Gentamicin Release Study in Uniaxial and Coaxial Polyhydroxybutyrate–Polyethylene Glycol–Gentamicin Microfibers Treated with Atmospheric Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PHB-PEG-Gentamicin Electrospun Fibers
2.2.1. Solution Electrospinning
2.2.2. Uniaxial and Coaxial Electrospinning Process
2.3. Plasma Treatment at Atmospheric Pressure
2.4. Fiber Characterization
2.4.1. Fiber Wettability and Surface Free Energy
2.4.2. Raman and Fourier Transform Infrared (FTIR) Spectrometer Analysis
2.4.3. X-ray Diffraction (XRD) Study
2.4.4. Morphology Analysis of PHB-PEG/Gentamicin Microfibers
2.5. Test of Gentamicin Release from Microfibers
Analysis of the In Vitro Release Kinetics
2.6. In Vitro Microfiber Degradation Test: Mass Loss Analysis
3. Results and Discussion
3.1. Analysis of Gentamicin Dispersion in Microfibers
3.2. Microfibers Analysis Treated with AP by Raman Spectroscopy
3.3. Wettability and Surface Free Energy Analysis of PHB-PEG-Gentamicin Microfibers
3.4. PHB-PEG-G Fibers Analysis by FTIR Spectroscopy
3.5. PHB-PEG-G Fibers Analysis by DRX Spectroscopy
3.6. Analysis of the Fiber Morphology by SEM
3.7. Release of Gentamicin in PHB-PEG-G Microfibers
3.8. Degradation of PHB-PEG-Gentamicin Fibers in the Buffer Medium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chua, W.C.; Khoo, Y.C.; Tan, B.K.; Tan, K.C.; Foo, C.L.; Chong, S.J. Skin tissue engineering advances in severe burns: Review and therapeutic applications. Burn. Trauma 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Del Bakhshayesh, A.R.; Babaie, S.; Niknafs, B.; Abedelahi, A.; Mehdipour, A.; Ghahremani-Nasab, M. High efficiency biomimetic electrospun fibers for use in regenerative medicine and drug delivery: A review. Mater. Chem. Phys. 2022, 279, 125785. [Google Scholar] [CrossRef]
- Kenawy, E.R.S.; Kamoun, E.A.; Eldin, M.S.; Soliman, H.M.; EL-Moslamy, S.H.; El-Fakharany, E.M.; Shokr, A.B.M. Electrospun PVA–Dextran Nanofibrous Scaffolds for Acceleration of Topical Wound Healing: Nanofiber Optimization, Characterization and In Vitro Assessment. Arab. J. Sci. Eng. 2023, 48, 205–222. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Boccaccini, A.R. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020, 107, 25–49. [Google Scholar] [CrossRef]
- Pisani, S.; Dorati, R.; Chiesa, E.; Genta, I.; Modena, T.; Bruni, G.; Grisoli, P.; Conti, B. Release Profile of Gentamicin Sulfate from Polylactide-co-Polycaprolactone Electrospun Nanofiber Matrices. Pharmaceutics 2019, 11, 161. [Google Scholar] [CrossRef]
- Krysiak, Z.J.; Stachewicz, U. Electrospun fibers as carriers for topical drug delivery and release in skin bandages and patches for atopic dermatitis treatment. WIREs Nanomed. Nanobiotechnology 2023, 15, e1829. [Google Scholar] [CrossRef]
- Ponrasu, T.; Chen, B.-H.; Chou, T.-H.; Wu, J.-J.; Cheng, Y.-S. Fast Dissolving Electrospun Nanofibers Fabricated from Jelly Fig Polysaccharide/Pullulan for Drug Delivery Applications. Polymers 2021, 13, 241. [Google Scholar] [CrossRef]
- Angkawinitwong, U.; Awwad, S.; Khaw, P.T.; Brocchini, S.; Williams, G.R. Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater. 2017, 64, 126–136. [Google Scholar] [CrossRef]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegrable polymers. Polym. Phys. 2011, 49, 827–907. [Google Scholar] [CrossRef]
- Amini, F.; Semnani, D.; Karbasi, S.; Banitaba, S.N. A novel bilayer drug-loaded wound dressing of PVDF and PHB/Chitosan nanofibers applicable for post-surgical ulcers. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 772–777. [Google Scholar] [CrossRef]
