Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate-co 3-Hydroxyhexanoate)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PHA Recovery from Cell Biomass
2.3. PHA Chemical Composition
2.4. NMR and IR Spectroscopy
2.5. Physicochemical Properties of PHA
2.6. Optical Studies of the Formation of Spherulites
3. Results and Discussion
3.1. Characteristics of Poly(3-Hydroxybutyrate)
3.2. Effect of 3-Hydroxyhexanoate Monomers Incorporated into the Poly(3-Hydroxybutyrate) Chain on the Characteristics of P(3HB-co-3HHx)) Copolymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Circular Economy: The New Normal. Available online: https://unctad.org/publication/circular-economy-new-normal (accessed on 5 June 2023).
- UNCTAD-SELA Seminar on the Circular Economy as a Strategy for Development: The Role of the Legislature. Available online: https://unctad.org/meeting/unctad-sela-seminar-circular-economy-strategy-development-role-legislature (accessed on 5 June 2023).
- Geyer, R. Production, Use, and Fate of Synthetic Polymers. In Plastic Waste and Recycling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–32. [Google Scholar]
- Chen, G.-Q. Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. In Plastics from Bacteria. Microbiology Monographs; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–37. [Google Scholar]
- Sudesh, K.; Hideki, A. Practical Guide to Microbial Polyhydroxyalkanoates; ISmithers: Smithers, BC, Canada, 2010; ISBN 9781847351180. [Google Scholar]
- Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The Chemomechanical Properties of Microbial Polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. [Google Scholar] [CrossRef]
- Volova, T.G.; Shishatskaya, E.I.; Sinskey, A.J. Degradable Polymers: Production, Properties, Applications; Nova Science Publishers: Hauppauge, NY, USA, 2013; ISBN 9781622578320. [Google Scholar]
- Chen, G.-Q.; Chen, X.-Y.; Wu, F.-Q.; Chen, J.-C. Polyhydroxyalkanoates (PHA) toward Cost Competitiveness and Functionality. Adv. Ind. Eng. Polym. Res. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Mitra, R.; Xu, T.; Chen, G.; Xiang, H.; Han, J. An Updated Overview on the Regulatory Circuits of Polyhydroxyalkanoates Synthesis. Microb. Biotechnol. 2022, 15, 1446–1470. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Wang, Y.; Tong, Y.; Chen, G.-Q. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends Biotechnol. 2021, 39, 953–963. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering 2022, 9, 74. [Google Scholar] [CrossRef]
- Koller, M.; Mukherjee, A. Polyhydroxyalkanoates—Linking Properties, Applications and End-of-Life Options. Chem. Biochem. Eng. Q. 2020, 34, 115–129. [Google Scholar] [CrossRef]
- Markets and Markets Polyhydroxyalkanoate (PHA) Market by Type (Short Chain Length, Medium Chain Length), Production Method (Sugar Fermentation, Vegetable Oil Fermentation, Methane Fermentation), Application, and Region—Global Forecast to 2027. Available online: https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html (accessed on 5 June 2023).
