, F.L. Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydr. Polym. 2021, 254, 117410. [Google Scholar] [CrossRef]
- Mcguffey, J.C.; Dacia, L.; Dhanji, E.Z.; Mishler, D.M.; Barrick, J.E. Bacterial Production of Gellan Gum as a Do-It-Yourself Alternative to Agar. J. Microbiol. Biol. Educ. 2018, 19, 74. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.S.; Mort, A.J.; Dell, A. Identification and Location of L-Glycerate, an Unusual Acyl Substituent in Gellan Gum. Carbohydr. Res. 1986, 156, 173–187. [Google Scholar] [CrossRef]
- Diener, M.; Adamcik, J.; Bergfreund, J.; Catalini, S.; Mezzenga, R. Rigid, Fibrillar Quaternary Structures Induced by Divalent Ions in a Carboxylated Linear Polysaccharide. ACS Macro Lett. 2020, 9, 115–121. [Google Scholar] [CrossRef]
- Goh, K.K.T.; Yuliarti, O.; Yeo, G.T.T.; Or, C.C. Effect of ultrasonication on low-acetylated gellan gum gel properties. Food Hydrocoll. 2015, 49, 240–247. [Google Scholar] [CrossRef]
- Funami, T.; Noda, S.; Nakauma, M.; Ishihara, S.; Takahashi, R.; Al-Assaf, S.; Ikeda, S.; Nishinari, K.; Phillips, G.O. Molecular Structures of Gellan Gum Imaged with Atomic Force Microscopy in Relation to the Rheological Behavior in Aqueous Systems in the Presence or Absence of Various Cations. J. Agric. Food Chem. 2008, 56, 8609–8618. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of gellan—A review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Lin, D.; Liu, X.; Zhen, T. Critical behavior at sol–gel transition in gellan gum aqueous solutions with KCl and CaCl2 of different concentrations. Carbohydr. Polym. 2010, 81, 207–212. [Google Scholar]
- Kudaibergenov, S.; Nuraje, N.; Adilov, Z.; Abilkhairov, D.; Ibragimov, R.; Gusenov, I.; Sagindykov, A. Plugging Behavior of Gellan in Porous Saline Media. J. Appl. Polym. Sci. 2015, 132, 41256. [Google Scholar] [CrossRef]
- Gussenov, I.S.; Ibragimov, R.S.; Kudaibergenov, S.E.; Abilkhairov, D.T.; Kudaibergenov, D.N. Application of Polymer Gellan for Injectivity Profile Leveling (Russian). In Proceedings of the SPE Annual Caspian Technical Conference and Exhibition, Astana, Kazakhstan, 12–14 November 2014. [Google Scholar]
- Ibragimov, R.; Gusenov, I.; Tatykhanova, G.; Adilov, Z.; Nuraje, N.; Kudaibergenov, S. Study of Gellan for Polymer Flooding. J. Dispers. Sci. Technol. 2013, 34, 1240–1247. [Google Scholar] [CrossRef]
- Kudaibergenov, S.E.; Tatykhanova, G.S.; Sigitov, V.B.; Nurakhmetova, Z.A.; Blagikh, E.V.; Gussenov, I.S.; Seilkhanov, T.M. Physico-Chemical and Rheological Properties of Gellan in Aqueous-Salt Solutions and Oilfield Saline Water. Macromol. Symp. 2016, 363, 20–35. [Google Scholar] [CrossRef]
- Jansson, P.E.; Widmalm, G. Welan gum (S-130) contains repeating units with randomly distributed L-mannosyl and L-rhamnosyl terminal groups, as determined by FABMS. Carbohydr. Res. 1994, 256, 327–330. [Google Scholar] [CrossRef]
- Xu, L.; Zhe, Q.; Gong, H.J.; Zhu, C.F.; Li, Y.J.; Dong, M.Z. Rheological behaviors of microbial polysaccharides with different substituents in aqueous solutions: Effects of concentration, temperature, inorganic salt and surfactant. Carbohydr. Polym. 2019, 219, 162–171. [Google Scholar] [CrossRef]
- Masakuni, T.; Ayano, S.; Sanehisa, N. Rheological Properties of Welan Gum in Aqueous Media. Agric. Biol. Chem. 2014, 53, 771–776. [Google Scholar]
- Fu, L.P.; Jiang, L.J.; Liao, K.L.; An, J.N.; Huang, W.Q.; Sun, X.H.; Li, T.; He, Y.F. Adsorption behavior of welan gum on quartz sand in reservoir. J. Petrol. Sci. Eng. 2021, 205, 108850. [Google Scholar] [CrossRef]
- Hoskin, D.H.; Mitchell, T.O.; Shu, P. Oil reservoir permeability profile control with crosslinked welan gum biopolymers. U.S. Patent US49916520A, 1991. [Google Scholar]
- Xu, L.; Gong, H.; Dong, M.; Li, Y. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts. Carbohydr. Polym. 2015, 132, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Plank, J.; Lummer, N.R.; Dugonji-Bili, F. Competitive Adsorption Between an AMPS (R)-Based Fluid Loss Polymer and Welan Gum Biopolymer in Oil Well Cement. J. Appl. Polym. Sci. 2010, 116, 2913–2919. [Google Scholar] [CrossRef]