- Rychter, M.; Milanowski, B.; Grzeskowiak, B.F.; Jarek, M.; Kempinski, M.; Coy, E.L.; Borysiak, S.; Baranowska-Korczyc, A.; Lulek, J. Cilostazol-loaded electrospun three-dimensional systems for potential cardiovascular application: Efect of fibers hydrophilization on drug release, and cytocompatibility. J. Colloid Interface Sci. 2019, 536, 310–327. [Google Scholar] [CrossRef]
- El-Okaily, M.S.; El-Rafei, A.M.; Basha, M.; Ghani, N.T.A.; El-Sayed, M.M.; Bhaumik, A.; Mostafa, A.A. Efficient drug delivery vehicles of environmentally benign nano-fibers comprising bioactive glass/chitosan/polyvinyl alcohol composites. Int. J. Biol. Macromol. 2021, 182, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Al-Enizi, A.M.; Zagho, M.M.; Elzatahry, A.A. Polymer-Based Electrospun Nanofibers for Biomedical Applications. Nanomaterials 2018, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Tabakoglu, S.; Kołbuk, D.; Sajkiewicz, P. Multifluid electrospinning for multi-drug delivery systems: Pros and cons, challenges, and future directions. Biomater. Sci. 2023, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Pillai, R.R.; Thomas, V. Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers 2023, 15, 400. [Google Scholar] [CrossRef] [PubMed]
- Mohammadalipour, M.; Asadolahi, M.; Mohammadalipour, Z.; Behzad, T.; Karbasi, S. Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. Int. J. Biol. Macromol. 2023, 230, 123167. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Rafique, A.; Bulbul, Y.E.; Usman, A.; Raza, Z.A.; Oksuz, A.U. Effect of cold plasma treatment on polylactic acid and polylactic acid/poly (ethylene glycol) films developed as a drug delivery system for streptomycin sulfate. Int. J. Biol. Macromol. 2023, 235, 123857. [Google Scholar] [CrossRef]
- Ojah, N.; Borah, R.; Ahmed, G.A.; Mandal, M.; Choudhury, A.J. Surface modification of electrospun silk/AMOX/PVA nanofibers by dielectric barrier discharge plasma: Physiochemical properties, drug delivery and in-vitro biocompatibility. Prog. Biomater. 2020, 9, 219–237. [Google Scholar] [CrossRef]
- Su, Y.; Su, Q.; Liu, W.; Lim, M.; Venugopal, J.R.; Mo, X.; Ramakrishna, S.; Al-Deyab, S.S.; El-Newehy, M. Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater. 2012, 8, 763–771. [Google Scholar] [CrossRef]
- Vázquez-Vélez, E.; Martinez, H.; Kumar Kesarla, M.; Ochoa-Leyva, A. Studies on the effect of long-chain and head groups of nonionic surfactants synthesized from palm and coconut oil on the formation of silver nanoparticles. J. Surfactants Deterg. 2022, 25, 413–426. [Google Scholar] [CrossRef]
- Xosocotla, O.; Martinez, H.; Campillo, B. Crystallinity and Hardness Enhancement of Polypropylene using Atmospheric Pressure Plasma Discharge Treatment. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1250. [Google Scholar] [CrossRef]
- Owens, D.; Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741. [Google Scholar] [CrossRef]
- Martinez, H.; Vázquez-Vélez, E.; Galván-Hernández, A.; Radilla-Bello, J.; Xosocotla, O.; Meza, A.E. Atmospheric plasma treatment to improve the surface properties of P3HB coating. A study of the influence of substrate roughness. J. Appl. Polym. Sci. 2023, 140, e54449. [Google Scholar] [CrossRef]
- Pierchala, M.K.; Makaremi, M.; Tan, H.L.; Pushpamalar, J.; Muniyandy, S.; Solouk, A.; Lee, S.M.; Pasbakhsh, P. Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Appl. Clay Sci. 2018, 160, 95–105. [Google Scholar] [CrossRef]
- Available online: https://www.biorender.com (accessed on 3 April 2023).