- Dalton, B.; Bhagabati, P.; De Micco, J.; Padamati, R.B.; O’Connor, K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022, 12, 319. [Google Scholar] [CrossRef]
- Palmeiro-Sánchez, T.; O’Flaherty, V.; Lens, P.N.L. Polyhydroxyalkanoate Bio-Production and Its Rise as Biomaterial of the Future. J. Biotechnol. 2022, 348, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, A.T.; Odoh, C.K.; Enudi, O.C.; Banjoko, O.O.; Osiboye, O.O.; Odediran, E.T.; Louis, H. Sustainable Synthesis and Applications of Polyhydroxyalkanoates (PHAs) from Biomass. Process. Biochem. 2020, 96, 174–193. [Google Scholar] [CrossRef]
- Parlato, M.C.M.; Valenti, F.; Porto, S.M.C. Covering Plastic Films in Greenhouses System: A GIS-Based Model to Improve Post Use Suistainable Management. J. Environ. Manag. 2020, 263, 110389. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Mukherjee, A. Polyhydroxyalkanoate (PHA) Bio-Polyesters—Circular Materials for Sustainable Development and Growth. Chem. Biochem. Eng. Q. 2023, 36, 273–293. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Kumar, M.D.; Kavitha, S.; Banu, J.R.; Tyagi, V.K.; Rajaguru, P.; Kumar, G. Production and Recovery of Polyhydroxyalkanoates (PHA) from Waste Streams—A Review. Bioresour. Technol. 2022, 366, 128203. [Google Scholar] [CrossRef]
- Mahato, R.P.; Kumar, S.; Singh, P. Production of Polyhydroxyalkanoates from Renewable Resources: A Review on Prospects, Challenges and Applications. Arch. Microbiol. 2023, 205, 172. [Google Scholar] [CrossRef] [PubMed]
- Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable Polymers with a Range of Applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Yu, J. Microbial Production of Bioplastics from Renewable Resources. In Bioprocessing for Value-Added Products from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2007; pp. 585–610. [Google Scholar]
- Sharma, V.; Sehgal, R.; Gupta, R. Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer 2021, 212, 123161. [Google Scholar] [CrossRef]
- Popa, M.S.; Frone, A.N.; Panaitescu, D.M. Polyhydroxybutyrate Blends: A Solution for Biodegradable Packaging? Int. J. Biol. Macromol. 2022, 207, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial Production of Polyhydroxyalkanoates (PHAs) and Its Copolymers: A Review of Recent Advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, A.; Maçon, A.L.B.; del Val, J.; Comesaña, R.; Pou, J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018, 6, 16. [Google Scholar] [CrossRef]
- Slepicka, P.; Michaljanicova, I.; Svorcik, V. Controlled Biopolymer Roughness Induced by Plasma and Excimer Laser Treatment. Express Polym. Lett. 2013, 7, 950–958. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Jung, H.-R.; Yang, S.-Y.; Song, H.-S.; Jeon, J.-M.; Kim, J.-S.; Lee, Y.-K.; Yang, Y.-H. Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Production from Engineered Ralstonia Eutropha Using Synthetic and Anaerobically Digested Food Waste Derived Volatile Fatty Acids. Int. J. Biol. Macromol. 2019, 133, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Caputo, M.R.; Fernández, M.; Aguirresarobe, R.; Kovalcik, A.; Sardon, H.; Candal, M.V.; Müller, A.J. Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(Hydroxybutyrate-Co-Hydroxy Hexanoate). Polymers 2023, 15, 1817. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Neoh, S.Z.; Sudesh, K. A Review on Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) [P(3HB-Co-3HHx)] and Genetic Modifications That Affect Its Production. Front. Bioeng. Biotechnol. 2022, 10, 1057067. [Google Scholar] [CrossRef] [PubMed]
- Asrar, J.; Valentin, H.E.; Berger, P.A.; Tran, M.; Padgette, S.R.; Garbow, J.R. Biosynthesis and Properties of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Polymers. Biomacromolecules 2002, 3, 1006–1012. [Google Scholar] [CrossRef]
- Bhubalan, K.; Kam, Y.C.; Yong, K.H.; Sudesh, K. Cloning and Expression of the PHA Synthase Gene from a Locally Isolated Chromobacterium Sp. USM2. Malays. J. Microbiol. 2010, 6, 81–90. [Google Scholar] [CrossRef]
- KANEKA Biodegradable Polymer Green Planet™. Available online: https://www.kaneka.be/technology-products/kaneka-biodegradable-polymer-green-planettm (accessed on 5 June 2023).
- P&G Chemicals: Delivering Solutions, Creating Value. Available online: https://www.pgchemicals.com/ (accessed on 5 June 2023).
- Nodax™ PHA. Available online: https://danimerscientific.com/building-tomorrows-sustainability/ (accessed on 5 June 2023).
- Bluepha™ PHA Biopolymer|Bluepha. Available online: https://www.bluepha.bio/ (accessed on 5 June 2023).
