Study on Rapid Detection Method for Degradation Performance of Polyolefin-Based Degradable Plastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Characterization
2.2. Aging Test of Polyolefin-Based Plastics
3. Results and Discussion
3.1. Degradation Mechanism of Degradable Plastics
3.2. Screening of Oxidants and Determination of Oxidation Time
3.3. Analysis of Bioassimilated Carbon Release under Different Aging Times
3.4. Comparative of Bioassimilated Carbon Content and Biodegradation Rate under the Same Aging Conditions
3.5. Comparative of Different Detection Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; English, M.E.; Bandopadhyay, S.; Schaeffer, S.M.; DeBruyn, J.M.; Miles, C.A.; et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2021, 14, 56–72. [Google Scholar] [CrossRef]
- Kubowicz, S.; Booth, A.M. Biodegradability of Plastics: Challenges and Misconceptions. Environ Sci Technol. 2017, 51, 12058–12060. [Google Scholar] [CrossRef]
- Tawakkal, I.S.; Cran, M.J.; Miltz, J.; Bigger, S.W. A review of poly(lactic acid)-based materials for antimicrobial packaging. J. Food Sci. 2014, 79, 1477–1490. [Google Scholar] [CrossRef]
- Lott, C.; Eich, A.; Unger, B.; Makarow, D.; Battagliarin, G.; Schlegel, K.; Lasut, M.T.; Weber, M. Field and mesocosm methods to test biodegradable plastic film under marine conditions. PLoS ONE 2020, 15, e0236579. [Google Scholar] [CrossRef]
- Zhao, A.; Li, Z.; Gong, Y. Effects of biodegradable mulch film on corn growth and its degradation in field. J. China Agric. Univ. 2005, 10, 74–78. [Google Scholar]
- Adamcová, D.; Toman, F.; Vaverková, M.; Kotovicová, J. The effect of biodegradation/degradation of degradable plastic material on compost qualiy. Ecol. Chem. Hem. Eng. S 2014, 20, 783–798. [Google Scholar]
- Fei, Z.; Huang, S.; Yin, J.; Xu, F.; Zhang, Y. Preparation and Characterization of Bio-based Degradable Plastic Films Composed of Cellulose Acetate and Starch Acetate. J. Polym. Environ. 2015, 23, 383–391. [Google Scholar] [CrossRef]
- Ciriminna, R.; Pagliaro, M. Biodegradable and Compostable Plastics: A Critical Perspective on the Dawn of their Global Adoption. ChemistryOpen 2019, 17, 8–13. [Google Scholar] [CrossRef]
- Weng, Y.; Jin, Y.; Meng, Q.; Wang, L.; Zhang, M.; Wang, Y. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 2013, 32, 918–926. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K.H. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2010, 36, 1015–1049. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Zhou, J.; Li, L.; Wang, W.; Zhao, Y.; Feng, S. pH-responsive polymeric vesicles from branched copolymers. RSC Adv. 2019, 9, 41031–41037. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, T. Spectrometric Analyses of Microplastics. Anal. Sci. 2021, 37, 927–928. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, M.; Xu, Y.; Wang, W.; Wang, Z.; Zhang, L. Bio-based polyesters: Recent progress and future prospects. Prog. Polym. Sci. 2021, 120, 101430. [Google Scholar] [CrossRef]
- Ho, K.L.G.; Pometto, A.L.; Gadea-Rivas, A.; Briceño, J.A.; Rojas, A. Degradation of Polylactic Acid (PLA) Plastic in Costa Rican Soil and Iowa State University Compost Rows. J. Polym. Environ. 1999, 7, 173–177. [Google Scholar] [CrossRef]
- Khabbaz, F.; Albertsson, A.C. Rapid test methods for analyzing degradable polyolefins with a pro-oxidant system. J. Appl. Polym. Sci. 2001, 79, 2309–2316. [Google Scholar] [CrossRef]
- Baur, M.; Lin, F.; Morgen, T.O.; Odenwald, L.; Mecking, S. Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization. Science 2021, 374, 604–607. [Google Scholar] [CrossRef]
- Si, R.; Aziz, N.; Liu, M.; Lu, Q. Natural disaster shock, risk aversion and corn farmers adoption of degradable mulch film: Evidence from Zhangye, China. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 60–77. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- GB/T 20197-2006; Define, Classify, Marking and Degradability Requirement of Degradable Plastic. SAC: Santa Ana, CA, USA, 2006; pp. 1–11.