- Sato, H.; Dybal, J.; Murakami, R.; Noda, I.; Ozaki, Y. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C–H/O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate. J. Mol. Struct. 2005, 744, 35. [Google Scholar] [CrossRef]
- Padermshoke, A.; Sato, H.; Katsumoto, Y.; Ekgasit, S.; Noda, I.; Ozaki, Y. Thermally induced phase transition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by two-dimensional infrared correlation spectroscopy. Vib. Spectrosc. 2004, 36, 241–249. [Google Scholar] [CrossRef]
- Ol’khov, A.A.; Gol’dshtrakh, M.A.; Ishchenko, A.A.; Iordan, A.L. Formation of Complexes in Polyhydroxybutyrate–Polyethylene Glycol Mixtures. Russ. J. Phys. Chem. B 2015, 9, 961–970. [Google Scholar] [CrossRef]
- Mirmohammadi, S.A.; Khorasani, M.T.; Mirzadeh, H.; Irani, S. Investigation of Plasma Treatment on Poly(3-hydroxybutyrate) Film Surface: Characterization and Invitro Assay. Polym. -Plast. Technol. Eng. 2012, 51, 1319–1326. [Google Scholar] [CrossRef]
- Heidari-Keshel, S.; Ahmadian, M.; Biazar, E.; Gazmeh, A.; Rabiei, M.; Adibi, M.; Soufi, M.A.; Shabani, M. Surface modification of PolyHydroxybutyrate (PHB) nanofibrous mat by collagen protein and its cellular study. Mater. Technol. 2016, 31, 799–805. [Google Scholar] [CrossRef]
- Surmeneva, R.A.; Chernozema, R.V.; Syromotinaa, D.S.; Oehrb, C.; Baumbachc, T.; Krausec, B.; Boyandind, A.N.; Dvoininae, L.M.; Volovad, T.G.; Surmeneva, M.A. Low-temperature argon and ammonia plasma treatment of poly-3-hydroxybutyrate films: Surface topography and chemistry changes affect fibroblast cells in vitro. Eur. Polym. J. 2019, 112, 137. [Google Scholar] [CrossRef]
- Petlin, D.G.; Tverdokhlebov, S.I.; Anissimov, Y.G. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J. Control. Release 2017, 266, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.A. Atmospheric Pressure Plasma for Surface Modification; John Wiley & Sons, Inc.: New York, NY, USA, 2013; pp. 22–23. ISBN 978-1-118-01623-7. [Google Scholar]
- Thanh, N.H.; Olekhnovich, R.; Sitnikova, V.; Kremleva, A.; Snetkov, P.; Uspenskaya, M. PHB/PEG Nanofiber Mat Obtained by Electrospinning and Their Performances. Technologies 2023, 11, 48. [Google Scholar] [CrossRef]
- Domínguez-Díaz, M.; Escorcia-García, J.; Martínez, H. Influence of the crystalline structure stability in the wettability of poly-β-hydroxybutyrate: Polyethylene glycol fiber mats treated by atmospheric-pressure plasma. Nucl. Instrum. Methods Phys. Res. Sect. B 2019, 447, 84. [Google Scholar] [CrossRef]
- Wang, C.; Hsu, C.H.; Hwang, I.H. Scaling laws and internal structure for characterizing electrospun poly[(R)-3-hydroxybutyrate] fibers. Polymer 2008, 49, 4188. [Google Scholar] [CrossRef]
- Zhijiang, C.; Ping, X.; Shiqi, H.; Cong, Z. Improved piezoelectric performances of highly orientated poly(bhydroxybutyrate) electrospun nanofiber membrane scaffold blended with multiwalled carbon nanotubes. Mater. Lett. 2019, 240, 213. [Google Scholar] [CrossRef]