- Fukui, T.; Orita, I. Production Method for Copolymer Polyhydroxyalkanoate Using Genetically Modified Strain of Fatty Acid-Oxidation Pathway. EP Patent No. EP2963119A1, 6 January 2016. [Google Scholar]
- Volova, T.; Shishatskaya, E. Bacterial Strain VKPM B-10646—A Producer of Polyhydroxyalkanoates and a Method of Their Production). RF Patent No. 2439143, 10 January 2012. [Google Scholar]
- Volova, T.G.; Syrvacheva, D.A.; Zhila, N.O.; Sukovatiy, A.G. Synthesis of P(3HB-Co-3HHx) Copolymers Containing High Molar Fraction of 3-Hydroxyhexanoate Monomer by Cupriavidus eutrophus B10646. J. Chem. Technol. Biotechnol. 2016, 91, 416–425. [Google Scholar] [CrossRef]
- Volova, T.; Kiselev, E.; Vinogradova, O.; Nikolaeva, E.; Chistyakov, A.; Sukovatiy, A.; Shishatskaya, E. A Glucose-Utilizing Strain, Cupriavidus Euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs. PLoS ONE 2014, 9, e87551. [Google Scholar] [CrossRef]
- Braunegg, G.; Sonnleitner, B.; Lafferty, R.M. A Rapid Gas Chromatographic Method for the Determination of Poly-β-Hydroxybutyric Acid in Microbial Biomass. Eur. J. Appl. Microbiol. Biotechnol. 1978, 6, 29–37. [Google Scholar] [CrossRef]
- Volova, T.; Kiselev, E.; Nemtsev, I.; Lukyanenko, A.; Sukovatyi, A.; Kuzmin, A.; Ryltseva, G.; Shishatskaya, E. Properties of Degradable Polyhydroxyalkanoates with Different Monomer Compositions. Int. J. Biol. Macromol. 2021, 182, 98–114. [Google Scholar] [CrossRef]
- Senior, P.J. Polyhydroxybutyrate, a Specialty Polymer of Microbial Origin. Contin. Cult. 1984, 8, 266–271. [Google Scholar]
- Falaleev, O.V.; Volova, T.G.; Zeer, E.P.; Vasiliev, A.D. Study of the Molecular Structure and Physico-Chemical Properties of Polyoxybutyrate. Dokl. Akad. Nauk. 1994, 337, 813–817. [Google Scholar]
- Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K. Proton and Carbon-13 NMR Analysis of Poly(β-Hydroxybutyrate) Isolated from Bacillus Megaterium. Macromolecules 1986, 19, 1274–1276. [Google Scholar] [CrossRef]
- Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K. Nuclear Magnetic Resonance Studies on Poly(β-Hydroxybutyrate) and a Copolyester of β-Hydroxybutyrate and β-Hydroxyvalerate Isolated from Alcaligenes eutrophus H16. Macromolecules 1986, 19, 2860–2864. [Google Scholar] [CrossRef]
- Bovey, F.A. Chapter VI—Polystyrene and related polymers. In High Resolution NMR of Macromolecules; Bovey, F.A., Ed.; Academic Press: Cambridge, MA, USA, 1972; pp. 118–129. ISBN 978-0-12-119740-7. [Google Scholar]
- Petrakovskaya, E.A.; Volova, T.G.; Ivanov, Y.N.; Zeer, E.P. Investigation of Structural and Dynamic Features of Solid Poly-3-Hydroxybutyrate by Magnetic Resonance Methods. Dokl. Akad. Nauk. 1995, 344, 270–273. [Google Scholar]
- Rao, B.S.; Murthy, M.R. Electron Spin Resonance Study of Γ-irradiated Poly (Acrylic Acid). J. Polym. Sci. B Polym. Phys. 1989, 27, 1187–1194. [Google Scholar] [CrossRef]
- Volova, T.G.; Vasil’ev, A.D.; Zeer, E.P.; Petrakovskaia, E.A.; Falaleev, O. V Study of Molecular Structure of Polyhydroxybutyrate-a Termoplastic Anddegradable Biopolymer. Biofizika 2000, 45, 445–451. [Google Scholar]