- He, J.; Wang, M.X.; Cheng, Y.Q.; Zhou, P.; Fan, H.K. Influence of different additives on the rheological preperties of Welan gum fracturing fluid. Chem. Eng. Oil Gas 2015, 44, 85–88. [Google Scholar]
- González, M.G.; García, M.C.; García, J.M.; Alfaro-Rodriguez, M.C. A Comparison of the Effect of Temperature on the Rheological Properties of Diutan and Rhamsan Gum Aqueous Solutions. Fluids 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Mota, G.P.; Pereira, R.G. A comparison of the rheological behavior of xanthan gum and diutan gum aqueous solutions. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 117. [Google Scholar] [CrossRef]
- Santos, W.R.; Caser, E.S.; Soares, E.J.; Siqueira, R.N. Drag reduction in turbulent flows by diutan gum: A very stable natural drag reducer. J. Non-Newton. Fluid Mech. 2020, 276, 104223. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Gong, H.; Ding, B.; Dong, M.; Li, Y. A Microbial Exopolysaccharide Produced by Sphingomonas Species for Enhanced Heavy Oil Recovery at High Temperature and High Salinity. Energy Fuels 2017, 31, 3960–3969. [Google Scholar] [CrossRef]
- Sarber, J.; Reynolds, C.; Michel, C.; Haag, K.; Morris, R. The Use of Diutan Biopolymer in Coiled Tubing Drilling Mud Systems on the North Slope of Alaska. In Proceedings of the Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, TX, USA, 23–24 March 2010. [Google Scholar]
- Akpan, E.U.; Enyi, G.C.; Nasr, G.G. Enhancing the performance of xanthan gum in water-based mud systems using an environmentally friendly biopolymer. J. Petrol. Explor. Prod. Technol. 2020, 10, 1933–1948. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.G.; Mota, G.P.; Rangel, I.R.; Neto, J. The Influence of Inorganic Cations Addition on Rheology of Aqueous Diutan Gum Solutions. Int. J. Sci. 2019, 8, 117–134. [Google Scholar]
- Huang, H.D.; Ma, T.; Li, G.Q.; Wang, W.; Liang, F.L.; Liu, R.L. Medium optimization and properties of biopolymer Ss from Sphingomonas sanxanigenens. Afr. J. Microbiol. Res. 2012, 6, 1423–1429. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.M.; Shi, Z.; Huang, H.D.; Qu, J.M.; Dai, X.H.; Tian, X.F.; Wei, W.Y.; Li, G.Q.; Ma, T. Network structure and functional properties of transparent hydrogel sanxan produced by Sphingomonas sanxanigenens NX02. Carbohydr. Polym. 2017, 176, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.G.; Li, X.Y.; Yang, H.P.; Wu, J.; Zhang, Y.; Huang, H.D. Preparation and properties of riboflavin-loaded sanxan microcapsules. Food Hydrocoll. 2022, 129, 107641. [Google Scholar] [CrossRef]
- Schmid, J.; Gansbiller, M.; Sieber, V. In-depth rheological characterization of genetically modified xanthan-variants. Carbohydr. Polym. 2019, 213, 236–246. [Google Scholar]
- Wang, R.; Pu, W.; Dang, S.; Jiang, F.; Zhao, S. Synthesis and characterization of a graft-modified copolymer for enhanced oil recovery. J. Petrol. Sci. Eng. 2019, 184, 106473. [Google Scholar] [CrossRef]
- Arbaa′In, N.; Roslan, R.; Ismail, J.; Rahim, M.A.; Tahir, F.M. The Study of Cationic Modification of Welan Gum. Mater. Sci. Forum 2020, 981, 127–131. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Zhu, L.Y.; Miao, S.S.; Fang, Z.; Zhao, L.H.; Guo, K. Carboxylic modification of welan gum. J. Appl. Polym. Sci. 2020, 137, 48301. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, Z.; Gong, H.J.; Zhu, C.F.; Sang, Q.; Li, Y.J.; Dong, M.Z. Synergy of microbial polysaccharides and branched-preformed particle gel on thickening and enhanced oil recovery. Chem. Eng. Sci. 2019, 208, 115138. [Google Scholar] [CrossRef]
- Haq, B. The Role of Microbial Products in Green Enhanced Oil Recovery: Acetone and Butanone. Polymers 2021, 13, 1946. [Google Scholar] [CrossRef]
- Arbaa′In, N.; Roslan, R.; Ismail, J.; Rahim, M.A. Modification of diutan gum to enhance rheological properties for oil and gas application. In Proceedings of the 4th International Conference on Green Design and Manufacture: Advanced and Emerging Applications, Ho Chi Minh, Vietnam, 29–30 April 2018. [Google Scholar]
- Shi, L.J.; Wei, Y.; Luo, N.; Tan, T.W.; Cao, H. The rheological and thickening properties of cationic xanthan gum. J. Dispers. Sci. Technol. 2018, 39, 55–61. [Google Scholar] [CrossRef]