- Rochman, C.M. Microplastics research—From sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Yu, Q.; Hu, X.; Yang, B.; Zhang, G.; Wang, J.; Ling, W. Distribution, abundance and risks of microplastics in the environment. Chemosphere 2020, 249, 126059. [Google Scholar] [CrossRef]
- ASTM D 6954-2004; Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation. ASTM: West Conshohocken, PA, USA, 2013; pp. 1–6.
- PAS 9017:2020; Plastics-Biodegradation of Polyolefins in an Open-Air Terrestrial Environment-Specification. BSI: Herndon, VA, USA, 2020; pp. 1–79.
- GB/T 22047-2008; Determination of the Final Aerobic Biodegradability of Plastic Materials in Soil by the Method of Measuring the Oxygen Demand in a Closed Respirometer or Measuring the Released Carbon Dioxide. SAC: Santa Ana, CA, USA, 2008; pp. 1–16.
- GB/T 19277.1-2011; Determination of the Ultimate Aerobic Biodegradability of Materials under Controlled Composting Conditions Using Methods for the Determination of Released Carbon Dioxide Part 1: General Methods. SAC: Santa Ana, CA, USA, 2011; pp. 1–20.
- T/CAB 0118.2-2021; Polyethylene (PE) Ecologically Degradable Plastics Part 2: Evaluation Specifications for Degradation Properties. CIUR: Beijing, China, 2021; pp. 1–9.
- Sun, Z.; Jiang, H.; Wang, Y.; Zhang, Y.; Sang, L.; Wang, Y.; Lu, Y.; Wei, Z. Research progress of rapid detection methods for biodegradable plastics. Chin. Synth. Res. Plast. 2022, 39, 64–68+79. [Google Scholar]
- Zhang, M.; Li, C.; Nie, J.; Zhang, Y.; Kong, X.; Yuan, Y. Research progress in characterization and rapid identification of degradable plastics. Chin. J. Inorg. Anal. Chem. 2022, 12, 82–90. [Google Scholar]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
Test Group (%) | Redox System (%) | |
---|---|---|
Potassium Dichromate/Ferrous Sulfate | Potassium Permanganate/Oxalic Acid | |
1 | 55.24 | 52.00 |
2 | 54.91 | 52.58 |
3 | 55.32 | 52.44 |
4 | 54.52 | 52.96 |
5 | 54.69 | 53.32 |
6 | 55.19 | 53.01 |
7 | 55.04 | 52.47 |
8 | 55.27 | 53.87 |
9 | 55.15 | 52.69 |
10 | 54.73 | 53.14 |
Relative standard deviation RSD% | 0.66 | 1.51 |
Test Group (%) | Reaction Time (min) | |||
---|---|---|---|---|
15 | 30 | 45 | 60 | |
1 | 36.55 | 43.66 | 55.24 | 55.34 |
2 | 31.42 | 41.78 | 54.91 | 55.03 |
3 | 33.78 | 42.63 | 55.32 | 55.35 |
4 | 37.65 | 45.61 | 54.52 | 54.67 |
5 | 32.89 | 42.54 | 54.69 | 54.78 |
6 | 30.25 | 40.68 | 55.19 | 55.35 |
7 | 33.49 | 41.59 | 54.04 | 55.09 |
8 | 34.97 | 44.32 | 55.27 | 55.19 |
9 | 36.01 | 46.01 | 55.15 | 55.29 |
10 | 31.86 | 41.00 | 54.73 | 54.90 |
Relative standard deviation, RSD% | 9.79 | 4.38 | 0.66 | 0.56 |
Test Items | Time (d) | Molecular Weight Drop Rate/% | Carbonyl Index (CI) | Biological Carbon Conversion Rate |
---|---|---|---|---|
PE degradation film | 0 | 0 | 0 | 0 |
2 | 19.1 | 0.23 | 6.2 | |
4 | 48.3 | 0.45 | 23.2 | |
6 | 54.9 | 0.59 | 37.9 | |
8 | 65.3 | 0.75 | 50.6 | |
10 | 71.0 | 0.91 | 76.4 | |
12 | 85.7 | 1.01 | 83.6 | |
14 | 92.2 | 1.22 | 89.8 | |
PP rigid degradation sheet | 0 | 0 | 0 | 0 |
4 | 12.6 | 0.13 | 4.7 | |
8 | 34.7 | 0.29 | 14.2 | |
12 | 49.6 | 0.55 | 30.5 | |
16 | 66.8 | 0.68 | 47.6 | |
20 | 79.2 | 0.81 | 62.9 | |