- Brandl, H.; Gross, R.A.; Lenz, R.W.; Fuller, R.C. Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Appl. Environ. Microbiol. 1988, 54, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Waddington, S.D. Polyhydroxyalkanoates and Film Formation Therefrom. US Patent No. US5534616A, 9 July 1996. [Google Scholar]
- Yokouchi, M.; Chatani, Y.; Tadokoro, H.; Tani, H. Structural Studies of Polyesters. VII. Molecular and Crystal Structures of Racemic Poly(β-Ethyl-β-Propiolactone). Polym. J. 1974, 6, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Okamura, K.; Marchessault, R.H. Conformation of Biopolymers; Academic Press: London, UK, 1967; Volume 2, pp. 709–720. [Google Scholar]
- Yokouchi, M.; Chatani, Y.; Tadokoro, H.; Teranishi, K.; Tani, H. Structural Studies of Polyesters: 5. Molecular and Crystal Structures of Optically Active and Racemic Poly (β-Hydroxybutyrate). Polymer 1973, 14, 267–272. [Google Scholar] [CrossRef]
- Bruckner, S.; Meille, S.V.; Malpezzi, L.; Cesaro, A.; Navarini, L.; Tombolini, R. The Structure of Poly(D-(-)-.Beta.-Hydroxybutyrate). A Refinement Based on the Rietveld Method. Macromolecules 1988, 21, 967–972. [Google Scholar] [CrossRef]
- Noda, I.; Green, P.R.; Satkowski, M.M.; Schechtman, L.A. Preparation and Properties of a Novel Class of Polyhydroxyalkanoate Copolymers. Biomacromolecules 2005, 6, 580–586. [Google Scholar] [CrossRef]
- Demidenko, A.V.; Vinogradova, O.N.; Kiselev, E.G. Effect of Drying Mode of Bacterial Biomass on the Effectiveness of Extraction and Physicochemical Properties of the Product (Polymer). J. Sib. Fed. Univ. Biol. 2016, 9, 180–189. [Google Scholar] [CrossRef]
- Dawes, E.A. Novel Biodegradable Microbial Polymers; Dawes, E.A., Ed.; Springer: Dordrecht, The Netherlands, 1990; ISBN 978-94-010-7458-2. [Google Scholar]
- Doi, Y. Microbial Synthesis, Physical Properties, and Biodegradability of Polyhydroxyalkanoates. Macromol. Symp. 1995, 98, 585–599. [Google Scholar] [CrossRef]
- Cox, M.K. Properties and Applications of Polyhydroxyalkanoates. In Biodegradable Plastics and Polymers; Doi, Y., Fukuda, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 120–135. [Google Scholar]
- Holmes, P.A. Biologically Produced (R)-3-Hydroxy- Alkanoate Polymers and Copolymers. In Developments in Crystalline Polymers; Springer: Dordrecht, The Netherlands, 1988; pp. 1–65. [Google Scholar]
- Marchessault, R.H.; Coulombe, S.; Morikawa, H.; Okamura, K.; Revol, J.F. Solid State Properties of Poly-β-Hydroxybutyrate and of Its Oligomers. Can. J. Chem. 1981, 59, 38–44. [Google Scholar] [CrossRef]
- Barham, P.J.; Keller, A.; Otun, E.L.; Holmes, P.A. Crystallization and Morphology of a Bacterial Thermoplastic: Poly-3-Hydroxybutyrate. J. Mater. Sci. 1984, 19, 2781–2794. [Google Scholar] [CrossRef]
- Steinbüchel, A.; Doi, Y. Biopolymers, Polyesters II—Properties and Chemical Synthesis; Biopolymers (Wiley): Hoboken, NJ, USA, 2001; ISBN 9783527302192. [Google Scholar]
- Yuan, Y.; Ruckenstein, E. Miscibility and Transesterification of Phenoxy with Biodegradable Poly(3-Hydroxybutyrate). Polymer 1998, 39, 1893–1897. [Google Scholar] [CrossRef]