- Wang, X.X.; Yu, G.F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, A.; Allen, A.; Zoldan, J.; Huang, Y.; Chen, J.Y. Regenerated cellulose micro-nano fiber matrices for transdermal drug release. Mater. Sci. Eng. C 2017, 74, 485–492. [Google Scholar] [CrossRef]
- Chou, S.F.; Carson, D.; Woodrow, K.A. Current strategies for sustaining drug release from electrospun nanofibers. J. Control. Release Part B 2015, 220, 584–591. [Google Scholar] [CrossRef]
- Sirc, J.; Kubinová, S.; Hobzova, R.; Stranska Kozlik Bosakova, Z.; Marekova Holan, V.; Syková, E.; Michalek, J. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int. J. Nanomed. 2012, 7, 5315–5325. [Google Scholar] [CrossRef]
- Labay, C.; Canal, J.M.; Canal, C. Relevance of Surface Modification of Polyamide 6.6 Fibers by Air Plasma Treatment on the Release of Caffeine. Plasma Process. Polym. 2012, 9, 165–173. [Google Scholar] [CrossRef]
- Sridhar, R.; Madhaiyan, K.; Sundarrajan, S.; Góra, A.; Venugopal, J.R.; Ramakrishna, S. Cross-linking of protein scaffolds for therapeutic applications: PCL nanofibers delivering riboflavin for protein cross-linking. J. Mater. Chem. B 2014, 2, 1626–1633. [Google Scholar] [CrossRef] [PubMed]
SFE (mJ•m−2) | Uniaxial Fiber | Coaxial Fiber | Fiber Treated with AP |
---|---|---|---|
Total SFE | 11.63 | 54.35 | 79.12 |
Polar contribution | 2.38 | 3.54 | 28.31 |
Dispersive contribution | 9.25 | 50.80 | 50.80 |
Microfiber | Zero Order | First Order | Higuchi | Korsmeyer–Peppas | |
---|---|---|---|---|---|
(r2) | (r2) | (r2) | (r2) | n | |
Uniaxial 0 s | 0.899 | 0.901 | 0.900 | 0.814 | 0.063 |
Uniaxial 2 s | 0.749 | 0.769 | 0.893 | 0.917 | 0.066 |
Coaxial 0 s | 0.865 | 0.873 | 0.939 | 0.953 | 0.047 |
Coaxial 2 s | 0.634 | 0.645 | 0.757 | 0.867 | 0.312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Transito-Medina, J.; Vázquez-Vélez, E.; Castillo, M.C.; Martínez, H.; Campillo, B. Gentamicin Release Study in Uniaxial and Coaxial Polyhydroxybutyrate–Polyethylene Glycol–Gentamicin Microfibers Treated with Atmospheric Plasma. Polymers 2023, 15, 3889. https://doi.org/10.3390/polym15193889
Transito-Medina J, Vázquez-Vélez E, Castillo MC, Martínez H, Campillo B. Gentamicin Release Study in Uniaxial and Coaxial Polyhydroxybutyrate–Polyethylene Glycol–Gentamicin Microfibers Treated with Atmospheric Plasma. Polymers. 2023; 15(19):3889. https://doi.org/10.3390/polym15193889
Chicago/Turabian StyleTransito-Medina, Josselyne, Edna Vázquez-Vélez, Marilú Chávez Castillo, Horacio Martínez, and Bernardo Campillo. 2023. "Gentamicin Release Study in Uniaxial and Coaxial Polyhydroxybutyrate–Polyethylene Glycol–Gentamicin Microfibers Treated with Atmospheric Plasma" Polymers 15, no. 19: 3889. https://doi.org/10.3390/polym15193889
APA StyleTransito-Medina, J., Vázquez-Vélez, E., Castillo, M. C., Martínez, H., & Campillo, B. (2023). Gentamicin Release Study in Uniaxial and Coaxial Polyhydroxybutyrate–Polyethylene Glycol–Gentamicin Microfibers Treated with Atmospheric Plasma. Polymers, 15(19), 3889. https://doi.org/10.3390/polym15193889