Sphingans | Strain | Bioreactor (L) | Time (h) | Yield (g/L) | Strategy | Reference |
---|---|---|---|---|---|---|
Welan | Sphingomonas sp. HT-1 | 7.5 | 66 | 22.68 ± 0.50 | A two-step fermentation strategy using glucose stock solution and xylose stock solution | [23] |
Alcaligenes sp. CGMCC2428 | 7.5 | 72 | 24.90 ± 0.68 | Addition of Tween-40 into the culture broth | [24] | |
Gellan | Sphingomonas paucimobilis QHZJUJW CGMCC2428 | 5 | 72 | 19.90 ± 0.68 | A fractional factorial design was applied to investigate the main factors that affect gellan gum production | [25] |
Sphingomonas paucimobilis ATCC 31461 | 5 | 48 | 27.86 | Addition of a surfactant (Triton X-100) to the medium; changing the agitation and DOT level | [26] | |
Sanxan | Sphingomonas sanxanigenens NX02 | 5 | 84 | 13.10 ± 0.30 (g/Kg) | Native co-utilization of glucose and xylose from corn straw total hydrolysate (CSTH) | [27] |
Rhamsan | Sphingomonas sp. CGMCC 6833 | 7.5 | 72 | 21.63 ± 1.76 | Using a two-stage agitation speed control strategy | [28] |
Sphingans | MW (Da) | Features | Reference |
---|---|---|---|
Welan gum | 80 × 105 | Tolerates high concentrations of sodium and calcium ions Enhances heavy oil recovery Controls unwanted free water at the surface of the cement slurry | [44] [45] [46] |
Diutan gum | 72 × 105 | Restrains water channeling in the high-permeability layer Improves the sweep ability of the displacement phase Maintains the effect of polymer flooding for a long time. | [3] |
Sanxan | 4.08 × 105 | Absorbs onto the surface of oil droplets Forms soft, elastic thermo-reversible gels by cooling hot polysaccharide solutions | [47] [48] |
Gellan gum | 5.2 × 105 | Applied for an in-depth treatment of high and moderate permeability reservoirs. Plugging highly permeable channels in oil reservoirs and as a shut-off agent in polymer flooding technology | [49] [50] [51] |
Modification | Specific Method | Advantages | Reference |
---|---|---|---|
Structural modification | The substitution of CHPTAC on the DG backbone | Increase apparent viscosity and improve heat resistance; | [91] [92] |
Carboxyethyl modification and citric acid modification | Improve water solubility, viscosity, and crosslinking ability | ||
Group reaction of polysaccharides with other substances | Improve temperature and salt resistance, better anti-aging performance in high salinity | [90] | |
Composite polymer | Polysaccharides mixed with polysaccharides | Plugging agent for high-permeability channels in oil reservoirs; Control the morphology and rheological properties of the solution in the presence of inorganic salts | [51] [55] |
Polysaccharides mixed with other substances | Improved stability in high temperature and high salt environments; Reduce surface tension and improve viscosity in core oil displacement | [93] [94] |
Sphingans | Functional Groups | Reaction Type | Materials | Conditions | Degree of Modification | Reference |
---|---|---|---|---|---|---|
Diutan gum | Hydroxyl groups | Substitution | CHPTAC | 70 °C, 3 h | - | [95] |
Welan gum | Hydroxyl groups | Substitution | CHPTAC | 70 °C, 3 h | - | [91] |
Hydroxyl groups | Substitution | 3-Chloropropanoic acid | 5 h | 0.58 | [92] | |
Esterification | Citric acid | 80 °C, 10 h | - | |||
Free-radical | Grafting | Acrylamide (AM), acrylic acid (AA), and hydrophobic monomers (O-20) | 40 °C, 40 h | 73.4% | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Lin, J.; Wang, W.; Li, S. Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production. Polymers 2022, 14, 1920. https://doi.org/10.3390/polym14091920
Huang H, Lin J, Wang W, Li S. Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production. Polymers. 2022; 14(9):1920. https://doi.org/10.3390/polym14091920
Chicago/Turabian StyleHuang, Haolin, Junzhang Lin, Weidong Wang, and Shuang Li. 2022. "Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production" Polymers 14, no. 9: 1920. https://doi.org/10.3390/polym14091920
APA StyleHuang, H., Lin, J., Wang, W., & Li, S. (2022). Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production. Polymers, 14(9), 1920. https://doi.org/10.3390/polym14091920