- Mansour, A.A.; Saad, G.R.; Hamed, A.H., II. Dielectric Investigation of Cold Crystallization of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate). Polymer 1999, 40, 5377–5391. [Google Scholar] [CrossRef]
- Billingham, N.C.; Henman, T.J.; Holmes, P.A. Degradation and Stabilisation of Polyesters of Biological and Synthetic Origin. In Developments in Polymer Degradation—7; Springer: Dordrecht, The Netherlands, 1987; pp. 81–121. [Google Scholar]
- Wunderlich, B. Macromolecular Physics V2; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2, ISBN 0323148948. [Google Scholar]
- Mandelkern, L. Crystallization of Polymers; Cambridge University Press: Cambridge, UK, 2004; ISBN 9780521816823. [Google Scholar]
- Barnard, G.N.; Sanders, J.K.M. Observation of Mobile Poly(β-Hydroxybutyrate) in the Storage Granules of Methylobacterium AM1 by in Vivo 13 C-NMR Spectroscopy. FEBS Lett. 1988, 231, 16–18. [Google Scholar] [CrossRef] [Green Version]
- Eesaee, M.; Ghassemi, P.; Nguyen, D.D.; Thomas, S.; Elkoun, S.; Nguyen-Tri, P. Morphology and Crystallization Behaviour of Polyhydroxyalkanoates-Based Blends and Composites: A Review. Biochem. Eng. J. 2022, 187, 108588. [Google Scholar] [CrossRef]
- Gazzano, M.; Focarete, M.L.; Riekel, C.; Ripamonti, A.; Scandola, M. Structural Investigation of Poly(3-Hydroxybutyrate) Spherulites by Microfocus X-ray Diffraction. Macromol. Chem. Phys. 2001, 202, 1405–1409. [Google Scholar] [CrossRef]
- Ding, G.; Liu, J. Morphological Varieties and Kinetic Behaviors of Poly(3-Hydroxybutyrate) (PHB) Spherulites Crystallized Isothermally from Thin Melt Film. Colloid. Polym. Sci. 2013, 291, 1547–1554. [Google Scholar] [CrossRef]
- Shahin, M.M.; Olley, R.H. Novel Etching Phenomena in Poly(3-Hydroxy Butyrate) and Poly(Oxymethylene) Spherulites. J. Polym. Sci. B Polym. Phys. 2002, 40, 124–133. [Google Scholar] [CrossRef]
- Sato, H.; Ando, Y.; Dybal, J.; Iwata, T.; Noda, I.; Ozaki, Y. Crystal Structures, Thermal Behaviors, and C−H···O=C Hydrogen Bondings of Poly(3-Hydroxyvalerate) and Poly(3-Hydroxybutyrate) Studied by Infrared Spectroscopy and X-ray Diffraction. Macromolecules 2008, 41, 4305–4312. [Google Scholar] [CrossRef]
- Hobbs, J.K.; Binger, D.R.; Keller, A.; Barham, P.J. Spiralling Optical Morphologies in Spherulites of Poly(Hydroxybutyrate). J. Polym. Sci. B Polym. Phys. 2000, 38, 1575–1583. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Xu, P.; Yang, W.; Chen, M.; Dong, W.; Ma, P. Crystallization of Microbial Polyhydroxyalkanoates: A Review. Int. J. Biol. Macromol. 2022, 209, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.D.; Davis, G.T.; Lauritzen, J.I. The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry; Hannay, N.B., Ed.; Springer: Boston, MA, USA, 1976; pp. 497–614. [Google Scholar]
- Cai, H.; Qiu, Z. Effect of Comonomer Content on the Crystallization Kinetics and Morphology of Biodegradable Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Phys. Chem. Chem. Phys. 2009, 11, 9569–9577. [Google Scholar] [CrossRef]
- Horowitz, D.M.; Sanders, J.K.M. Biomimetic, Amorphous Granules of Polyhydroxyalkanoates: Composition, Mobility, and Stabilization in Vitro by Proteins. Can. J. Microbiol. 1995, 41, 115–123. [Google Scholar] [CrossRef]