24 | 84.1 | 0.87 | 78.6 | |
28 | 90.2 | 1.09 | 84.5 |
Item Category | Test Group | 45 Days | 173 Days |
---|---|---|---|
CO2 release in blank test/g | Activated vermiculite 1 | 15.35 | 43.71 |
Activated vermiculite 2 | 14.47 | 41.10 | |
Activated vermiculite 3 | 13.91 | 43.63 | |
CO2 release of test sample/(actual)g | Degradation products of PE film 1 | 73.78 | 166.73 |
Degradation products of PE film 2 | 76.66 | 170.37 | |
Degradation products of PE film 3 | 77.11 | 165.58 | |
CO2 release of reference material/(actual) g | Plant cellulose 1 | 82.88 | 120.23 |
Plant cellulose 2 | 78.36 | 121.12 | |
Plant cellulose 3 | 78.91 | 119.11 | |
CO2 emission of test samples/(theory) g | 138.25 | ||
CO2 emission of reference material/(theory) g | 79.13 |
Methods | Detection Time/Day | Test Cost/Sample/USD | The Difficulty of Testing Technology | Scope of Application |
---|---|---|---|---|
Nuclear magnetic resonance spectroscopy | 25–30 | 55–110 | Medium operation difficulty, large equipment investment, need to entrust a professional testing company, the method has low popularity | Fully biodegradable plastic products |
Differential scanning calorimetry | 25–30 | 55–110 | The operation is difficult, the procedure is tedious, the equipment investment is large, the utility of the method can be generalized is low | PLA based plastic products |
Thermogravimetric analysis | 30–40 | 55–110 | The operation difficulty is medium, the procedure is tedious, the equipment investment is large, the possibility for generalization is low | Starch based plastic products |
Infrared spectroscopy/Raman spectroscopy | 30–50 | 40 | Simple operation, large equipment investment, need to entrust a professional testing company, the method is low in popularity | All biodegradable plastics of any color other than black |
Compost fermentation | 180–360 | 2100 | Low operation difficulty, low detection efficiency, large test error, low generalization of the method | Fully biodegradable plastic products |
Natural degradation process | 600 | 850 | Low operation difficulty, low detection efficiency, large test error, low generalization of the method | Fully biodegradable plastic products |
This work | 15–30 | 55–70 | Simple operation, equipment, reagents and other materials are easy to obtain, the method is easy to popularize | Biodegradable plastic products and oxidized—biodegradable plastic products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, L.; Wang, D.; Wang, L.; Zhang, Y.; Feng, S. Study on Rapid Detection Method for Degradation Performance of Polyolefin-Based Degradable Plastics. Polymers 2023, 15, 183. https://doi.org/10.3390/polym15010183
Zhou J, Li L, Wang D, Wang L, Zhang Y, Feng S. Study on Rapid Detection Method for Degradation Performance of Polyolefin-Based Degradable Plastics. Polymers. 2023; 15(1):183. https://doi.org/10.3390/polym15010183
Chicago/Turabian StyleZhou, Jinglun, Linlin Li, Dengxu Wang, Lihong Wang, Yuanqi Zhang, and Shengyu Feng. 2023. "Study on Rapid Detection Method for Degradation Performance of Polyolefin-Based Degradable Plastics" Polymers 15, no. 1: 183. https://doi.org/10.3390/polym15010183