- Barham, P. Physical Properties of Poly(Hydroxybutyrate) and Copolymers of Hydroxybutyrate and Hydroxyvalerate. FEMS Microbiol. Lett. 1992, 103, 289–298. [Google Scholar] [CrossRef]
- Kemnitzer, J.E.; Gross, R.A.; McCarthy, S.P.; Liggat, J.; Blundell, D.J.; Cox, M. Crystallization Behavior of Predominantly Syndiotactic Poly(β-Hydroxybutyrate). J. Environ. Polym. Degrad. 1995, 3, 37–47. [Google Scholar] [CrossRef]
- Madison, L.L.; Huisman, G.W. Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure and Properties of Polyhydroxyalkanoates: Biological Polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Doi, Y.; Kitamura, S.; Abe, H. Microbial Synthesis and Characterization of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Macromolecules 1995, 28, 4822–4828. [Google Scholar] [CrossRef]
- Kobayashi, G.; Shiotani, T.; Shima, Y.; Doi, Y. Biosynthesis and Characterization of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Oils and Fats by Aeromonas Sp.OL-338 and Aeromonas Sp.FA-440. In Biodegradable Plastics and Polymers; Doi, Y., Fukuda, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 410–416. [Google Scholar]
- Shimamura, E.; Kasuya, K.; Kobayashi, G.; Shiotani, T.; Shima, Y.; Doi, Y. Physical Properties and Biodegradability of Microbial Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Macromolecules 1994, 27, 878–880. [Google Scholar] [CrossRef]
- Kellerhals, M.B.; Kessler, B.; Witholt, B.; Tchouboukov, A.; Brandl, H. Renewable Long-Chain Fatty Acids for Production of Biodegradable Medium-Chain-Length Polyhydroxyalkanoates (Mcl-PHAs) at Laboratory and Pilot Plant Scales. Macromolecules 2000, 33, 4690–4698. [Google Scholar] [CrossRef]
- Fukui, T.; Abe, H.; Doi, Y. Engineering of Ralstonia eutropha for Production of Poly(3-Hydroxybutyrate- Co -3-Hydroxyhexanoate) from Fructose and Solid-State Properties of the Copolymer. Biomacromolecules 2002, 3, 618–624. [Google Scholar] [CrossRef]
- Laycock, B.; Arcos-Hernandez, M.V.; Langford, A.; Buchanan, J.; Halley, P.J.; Werker, A.; Lant, P.A.; Pratt, S. Thermal Properties and Crystallization Behavior of Fractionated Blocky and Random Polyhydroxyalkanoate Copolymers from Mixed Microbial Cultures. J. Appl. Polym. Sci. 2014, 131, 40836. [Google Scholar] [CrossRef]
- Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y. High Yield Production of Polyhydroxyalkanoates from Soybean Oil by Ralstonia eutropha and Its Recombinant Strain. Polym. Degrad. Stab. 2004, 83, 79–86. [Google Scholar] [CrossRef]
- Jeon, J.-M.; Brigham, C.J.; Kim, Y.-H.; Kim, H.-J.; Yi, D.-H.; Kim, H.; Rha, C.; Sinskey, A.J.; Yang, Y.-H. Biosynthesis of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) (P(HB-co-HHx)) from Butyrate Using Engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 2014, 98, 5461–5469. [Google Scholar] [CrossRef]
- Volova, T.G.; Kiselev, E.G.; Shishatskaya, E.I.; Zhila, N.O.; Boyandin, A.N.; Syrvacheva, D.A.; Vinogradova, O.N.; Kalacheva, G.S.; Vasiliev, A.D.; Peterson, I.V. Cell Growth and Accumulation of Polyhydroxyalkanoates from CO2 and H2 of a Hydrogen-Oxidizing Bacterium, Cupriavidus eutrophus B-10646. Bioresour. Technol. 2013, 146, 215–222. [Google Scholar] [CrossRef]
- Wong, Y.-M.; Brigham, C.J.; Rha, C.; Sinskey, A.J.; Sudesh, K. Biosynthesis and Characterization of Polyhydroxyalkanoate Containing High 3-Hydroxyhexanoate Monomer Fraction from Crude Palm Kernel Oil by Recombinant Cupriavidus necator. Bioresour. Technol. 2012, 121, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Marchessault, R.H.; Bluhm, T.L.; Deslandes, Y.; Hamer, G.K.; Orts, W.J.; Sundararajan, P.R.; Taylor, M.G.; Bloembergen, S.; Holden, D.A. Poly(β-Hydroxyalkanoates): Biorefinery Polymers in Search of Applications. Makromol. Chem. Macromol. Symp. 1988, 19, 235–254. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Q.; Yu, M.; Yang, W.; Weng, Y.; Dong, W.; Chen, M.; Wang, Y.; Ma, P. Enhanced Crystallization and Storage Stability of Mechanical Properties of Biosynthesized Poly (3-Hydroxybutyrate-Co-3-Hydroxyhexanate) Induced by Self-Nucleation. Int. J. Biol. Macromol. 2021, 184, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Janchai, K.; Kida, T.; Yamaguchi, M.; Sunagawa, T.; Okura, T. Optimum Processing Conditions for the Maximum Crystallization Rate of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Sci. Rep. 2023, 13, 497. [Google Scholar] [CrossRef] [PubMed]
Sample | PHA Composition, mol.% | Mw, kDa | Ð | Cx, % | Tg, °C | Tcryst, °C | Tmelt, °C | Tdegr, °C | |
---|---|---|---|---|---|---|---|---|---|
The sample was synthesized by Cupriavidus necator NSDG-ΔfadB1 from Kaneka (Japan) | |||||||||
1 | 3HB | 3HHx | 415 | 2.8 | 60 | −2.4 | 69.3/ 53.0 | 112/ 141 | 268.1 |
89.0 | 11.0 | ||||||||
The samples were synthesized by Cupriavidus necator B-10646 [41,96] | |||||||||
1 | 3HB | 3HHx | |||||||
91.0 | 9.0 | 520 | 3.9 | 60 | −0.2 | 63.2 | 170.2 | 262.7 | |
2 | 83.6 | 16.4 | 390 | 4.3 | 49 | −0.6 | 57.2 | 168.7 | 281.5 |
3 | 62.0 | 38.0 | 486 | 3.7 | 52 | −1.6 | 71.2 | 169.2 | 260.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volova, T.G.; Uspenskaya, M.V.; Kiselev, E.G.; Sukovatyi, A.G.; Zhila, N.O.; Vasiliev, A.D.; Shishatskaya, E.I. Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate-co 3-Hydroxyhexanoate). Polymers 2023, 15, 2890. https://doi.org/10.3390/polym15132890
Volova TG, Uspenskaya MV, Kiselev EG, Sukovatyi AG, Zhila NO, Vasiliev AD, Shishatskaya EI. Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate-co 3-Hydroxyhexanoate). Polymers. 2023; 15(13):2890. https://doi.org/10.3390/polym15132890
Chicago/Turabian StyleVolova, Tatiana G., Mayya V. Uspenskaya, Evgeniy G. Kiselev, Aleksey G. Sukovatyi, Natalia O. Zhila, Aleksander D. Vasiliev, and Ekaterina I. Shishatskaya. 2023. "Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate-co 3-Hydroxyhexanoate)" Polymers 15, no. 13: 2890. https://doi.org/10.3390/polym15132890
APA StyleVolova, T. G., Uspenskaya, M. V., Kiselev, E. G., Sukovatyi, A. G., Zhila, N. O., Vasiliev, A. D., & Shishatskaya, E. I. (2023). Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate-co 3-Hydroxyhexanoate). Polymers, 15(13), 2890. https://doi.org/10.3390/polym15132890